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Abstract In this work, the dynamic of isolated systems in general relativity is
described when gravitational radiation and electromagnetic fields are present. In this
construction, the asymptotic fields received at null infinity together with the reg-
ularized null cone cuts equation, and the center of mass of an asymptotically flat
Einstein-Maxwell spacetime are used. A set of equations are derived in the low speed
regime, linking their time evolution to the emitted gravitational radiation and to the
Maxwell fields received at infinity. These equations should be useful when describing
the dynamic of compact sources, such as the final moments of binary coalescence and
the evolution of the final black hole. Additionally, we compare our equations with
those coming from a similar approach given by Newman, finding some differences in
the motion of the center of mass and spin of the gravitational system.

Keywords Asymptotic structure of spacetime · Spin, and Center of mass ·
Gravitational waves · Electromagnetic fields

1 Introduction

In September 2015 the first detection of gravitational waves from colliding Black
Holes was made by LIGO [1]. This experimental confirmation of the gravitational
radiation existence generated a strong impact on the scientific community. Close binary
coalescence of black holes (BHs) and neutron stars (NSs) are the prime candidates
for LIGO in the search for gravitational waves. These binary systems can be studied
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as systems where the energy, the linear and angular momentum are given off and
carried away by the radiation. Although for most astrophysical processes one can
give a Newtonian definition of these variables, in these very energetic situations a
relativistic definition must be given. The problem lies in the impossibility of defining
locally these variables and it is for this reason that only global definitions are due.
Fortunately, using the notion of asymptotic flatness together with the inclusion of
a 3-dim null boundary, called Null Infinity, one can give suitable definitions of the
Bondi 4-momentum P and (with considerable more debate among specialists) the
mass dipole-angular momentum two form.

As mentioned, it is very important for these compact sources of gravitational radi-
ation to define the notion of center of mass since the loss of momentum from the
system causes a recoil or kick velocity to be imparted to the center of mass of the
coalesced binary. In a recent work together with Kozameh [2], a new definition of
center of mass and spin for isolated sources of gravitational radiation was given, its
time evolution was derived and a comparison with analogous formulae coming from
the post-Newtonian approximation was given. In that work, a slow motion approx-
imation was taken since most of the time the astrophysical sources do not acquire
relativistic velocities as a result of the gravitational radiation emission. However, the
contributions of the electromagnetic fields in the equation of motion of the center of
mass and spin were neglected.

The electromagnetic fields play an important role in gravitational theories even in
General Relativity (GR). There are many astrophysical sources which are modeled as
charged [3] or magnetized [4,5] compact sources, even there are models of galaxies
where the electrodynamic contributions are so significant in its behavior and stability
[6,7]. In this context, the coalescence and fusion of binary systems is not an exception,
especially in systems such NS-NS, where the magnetic moments present in neutron
stars influences upon the dynamics of, and resulting gravitational waves [8]. The
electromagnetic contributions are significant even in other astrophysical sources, for
example, in the gravitational wave emission by a distorted rotating fluid star [9], where
the distortion of stochastic magnetic fields might lead to gravitational waves detectable
by the VIRGO or LIGO interferometers. Then, it is clear that electromagnetic fields
and the gravitational waves should be included in the description of any astrophysical
systems. In the particular case of the center of mass and spin, the electromagnetic field
causes a change in its dynamics and evolution, thus it is very important to include
these corrections in our previous work to get a more accurate description of the final
state and merge of the binary coalescence.

In this paper, we extend our previous results, including the electrodynamics con-
tributions in the equation of motion of the center of mass, spin, and the Bondi
4-momentum. These equations are derived assuming the slow motion approxima-
tion for the center of mass velocity. This is not a limitation on the applicability of our
formalism since in most astrophysical processes only a fraction of the total mass is lost
as gravitational radiation. In other words, even if two coalescing stars (or black holes)
are approaching each other at relativistic speeds, if the center of mass is initially at
rest it will not acquire a relativistic velocity. So, in these scenarios, where the gamma
factor for the center of mass velocity is close to one, these equations can be applied.
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Many works were written on this topic, among the most recent we can mention
those published by Newman and collaborators [10–12] where definitions of quantities
such as the complex center of charge, and complex center of mass was given. However,
our work updates and correct the equations obtained previously by these authors using
a new definition for the center of mass and using a real equation (versus a complex)
to describe the cuts at null infinity. These ingredients incorporate some extra terms in
the final equations adding the electrodynamic corrections in the equation of motion,
and interaction terms between electromagnetic dipoles and gravitational radiation.

The article is organized as follows, in Sect. 2 we give the needed mathematical
constructions. In particular, we introduce the notion of asymptotically flat spacetimes
and derive a set of null vectors in the neighborhood of null infinity. Also, we intro-
duce the Newman-Penrose formalisms and all the quantities needed in the following
sections. In Sect. 3 we present a brief review of our previous work presenting the
special two-form that defines the dipole mass moment and total angular momentum
for an isolated source. We also introduce the so called regularized null cone cuts as
the special family of cuts that are used to define the center of mass and the center of
charge. Additionally, in this section we derive the main results obtaining the relation-
ships between these global variables together with their time evolution. In Sect. 4 we
compare our results with those obtained by Newman, and in Sect. 5 we give some
application introducing a simple model of a Gravitational Charged Particle, and we
show that using our equations the classical gyromagnetic ratio for a charged black
hole is obtained. Finally, we conclude this work with some remarks and conclusions.

