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The instability of a liquid layer coating the surface of a thin cylindrical wire is studied
experimentally and numerically with negligible gravity effects. The initial uniform
film is obtained as the residual of a sliding drop, and the thickness measurements
are performed with an anamorphic optical system that compresses the vertical scale
(allowing to observe several wavelengths) and widens the horizontal one (to follow in
detail the evolution of local minima and maxima). Experimental timelines showing
the growth and position of the maxima and minima are compared with linear theory
and fully nonlinear simulations. A primary mode grows in the early stages of the
instability, and its wavelength λ1 is not always in agreement with that corresponding
to the maximum growth rate predicted by the linear theory λm. In later stages, a
secondary mode appears, whose wavelength is half that of the primary mode. The
behaviour of the secondary mode allows us to classify the experimental results into
two cases, depending on whether it is linearly stable (case I) or unstable (case II). In
case I, the amplitude of the secondary mode remains small compared with that of
the primary one, while in case II both amplitudes may become very similar at the
end. Thus, the distance between the final drops may be quite different from that seen
between initial protuberances. The analysis of the experiments allows us to define
a simple criterion based on the comparison between λ1 and λm. Contrary to the
predictions of widely used previous quasi-static theories, experiments show that the
relation between maximum and minimum of the primary mode is better approximated
by a kinematic model based on the assumption that primary maxima increase as fast
as the minima decrease. Numerical simulations confirm this hypothesis.

1. Introduction
The problem of coating a cylindrical fibre with a liquid film has been widely

investigated because of its relation with industrial and technological processes, such
as the coverage of conducting cables with isolating films and lubrication of glass or
polymeric fibres to prevent rupture during manipulation. In most of these applications,
the coating is obtained by vertical withdrawal of the fibre from a liquid bath. An
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118 A. G. González, J. A. Diez, R. Gratton, D. M. Campana and F. A. Saita

important issue of this process is the dependence of the thickness of the coating
film with the withdrawal speed, fibre radius and physico-chemical parameters of the
liquid. Extensive reviews on these aspects of the problem can be found in Quéré (1999)
and Weinstein & Ruschak (2004). After the film is formed, a Plateau–Rayleigh-type
instability (Plateau 1873; Rayleigh 1879, 1892) takes place, which might lead to the
breakup of the film and subsequent formation of beads. In some applications, the
instability is stopped by means of a fast cooling and solidification of the coating,
but in other technological procedures this is not possible. Therefore, it is relevant
to understand the mechanisms that govern this instability, its time scale and general
dependence on the various parameters.

When the fluid radius is small enough, gravity effects can be neglected and
only viscous, capillary and possibly inertial forces govern the flow. Under these
conditions, Goren (1962) performed a linear stability analysis of Navier–Stokes
equations and determined that only wavelengths larger than the perimeter of the
liquid–air interface are unstable. He also found analytical expressions for the growth
rates of perturbations as a function of the wavelength for the limiting cases of
Stokes and inviscid flows. His experiments showed a reasonable agreement with
his theory when comparing the wavelength of maximum growth rate with the
final distance between beads. In a subsequent work, Goren (1964) developed a
quasi-static model to calculate the shape of the interface during the evolution. He
assumed that the free surface shape is a series of maxima (bulges) connected by
flat cylindrical zones of constant thickness and minimized the surface energy of that
configuration. This model does not include secondary maxima (or satellite beads)
also observed in his experiments. Almost a decade later, Carroll & Lucassen (1974)
studied experimentally and theoretically the slowdown of the instability due to the
presence of a surfactant. More recently, Yarin, Oron & Roseneau (1993) studied the
flow by using balance equations of mass, momentum and energy integrated across
the liquid thickness using lubrication approximation. Their numerical simulations
showed that nonlinear interaction of linearly stable modes leads to the formation of
secondary maxima in between the primary ones. Recently, Lister et al. (2006) studied
the long-time dynamics of primary and secondary beads formed as a consequence
of the instability. In this case, the gradient of capillary pressure drives the slow
drainage between beads. These authors numerically solved the evolution equation
for thin films and found different behaviours depending on the axial lengths of the
structures.