2 Asymptotically flat spacetime

The notion of asymptotically flat spacetime is an adequate tool to analyze the grav-
itational and electromagnetic radiation coming from an arbitrary compact source. A
spacetime (M , gab) is called asymptotically flat if the curvature tensor vanishes as it
approaches infinity along the future directed null geodesics of the spacetime. The geo-
metrical notion of an asymptotically flat spacetime can be formalized by the following
definition [13].

Definition a future null asymptote is a manifold M̂ with boundary I + ≡ ∂M̂

together with a smooth Lorentzian metric ĝab, and a smooth function Ω on M̂ satis-
fying the following

• M̂ = M ∪ I +
• On M , ĝab = Ω2gab with Ω > 0
• At I +, Ω = 0, na ≡ ∂aΩ �= 0 and ĝabnanb = 0

We assume I + to have topology S2 × R. The two-surface metric becomes

ds2 = −4r2dζd ζ̄

P2 , (1)
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Now, with the usual choice of Ω = r−1 as the conformal factor, (1) gives the induced
metric of I +,

dŝ2 = −4dζd ζ̄

P2 . (2)

here P(u, ζ, ζ̄ ) is a strictly positive arbitrary function.

In the neighborhood of I + it is possible to introduce a Newman-Unti system (NU)
[14], with coordinates (u, r, ζ, ζ̄ ). In this system, the time u represents a family of null
surfaces, r is the affine parameter along the null geodesics of the constant u surfaces,
and (ζ, ζ̄ ) are the complex stereographic angle that labels the null geodesics of the
null surface. Associated with the NU coordinates, there is a null tetrad system denoted
by (l∗a ,n∗

a ,m∗
a ,m̄∗

a). These vectors are defined to satisfy the following conditions [13]

l∗a = ∇au, (3)

la∗n∗
a = −ma∗m̄∗

a = 1, (4)

la∗m∗
a = la∗m̄∗

a = na∗m∗
a = na∗m̄∗

a = 0, (5)

la∗l∗a = na∗n∗
a = ma∗m∗

a = m̄a∗m̄∗
a = 0. (6)

The indices can be raised and lowered using the global metric gab which can be written
as

gab = l∗an∗
b + n∗

al
∗
b − m∗

am̄
∗
b − m̄∗

am
∗
b (7)

Now, we will introduce the Bondi coordinates which are a particular choice of a NU
system. In a Bondi system, the coordinates (uB, rB, ζ, ζ̄ ) are related with the NU
coordinates as follows

uB = Z(u, ζ, ζ̄ ) (8)

rB = Z ′r (9)

The first equation come from one of the tetrad freedom [13], which allow to introduce
a different choice of the original cut u = const , this freedom implies that

u = T (uB, ζ, ζ̄ ). (10)

Z and T are smooth real function, where T is the inverse of Z . These functions satisfy
that Z ′Ṫ = 1, here the dot and the prime means derivative with respect uB and u
respectively.

Also, a quantity η that transforms as η → eisλη under a rotation ma∗ → eiλma∗
is said to have a spin weight s. For any function f (u, ζ, ζ̄ ), we define the differential
operators ð∗ and ð̄∗ [12] by

ð
∗ f = P1−s ∂(Ps f )

∂ζ
, (11)

ð̄
∗ f = P1+s ∂(P−s f )

∂ζ̄
, (12)
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where f has a spin weight s and P is the conformal factor of the metric (2). The
particular choice P0 = (1 + ζ ζ̄ ) makes the two-surface metric (1) a sphere. Further-
more, using P = P0Z ′ in eqs. (11-11) and remaining u = const , one can write the
transformation from a topological sphere to unit sphere as

ð
∗ f = Z ′

ð f + s f ðZ ′ (13)

ð̄
∗ f = Z ′

ð̄ f − s f ð̄Z ′, (14)

where the symbol ∗ distinguishes between the differential operators applied with con-
formal factor P and P0 respectively at u = const . The above equation will be used
below to expand regular functions on the sphere in the standard spherical harmonic
basis.

In the same way, for the Bondi system, a set of four null vectors can be introduced
(la, na,ma, m̄a) and expand one of those bases in terms of the other. In this case, we
write the NU as a linear combination of the Bondi null vectors just making the choice
l∗a = ∇aT (uB, ζ, ζ̄ ) and using the orthogonality of the null vectors as follows

l∗a = 1

Z ′

[
la − L

rB
m̄a − L̄

rB
ma + L L̄

r2
B

na

]
, (15)

n∗
a = Z ′na, (16)

m∗
a = ma − L

rB
na, (17)

m̄∗
a = m̄a − L̄

rB
na, (18)

where

L(uB, ζ, ζ̄ ) = ðZ(u, ζ, ζ̄ ).

2.1 The Newman-Penrose formalism

In the Newman-Penrose formalism, one introduces twelve complex spin coefficients,
five complex functions encoding Weyl tensor, three complex Maxwell scalars, and ten
functions encoding Ricci tensors in the tetrad basis [15]. These complex functions are
the primary quantities used in the asymptotic formulation of the General Relativity.

In this article, we will focus on the general form of the asymptotically flat solutions
of the Einstein-Maxwell equations, starting with the Ricci rotation coefficients in
term of the Bondi coordinates introduced in the previous section, this means that all
introduced functions depend on these coordinates. Now, the Ricci rotation coefficients
γμνρ can be written as

γμνρ = λaρλbν∇aλbμ, (19)
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where μ, ν, ρ = 1, 2, 3, 4 are tetrad indexes and

λaμ = (la, na,ma, m̄a). (20)

Also, the Ricci rotations coefficients satisfy

γμνρ = −γνμρ. (21)

Then, the spin coefficients are defined as combinations of the γμνρ such as

α = 1

2
(γ124 − γ344), λ = −γ244, κ = γ131,

β = 1

2
(γ123 − γ343), μ = −γ243, ρ = γ134,

γ = 1

2
(γ122 − γ342), ν = −γ242, σ = γ133,

ε = 1

2
(γ121 − γ341), π = −γ241, τ = γ132. (22)

Since the spacetime is assumed to be empty in a neighborhood of the null infinity, the
gravitational field is given by the Weyl tensor. Using the available tetrad one defines
five complex scalars

ψ0 = −Cabcdl
amblcmd; ψ1 = −Cabcdl

anblcmd ,

ψ2 = −1

2

(
Cabcdl

anblcnd − Cabcdl
anbmcm̄d

)
,

ψ3 = Cabcdl
anbncm̄d; ψ4 = −Cabcdn

am̄bncm̄d , (23)

When an electromagnetic field is present, we can introduce the Maxwell tensor Fab =
∂a Ab − ∂b Aa , from where we compute three complex Maxwell scalars given by

φ0 = Fabl
amb; φ1 = 1

2
Fab(l

anb + mam̄b); φ2 = Fabn
am̄b, (24)

Finally the Peeling theorem of Sachs [16] tell us about the asymptotic behaviors of
the Weyl and the Maxwell scalars, which are the following

ψ0 = ψ0
0 r

−5
B + O(r−6

B ), ψ1 = ψ0
1 r

−4
B + O(r−5

B ), ψ2 = ψ0
2 r

−3
B + O(r−4

B )

ψ3 = ψ0
3 r

−2
B + O(r−3

B ), ψ4 = ψ0
4 r

−1
B + O(r−2

B ),

φ0 = φ0
0r

−3
B + O(r−4

B ), φ1 = φ0
1r

−2
B + O(r−3

B ), φ2 = φ0
2r

−1
B + O(r−2

B ). (25)

the Peeling also tell us about the behavior of the spin coefficients [12],

κ = π = ε = 0; ρ = ρ̄; τ = ᾱ + β

ρ = −r−1
B − σ 0σ̄ 0r−3

B + O(r−5
B )
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σ = σ 0r−2
B + [(σ 0)2σ̄ 0 − ψ0

0 /2]r−4
B + O(r−5

B )

α = α0r−1
B + O(r−2

B )

β = β0r−1
B + O(r−2

B )

γ = γ 0 − ψ0
2 (2r2

B)−1 + O(r−3
B )

μ = μ0r−1
B + O(r−2

B )

λ = λ0r−1
B + O(r−2

B )

ν = ν0 + O(r−1
B ) (26)

where the relationships among the r-independent functions are given by

α0 = −β̄0 = −ζ

2
, γ 0 = ν0 = 0,

ω0 = −ð̄σ 0, λ0 = ˙̄σ 0, μ0 = −1,

with σ 0 the value of the Bondi shear at null infinity, this complex scalar is called
the Bondi free data since σ̈ 0 yields the gravitational radiation reaching null infinity.
Although the NP formalism is the basic working tool for our analysis, we simply have
given an outline of this formulation and leave the reference [13,15] for extra details.
Additionally, we can define the Weyl scalars in NU using the fact that the Weyl tensor
Cabc

d is conformally invariant [13].

ψ∗
1 = Cabc

dna∗lb∗lc∗m∗
d 	 ψ0∗

1 r−4, (27)

σ ∗ = m∗am∗b∇al
∗
b 	 σ 0∗r−2. (28)

From Eqs. (15–18) we can find transformations from NU to Bondi for any scalar or
spin coefficient [17,18]. In particular we are interested in

ψ0∗
1

Z ′3 = [ψ0
1 − 3Lψ0

2 + 3L2ψ0
3 − L3ψ0

4 ], (29)

where ψ0∗
1 is constructed from the NU tetrad. Similarly, we find the relation between

σ 0∗ and σ 0 [17]
σ 0∗

Z ′ = σ 0 − ð
2Z , (30)

where σ 0∗ is the NU shear [14]. In the same way for the electromagnetic field we
have,

φ0∗
0

Z ′2 (u, ζ, ζ̄ ) = [φ0
0 − 2Lφ0

1 + L2φ0
2 ](uB, ζ, ζ̄ ). (31)

Finally, we introduce the evolution equations, which are given by the following Bianchi
identities [13]
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ψ0
2 − ψ̄0

2 = ð̄
2σ 0 − ð

2σ̄ 0 + σ̄ 0σ̇ 0 − σ 0 ˙̄σ 0, (32)

ψ0
3 = ð ˙̄σ 0, (33)

ψ0
4 = −¨̄σ 0. (34)

These equations are valid up to second order in σ 0. Form Eq. (32) we can define the
so called mass aspect [12]

Ψ = ψ0
2 + ð

2σ̄ 0 + σ 0 ˙̄σ 0, (35)

which satisfies the following reality condition

Ψ = Ψ̄ , (36)

using the asymptotic Bianchi identities [13], we obtain the most important differential
equations for this work