When gravitational effects are not negligible and the fibre is in vertical position, the
induced axial flow interacts with the capillary instability. Among the pioneer works for
this case are those of Goucher & Ward (1922) and Kapitza & Kapitza (1964). Several
other authors, such as Lin & Liu (1975) and Krantz & Zollars (1976), performed
the linear stability analysis of simplified models for thin coating films and/or long
wavelengths. Solorio & Sen (1987) numerically solved the Orr–Sommerfeld equation
for this problem. Thus, they were able to carry out a linear stability analysis with
no restrictions on the wavenumber, Reynolds number, Re, or film thickness. Their
results show that the cylindrical film is unstable for all Re, Weber number, We,
and fluid thickness. Moreover, as both Re and We increase, the wavenumber of
the most unstable mode decreases for thicker films and increases for thinner ones.
In the same year, Frenkel et al. (1987) reported theoretical evidence that Plateau–
Rayleigh instability can saturate in a certain range of parameters when it interacts
with gravitational flow. Quéré (1990) experimentally studied thin films on thick fibres
and found a critical fluid thickness below which the interfacial undulations due to
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this instability are not visible any more on the gravitational base flow. This critical
thickness scales as the cube of the fibre radius and does not depend on the fluid
viscosity. With the parameters of our experiments, this critical thickness is of the order
of 0.1 μm. Quéré worked with fibre radius, R, much larger (80 μm � R � 400 μm)
than those used here. His findings were theoretically studied later by Kalliadasis &
Chang (1994).

Among the most recent works on this subject, we can mention Kliakhandler,
Davis & Bankoff (2001), who investigated experimentally and theoretically the
dynamics of a thick fluid film flowing down vertically on a thin fibre at constant flow
rate. Depending on its magnitude, these authors determined three possible patterns
for the drops flowing down the fibre. They also derived and numerically solved a
simplified evolution equation for long wavelengths and dominant capillary effects
(Ca → 0). However, this model was not able to describe the drops pattern for large
flow rates. This limitation was removed by Craster & Matar (2006), who modelled
the problem under the assumption that the interfacial radius is much less than the
capillary length. They considered small Bond number and the Reynolds number
in such a way that its effective value is small enough to yield negligible inertial
contributions. More recently, we can mention the works by Duprat et al. (2007) and
Smolka, North & Guerra (2008), where linear theories developed by Kliakhandler
et al. (2001), Craster & Matar (2006) and Trifonov (1992) are compared with
experiments. Analogous to the measurements reported here, they are concerned with
the wavelengths and growth rates of the modes in their instability problem (which can
be convectively or absolutely unstable), where the beads travel down the fibre. In spite
of the large body of research done on the instability of films deposited on cylindrical
fibres, there are still few experimental data to undoubtedly support the theoretical
predictions.

In the particular case of negligible gravitational effects, which is in the scope
of this work, we can only mention the experiments carried out by Goren (1962,
1964), Carroll & Lucassen (1974) and, more recently, de Bruyn (1997). Even though
Mashayek & Ashgriz (1995) reported a complete work on the numerical simulation
of this problem, they did not compare their predictions with any experimental data.
Therefore, the aim of our work is twofold. On the one hand, we report experimental
results that allow us to follow the time evolution of the interface, so that main features
of the instability can be measured, such as growth rates and dominant wavelengths.
The experimental set-up is similar to that of Goren (1964), but uses an anamorphic
optical system to increase the resolution of the liquid thickness. On the other hand, we
also present direct numerical simulations of Navier–Stokes equations, whose results
are compared with the experimental data. The numerical code is an adaptation of a
previously validated one by Campana, Di Paolo & Saita (2004).

This paper is organized as follows. In § 2 we describe the experimental set-up
and the optical techniques used to investigate the instability. The results of a series
of experiments are grouped into two cases that distinguish typical evolutions of
the instability. In § 3 we revisit the linear stability results in order to compare the
observed primary and secondary wavelengths with that of the maximum growth
rate of the theory, as well as the corresponding experimental and theoretical growth
rates. In § 4 we attempt to describe the experimental free surface evolution with
the quasi–static model developed by Goren (1964). Section 5 is devoted to the
presentation of the numerical predictions and their comparison with experimental
results and § 6 includes a discussion on the role played by the initial conditions of the
problem.
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Figure 1. (a) Experimental set-up. The oil in the syringe is pushed through the holes, and
a symmetrically threaded drop is formed at the tip of the needle. As the drop slides down,
a thin film is left behind. The inset is a picture of the actual final stage without anamorphic
distortion. Note that the lower and upper parts of the drop are symmetric because gravity
effects are negligible. (b) Sketch of the anamorphic view of the instability showing the main
parameters of the problem (the variables correspond to real undistorted values).