ψ̇0
1 = −ðΨ + ð

3σ̄ 0 + ðσ 0 ˙̄σ 0 + 3σ 0
ð ˙̄σ 0 + 4G

c4 φ0
1 φ̄0

2 , (37)

ψ̇0
2 = −ð

2 ˙̄σ 0 − σ 0 ¨̄σ 0 + 2G

c4 φ0
2 φ̄0

2 , (38)

φ̇0
0 = −ðφ0

1 + σ 0φ0
2 , (39)

φ̇0
1 = −ðφ0

2 . (40)

Combining the mass aspect Ψ with ψ̇0
2 , the Bianchi identities ψ̇0

2 can be rewritten in
the form

Ψ̇ = σ̇ 0 ˙̄σ 0 + 2G

c4 φ0
2 φ̄0

2 . (41)

Note that the R.H.S of the Bianchi identities are only functions of σ 0, Ψ and the
Maxwell scalars φ0

1 and φ0
2 . In addition, we can introduce the Bondi mass and three-

momentum through the equations [13]

M = − c2

2
√

2G

∫
Ψ dΩ (42)

Pi = − c3

6G

∫
Ψ li dΩ. (43)

3 Spin and center of mass review

The concept of spin and the center of mass in general relativity is of great importance,
although the general construction of the Kozameh-Quiroga approach can be found in
refs. [2,18]. In this section, we will outline only the most relevant aspects of these
previous works.
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3.1 Regularized null cone cuts

In flat spacetime, the null cone cuts or NC cuts for short, are smooth surfaces that can
be written as regular functions on the sphere,

Z0 = xa�a, xa = (R0, Ri ) �a =
(
Y 0

0 ,−1

2
Y 0

1i

)
(44)

with xa the apex of the null cone and where Y 0
0 ,Y 0

1i the � = 0, 1 tensorial spin-s
harmonic [19]. If the apex xa(u) describes a timelike worldline in Minkowski space,
the NC cuts describe a one parameter foliation of null infinity.

Now, to generalize this concept for asymptotically flat spacetimes, the first difficulty
to be solved is that a generic NC cut is not a smooth two-surface at null infinity since
the NC cut have self-intersections and caustics. However, using the regularized null
cone cuts (RNC) equation for the smooth function Z , it is always possible to find a
neighborhood at null infinity where a NC cut is a smooth two-surface (see Appendix
A of Ref. [2]). The RNC cuts correspond to the linear regular solutions of the NC
equation [20]. One expects that the leading contribution to the solution comes from
the Huygens part of the RNC cuts equation, which can be written as,

ð̄
2
ð

2Z = ð̄
2σ 0(Z , ζ, ζ̄ ) + ð

2σ̄ 0(Z , ζ, ζ̄ ). (45)

This linearized version was independently derived by Mason [21], and by Fritelli et
al. [22]. Since (45) only contains � ≥ 2, the kernel of (45) is a four-dimensional space
xa , i.e. a flat cut Z0 = xa�a .

The RNC cut equation yield monoparametric families of NU cuts whose areas are
time dependent and in general are not unit spheres. It should be noted that the center
of mass is accelerated by the emission of gravitational radiation and, in consequence,
the null cuts performed at null infinity by the center of mass worldline will correspond
to a family of NU cuts. Now, the solution to the RNC cuts equation can be found using
the perturbative solution

Z = Z0 + Z1 + Z2 + ..., (46)

where each term in the series is determined from the previous one and the free data
σ 0(uB, ζ, ζ̄ ). The first two terms satisfy

ð̄
2
ð

2Z0 = 0, (47)

ð̄
2
ð

2Z1 = ð̄
2σ 0(Z0, ζ, ζ̄ ) + ð

2σ̄ 0(Z0, ζ, ζ̄ ), (48)

Clearly, the zeroth order term Z0 is simply the flat cut (44) and it has been assumed
that in the absence of radiation the Bondi shear vanishes. The first non-trivial term of
Eq. (45) is found by solving (48), which is given by

Z1 = R0 − 1

2
RiY 0

1i +
(

σ
i j
R

12
+

√
2

72
σ

′ig
I R f εg f i

)
Y 0

2i j (49)
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Note that Z1 depends on the real and imaginary parts of the Bondi shear, also if xa(u)

describes any worldline, then Zi describes a NU foliation up to the order needed. This
is what one would expect in a perturbation expansion since the imaginary part of the
Bondi shear is related to the current quadrupole moment, but the real part comes from
the mass quadrupole moment [23]. Now, Eq. (45) can be compared with the good cut
equation

ð
2ZC = σ 0(Zc, ζ, ζ̄ ), (50)

The good cut equation yields complex cuts with vanishing shear, while the RNC cuts
equation yields NU cuts whose shear depends linearly on the Bondi shear. Thus, from
the point of view of available structures at null infinity, we could start with the RNC
cuts Eq. (45). On its four-dimensional solution space, one constructs a Lorentzian
metric following the NSF procedure [22]. A perturbative solution gives a Minkowski
space together with flat cuts (44) at its lowest order, and the linearized RNC cuts (49)
at first order.

3.2 Spin and center of mass definitions

The center of mass-angular momentum tensor is defined from the Winicour-Tamburino
linkage integral [24,25]. The mass dipole moment and the angular momentum can be
defined using the real and the imaginary part of the linkage integral as follows [2]),

D∗i + ic−1 J ∗i = − c2

12
√

2G

[
2ψ0

1 − 2σ 0ðσ̄ 0 − ð(σ 0σ̄ 0)

Z ′3

]∗i
. (51)

We assume that a special worldline xa(u) exist, where the mass dipole moment
D∗i |u=const vanishes for each u = const. cut. This special worldline on this spe-
cial RNC foliation, will be called the “Center of Mass worldline” of the system. The
angular momentum J i∗ evaluated at the center of mass will be the intrinsic angular
momentum Si . Thus, the center of mass worldline xa(u) will correspond with the
worldline following by the center of mass in the solution space of the RNC equation
(45), this worldline is then determined using the equation,

Re

[
2ψ0

1 − 2σ 0ðσ̄ 0 − ð(σ 0σ̄ 0)

Z ′3

]∗i
= 0. (52)

Since the 4-velocity of the worldline is normalized to one (using the spacetime metric),
we will use this norm to fix the timelike component of the worldline coordinate. Thus,
the only freedoms left are the spatial components of the worldline Ri . The above
equation gives three algebraic equations from which these components are obtained.
Additionally, the intrinsic angular momentum is given by

Si = − c3

12
√

2G
Im

[
2ψ0

1 − 2σ 0ðσ̄ 0 − ð(σ 0σ̄ 0)

Z ′3

]∗i
. (53)
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Now, to describe the motion of the center of mass will be use a simpler system, such
a Bondi system, where there is a precise notion of mass and momentum. For that, it
is important to introduce some analogous quantities to D∗i and J ∗i in a Bondi tetrad
system, these quantities are defined as

Di + ic−1 J i = − c2

12
√

2G

[
2ψ0

1 − 2σ 0
ðσ̄ 0 − ð(σ 0σ̄ 0)

]i
. (54)

The natural way to link these two definitions is finding the transformation between
the quantities (ψ0∗

1 , σ 0∗,ð) in NU to (ψ0
1 , σ 0,ðB) in a Bondi system, for that we use

Eqs. (29) and (30) to write

D∗i (u) = Di (uB) + 3c2

6
√

2G
Re[ðZ(Ψ − ð

2σ̄ 0) + F]i (55)

J i∗(u) = J i (uB) + 3c3

6
√

2G
Im[ðZ(Ψ − ð

2σ̄ 0) + F]i (56)

with

F = −1

2
(σ 0

ðð̄
2Z + ð

2Zðσ̄ 0 − ð
2Zðð̄2Z)

−1

6
(σ̄ 0

ð
3Z + ð̄

2Zðσ 0 − ð̄
2Zð3Z). (57)

Before continuing we will introduce some assumptions and approximations that facil-
itate the calculations of the final equations. First, we assume that σ = 0 at some
initial time, this assumption fixes the supertranslation freedom. We also consider the
quadratic terms in the gravitational radiation and we assume that the Bondi shear only
has a quadrupole term. Finally, we consider Ri as a small deviation from the coordi-
nates origin and R0 = u assuming the slow motion approximation. Following these
works assumptions, we can write the Z1 solution (49) of the RNC cut as,

Z1 = u + δu

δu ≡ −1

2
Ri (u)Y 0

1i (ζ, ζ̄ ) + 1

12
σ
i j
R (u)Y 0

2i j (ζ, ζ̄ ), (58)

and making a Taylor expansion up to first order in δu and its derivatives we have

D∗i (u) = Di (u)+[D′(u)δu]i + 3c2

6
√

2G
Re[ðZ(Ψ −ð

2σ̄ 0)+F]i

= Di (u)+ 3c2

6
√

2G
Re[ðZ(Ψ −ð

2σ̄ 0) + F]i + c2

6
√

2G
Re[(ðΨ −ð

3σ̄ 0)δu]i ,
(59)
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and

J ∗i (u) = J i (u) + [J ′(u)δu]i + 3c3

6
√

2G
Im[ðZ(Ψ − ð

2σ̄ 0) + F]i , (60)

= J i (u)+ c3

6
√

2G
Im[(ðΨ −ð

3σ̄ 0)δu]i + 3c3

6
√

2G
Im[ðZ(Ψ −ð

2σ̄ 0) + F]i ,
(61)

where in the R.H.S. of Eqs. (59) and (61), and based on the above assumptions we
have used that Di ′(u) + icJ i ′(u) ≈ [Ḋi (uB) + ic J̇ i (uB)]|uB=u . Now, inserting the
following tensorial spin-s harmonics expansion [19],

σ 0 = σ i j (u)Y 2
2i j (ζ, ζ̄ ),

ψ0
1 = ψ0i

1 (u)Y 1
1i (ζ, ζ̄ ) + ψ

0i j
1 (u)Y 1

2i j (ζ, ζ̄ ),

Ψ = −2
√

2G

c2 M − 6G

c3 Pi (u)Y 0
1i (ζ, ζ̄ ) + Ψ i j (u)Y 0

2i j (ζ, ζ̄ ),

φ0
0 = φ0i

0 (u)Y 1
1i (ζ ),

φ0
1 = Q + φ0i

1 (u)Y 0
1i (ζ ),

φ0
2 = φ0i

2 (u)Y−1
1i (ζ ), (62)

where M is the Bondi mass and Pi is the Bondi momentum [13]. Finally, in the center
of mass worldline the mass dipole moment vanishes, i.e D∗ = 0, and J ∗i = Si , so
Eqs. (59) and (61) will be reduced to

MRi = Di + 8

5
√

2c
σ
i j
R P j , (63)

J i = Si + R j Pkεi jk . (64)

Since the center of mass and the angular momentum was defined using only the Weyl
scalar ψ0

1 and σ 0, these definitions and the subsequent equations are independent of
the electromagnetic fields.

3.3 Electromagnetic contributions to the center of mass

The time evolution of Di and J i follows from the Bianchi identity for ψ0
1 , where we

must insert the proper factor of
√

2 to account for the retarded time, uret = √
2uB .

The use of the retarded time, uret , is important in order to obtain the correct numerical
factors in the expressions for the final physical results [12]. Note that the two last Eqs.
(63) and (64) remain unchanged in term of uret or uB . From now on, we will adopt
the symbol “prime” for ∂uret . Now, starting from the definition (54) and replacing the
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real and imaginary l = 1 component of (37) we can write,

Di ′ = Pi − 1

3
√

2c

(
φ0k

1Rφ
0 j
2I + φ

0 j
1I φ

0k
2R

)
εi jk − Q

3c
φ0i

2R, (65)

J i ′ = c3

5G

(
σ kl
R σ

jl′
R + σ kl

I σ
jl′
I

)
εi jk − 1

3
√

2

(
φ0k

1Rφ
0 j
2R + φ

0 j
1I φ

0k
2I

)
εi jk + Q

3
φ0i

2I .

(66)

Note that the second term in (66) corresponds to the electromagnetic contribution
to the angular momentum (see Ref. [18]). In the same way, we can use the Bianchi
identity (41) to obtain the flux laws for the Bondi mass and linear momentum,

M ′ = − c

10G

(
σ
i j ′
R σ

i j ′
R + σ

i j ′
I σ

i j ′
I

)
− 1

6c

(
φ0i

2Rφ0i
2R + φ0i

2Iφ
0i
2I

)
, (67)

Pi ′ = 2c2

15G
σ

jl′
R σ kl′

I εi jk + 1

6
φ

0 j
2I φ

0k
2Rεi jk . (68)

Now, from Eqs. (63) and (65) we obtain

MRi ′ = Pi + 8

5
√

2c
σ
i j ′
R P j − Q

3c
φ0i

2R − 1

3
√

2c
(φ0k

1Rφ
0 j
2I + φ

0 j
1I φ

0k
2R)εi jk . (69)

Finally, taking one more Bondi time derivative of (69) yields the equation of motion
of the center of mass,

MRi ′′ = 2c2

15G
σ

jl′
R σ kl′

I εi jk + 8

5
√

2c
σ
i j ′′
R P j − Q

3c
φ0i ′

2R

+1

6
φ

0 j
2I φ

0k
2Rεi jk − 1

3
√

2c
(φ0k

1Rφ
0 j
2I + φ

0 j
1I φ

0k
2R)′εi jk . (70)

The R.H.S. of the equation only depends on the gravitational data, the initial mass of
the system, and the electromagnetic radiation at null infinity. Now, we assume that
the main contribution in the Maxwell scalars is coming from the monopolar and the
electromagnetic dipole moment. In a Bondi frame, the electromagnetic dipole moment
for an asymptotically flat spacetime is given by [12]

pi + ic−1μi = 1

2
φ0i

0 , (71)

It is possible to extend this definition to a NU frame writing the following equation,

p∗i + ic−1μ∗i = 1

2

[
φ0∗

0

Z ′2

]i

. (72)

It is quite convenient to write the Maxwell field at infinity in terms of pi and μi .
For that, we need to solve the linear part of the scalars φ0i

2 , φ0i
1 , and φ0i

0 because all
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approximations are up to the second order in Maxwell and gravitational data. Also,
we need the quadratic contribution only for Qφ0i ′

2R of this equation. So, inserting the
constant G, c, and the

√
2 factor of the retarded time in the linearized Bianchi identities

(Eqs. 39, 40), we can write

φ0i
1 = φ0i ′

0√
2c

,

φ0i
2 = −

√
2φ0i ′

1

c
,

Finally, using the definition for the center of charge we have

φ0i
0R = 2pi , φ0i

0I = 2μi

c
,

φ0i
1R = 2pi ′√

2c
, φ0i

1I = 2μi ′
√

2c2
,

φ0i
2R = −2pi ′′

c2 , φ0i
2I = −2μi ′′

c3 . (73)

The quadratic contribution needed in the R.H.S of Eqs. (65), (69), and (70) can be
obtained expanding the Bianchi equation (40) in the following way,

φ0i ′′
0R = −c2φ0i

2R + 3c

5
√

2

(
σ
i j
R φ

0 j
2R − σ

i j
I φ

0 j
2I

)′
, (74)

and using the linear Maxwell fields (73) in the last equation, we get

φ0i
2R = −2pi ′′

c2 − 3

c5
√

2

(
σ
i j
R p j ′′ − c−1σ

i j
I μ j ′′)′

. (75)

Now, we are ready to write the equation of motion of the center of mass staring with
Eq. (70), and combining this with Eq. (73–75), we can therefore write

MRi ′′ = 2c2

15G
σ

jl′
R σ kl′

I εi jk + 8

5
√

2c
σ
i j ′′
R P j

+2Q

3c3 p
i ′′′ + Q

c25
√

2

(
σ
i j
R p j ′′ − c−1σ

i j
I μ j ′′)′

+ 2

3c5
μ j ′′ pk′′εi jk + 2

3c5

(
μ j ′ pk′

)′′
εi jk . (76)

The electromagnetic fields, including in (76), generalise the equation of motion of the
center of mass. Also, there are four kinds of terms, a gravitational radiation term, the
classical electrodynamic radiation reaction force, an electro-gravity coupling, and a
pure electromagnetic force.
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4 Comparison with ANK equations

In a previous work [2], the difference between Kozameh-Quiroga (KQ) and Adamo-
Newman-Kozameh (ANK) equations has been discussed; so in this section we give a
summary of these differences and we compare the equation of motion of the center
of mass when electromagnetic contributions are present. Before that, we list the main
differences between KQ and ANK formalisms

– Our definition of angular and mass dipole momenta used the Geroch-Winicour-
Tamburino linkages [24,26], whereas the ANK uses the linear part of the linkage,
i.e. [ψ0

1 ]i .
– The cut equations, i.e. the equation relating the point in the space with cuts in I

in the ANK approach is the good cut Eq. (50). The solution space of the good
cut equation is a complex manifold, while KQ uses non vanishing shears obtained
from the RNC cut equation (see Sect. 3.1) the solution space of the RNC cut
equation is real.

– ANK defines the intrinsic angular momentum as the imaginary part of a complex
worldline while KQ evaluates the angular momentum coming from the imaginary
part of the linkage on the center of mass to define the spin.

First we introduce the mass dipole moment, angular momentum and spin definitions
given in the ANK formalism [12]

Di
ANK = − c2

6
√

2G
ψ0i

1R, (77)

J iANK = − c3

6
√

2G
ψ0i

1I , (78)

SiANK = cMξ iI . (79)

Now computing the component l = 1 of Eq. (54) we can write

Di = − c2

6
√

2G
ψ0i

1R + c2

5G
σ

jl
R σ kl

I εi jk + higher harmonics

J i = − c3

6
√

2G

[
ψ0

1 − σ 0
ðσ̄ 0 − 1

2
ð(σ 0σ̄ 0)

]i
I
. (80)

The mass dipole moments are different in both formalisms, however the Bondi
4-momentum Pα , and the electrodynamic dipole moment are the same in both formu-
lations. The equation of motion of the center of mass in the ANK equations is given
by

Mξ i ′′R = 2
√

2c2

15G
σ

jl′
R σ kl′

I εi jk − c2

G

(
σ

jl
R σ kl

I

)′′
εi jk − 4

5
√

2c
σ
i j ′′
R P j

+2Q

3c3 p
i ′′ + Q

c215
√

2

(
7σ

i j
R p j ′′ − c−1μ j ′′σ i j

I

)′
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+ 4

3c5
μ j ′′ pk′′εi jk + 2

3c5

(
μ j ′ pk′

)′′
εi jk

− Q

3c4

(
3pk′′

SkANK

cM
− μ j ′′ξ k′′R

)′′
εi jk

where ξR is the position of the center of mass, and ξI is the imaginary part of the
complex worldline. Now directly from Eq. (76) we have

MRi ′′ = 2c2

15G
σ

jl′
R σ kl′

I εi jk + 8

5
√

2c
σ
i j ′′
R P j

+2Q

3c3 p
i ′′ + Q

c25
√

2

(
σ
i j
R p j ′′ − c−1σ

i j
I μ j ′′)′

+ 2

3c5
μ j ′′ pk′′εi jk + 2

3c5

(
μ j ′ pk′

)′′
εi jk .

In the same way, the evolution of spin in both approaches is different, in the ANK
equations is given by

Si ′ANK = 6c3

5G

(
σ kl
R σ

jl′
R + σ kl

I σ
jl′
I

)
εi jk + 2

3c3

(
p j ′′ pk′ + c−1μ j ′μk′′) εi jk − 2Qμi ′′

3c3

− 4

5
√

2c
σ
i j ′
I Pk − Q

3c3

(
ξ kR p

j ′′ + SkANK

cM
μ j ′′

)
εi jk,

while in our approach this equation can be written as

Si ′ = c3

5G

(
σ kl
R σ

jl′
R + σ kl

I σ
jl′
I

)
εi jk + 2

3c3

(
p j ′′ pk′ + c−1μ j ′μk′′) εi jk − 2Qμi ′′

3c3

Thus, it is interesting to see that the final equations in these two formulations have
some similarities and many differences. These differences are a consequence of the
definitions used in both formulations and the cuts equations. Additionally, these differ-
ences can be traced back in the ANK formulation to the use of the relation Ψ i j = −σ̄ i j

in Eq. (6.33) [12], this relationship contradicts Eq. (41) since Ψ i j ′ = −σ̄ i j ′ and Ψ i j ′
must be quadratic in σ i j ′. Thus, we can conclude that some equations in the ANK
approach are incorrect.

5 Applications

5.1 Center of charge and gravitational charged particle

The concept of center of charge is introduced, assuming that a worldline described by
the RNC cut equations (58) exists, where the position function is the center of charge
of the system. In this worldline, the electric dipole moment is equal to zero, and the
function Ri (u) will be labeled as Xi (u) in order to avoid confusion with the center
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of mass position. As for the center of mass, we need to use the transformation law
between the Maxwell scalars φ0∗

0 constructed using the NU tetrad, and φ0
0 given by Eq.

(31). Now, making a Taylor expansion of the above equation, and expanding around
u we get

φ0∗
0

Z ′2 = φ0
0(u + δu) − 2Lφ0

1(u + δu),

= φ0
0(u) + φ0′

0 (u)δu − 2ðδuφ0
1(u),

= φ0
0(u) − ðφ0

1(u)δu − 2ðδuφ0
1(u), (81)

where in the last equality, we have used the Bianchi identity (40). Now, we take the
l = 1 component of this equation using the harmonic expansion (62),

[
φ0∗

0

Z ′2

]i

= φ0i
0 − 2QXi + σ

i j
R φ

0 j
1 − i

√
2

2
X jφ0k

1 εi jk . (82)

In the center of charge worldline, the electric dipole momentum must vanish at u =
const , i.e. p∗i = 0. In this special worldline, the magnetic dipole moment μ∗i will be
called intrinsic magnetic moment μi

S and μi will be the total magnetic moment. So,
splitting into the real and the imaginary parts and using Eqs. (71–72) we can write the
following,

pi = QXi − 1

2
σ
i j
R φ

0 j
1R − 1

2
√

2
X jφ0k

1I ε
i jk, (83)

μi = μi
S − 1

2
σ
i j
R φ

0 j
1I + 1

2
√

2
X jφ0k

1Rεi jk . (84)

Now, we are ready to write the equation of motion for the gravitational charged particle
(GCP). The basic idea to model the GCP, is to assume that the worldline of the center
of mass and the worldline of the center of charge coincide, i.e Ri = Xi . Now, staring
from Eq. (70), assuming Ri = Xi , and using the linear part of (83–84) we can write,

MRi ′′ = 2c2

15G
σ

jl′
R σ kl′

I εi jk + 8

5
√

2c
σ
i j ′′
R P j

+2Q2

3c3 Ri ′′′ + Q

c25
√

2

(
σ
i j
R QR j ′′ − c−1σ

i j
I μ

j ′′
S

)′

+2Q

3c5
μ

j ′′
S Rk′′εi jk + 2Q

3c5

(
μ

j ′
S R

k′)′′
εi jk .

In this case, the first term of the R.H.S is exactly the contribution to the momentum that
yields the classical Abraham-Lorentz reaction force of classical electrodynamics [27].
It is well known that the Abraham-Lorentz recoil force have pathological solutions in
which a particle accelerates in advance of the application of a force, these are the so-
called pre-acceleration or runaway solutions. However, the Eq. (85) adds some extra
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terms that depend on the Bondi free data, which would give well behaved solutions to
the differential equations, i.e. solutions in which the acceleration goes to zero as time
go to infinity.

5.2 Gyromagnetic ratio of a charged black hole

The study of the binary coalescence and their collapse into a black hole has regained an
important relevance in General Relativity and astrophysics given the recent detection
of gravitational waves made by LIGO [1]. In this context, as a second application of
our approach, we propose to find the gyromagnetic ratio for Kerr-Newman black hole.
In this analysis, we have to use the angular momentum (64) and the magnetic moment
(84), where the ratio magnetic moment-spin for a charged stationary black hole can
be written as

μi
S

Si
= μi

J i
(85)

We compute the l = 1 component of φ0
0 and ψ0

1 using the scalars of ref. [28]. Then,
the gyromagnetic ratio for stationary charged black hole is given by

μi
S = g

Q

2M
Si . (86)

where g = 2 is the classical Landé g-factor, thus we have obtained the Dirac value of
the gyromagnetic ratio [29] using the asymptotic fields at null infinity.

6 Final remarks

We have used the notion of center of mass and spin for asymptotically flat spacetime
to derive a set of equations for gravitational isolated systems which emits gravita-
tional radiation. Also, using the Maxwell fields received at infinity, we have found the
electrodynamic contribution to the center of mass and spin for any asymptotically flat
Einstein-Maxwell spacetime. The main ingredients used in this construction are the
Newman-Penrose formalism, and the linkage integral together with a canonical NU
foliation constructed from solutions to the regularized null cone cut.

We have compared our approach with the ANK formulation to check for differences
and similarities. This comparison suggests that our equations, and definitions, are better
suited to describe very energetic processes where an amount of energy is emitted as
gravitational waves. Finally, to conclude this work, we used the notion of center of
charge to build a simple model for a gravitational charged particle. In this construction,
it is assumed that the center of charge worldline and the center of mass coincide.
Additionally, it has been shown that for a Kerr-Newman black hole, the gyromagnetic
ratio, i.e. the ratio of the magnetic moment-spin have the classical Landé value of
g = 2.

Finally, it can be mentioned that, the equations of motion obtained here could be
used in many astrophysical situations to predict the motion of the center of mass
from the emitted radiation or to predict the amount of radiation if the velocity and
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acceleration of the center of mass is given. This could be the case in closed binary
coalescence, head-on collisions or supernova explosions, as long as, the velocity of
the center of mass is low, compared to the speed of light. Additionally, the formalism
could be generalized assuming relativistic velocities and releasing some of the work
assumptions. However, several of these ideas we will be exploring in future works.
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