2. Experiments
The device consists of a copper wire (diameter D = 110 μm) vertically suspended

and tightly threaded through the needle of a syringe (see figure 1a). The cap
holding the needle has a series of lateral small holes through which silicon oil
(polydimethylsiloxane (PDMS) of viscosity μ = 11–23 poise, density ρ =0.96 g cm−3

and surface tension σ = 24 dyn cm−1) is pushed out by using a piston. Its movement
and the amount of ejected liquid are smoothly controlled by an upper screw. The oil
forms a thin film flowing down the needle till reaching its tip where a pinned drop
grows around the wire and finally detaches. The drop is centred on the wire and
slides along it by gravity. As the drop falls, a trail of oil is left behind. At a certain
distance from the drop, the thickness of the film is practically uniform for a length
of at least some millimetres along the wire. This system also ensures an azimuthally
symmetric coating. The film thickness depends on the size of the drop, which in
turn is controlled by the amount of fluid ejected by the syringe. The instability of
this coating involves two quite different scales: the vertical one that corresponds to
the typical wavelength, λ, of the surface perturbation and the horizontal one that
characterizes the local diameter, d(z, t), of the coating (see figure 1b).

An ordinary (homomorphic) optical system does not suffice to measure accurately
both scales, because a large amplification of the horizontal scale, in order to allow a
detailed study of the growth rate of the amplitude of the instability, leads to pictures
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Figure 2. Anamorphic optical system used to study the evolution of the instability. It yields
a horizontal amplification and a vertical compression of the image.

from which one cannot confidently determine the typical wavelength. Therefore,
we use an anamorphic optical system that distorts the image by compressing the
vertical scale in order to observe several wavelengths and widens the horizontal
one (Collicott, Zhang & Schneider 1994). Thus, this system allows a quantitative
study of the evolution of local minima and maxima.

The anamorphic system is formed by two cross cylindrical lenses separated by a
distance s = x2 − x1 (see figure 2). The axis of the first lens is vertical, while the axis
of the second one is horizontal. The positions of both lenses, x1 and x2, are given by

x1 =
L

2
(1 − Δ1) , x2 =

L

2
(1 + Δ2) , (2.1)

where Δi =
√

1 − 4fi/L, fi is the focal length of the ith lens and L is the distant
between the object plane (which contains the coated wire) and the image plane.
The ratio between the horizontal magnification of the first lens and the vertical
magnification of the second one measures the anamorphism, A, of the optical system:

A =
(1 + Δ1)(1 + Δ2)

(1 − Δ1)(1 − Δ2)
(2.2)

Note that the horizontal and vertical processes of image formation, and consequently
the magnifications, are independent one of another within the paraxial approximation
assumed here. The resulting image is further amplified in an homomorphic way by
using a spherical lens. The image formed on a distant screen is digitally recorded as a
video movie at a rate of 29.97 f.p.s. Each frame size is 352 × 240 pixels. In our system,
we choose an anamorphism of A = 11.6 by using two lenses with f1 = f2 = 12.5 cm
and L =71.3 cm. The choice of this value of A is guided by the fact that the observed
wavelengths are of the order of 1 mm, while the typical fluid thickness is around
0.1 mm. This means that the size of a single pixel is about 32 μm in the vertical
direction and 2.9 μm in the horizontal one. Consequently, it is easy to estimate the
error for vertical and horizontal distances, because its digital uncertainties are within
one or two pixels.



122 A. G. González, J. A. Diez, R. Gratton, D. M. Campana and F. A. Saita

An important dimensionless parameter of the problem is F =(d0 − D)/D, where
d0 (= 2Rs) is the initial diameter of the free surface of the coating left by the sliding
drop, and D (= 2R) is the diameter of the wire.

In order to ensure negligible effects of gravity, two issues should be taken into
account. In the first place, the pressure variation due to gravity along a wavelength
λ should be negligible with respect to the capillary pressure, i.e. ρgλ� σ/Rs . This
condition is fulfilled for Bond number Bo = (Rs/a)2 � Rs/λ, where a =

√
σ/(ρg) is

the capillary distance. This is a necessary, but not sufficient, condition to have
symmetrical drops in the sense that the upper and lower parts have similar shapes
resulting from the instability. Second, the capillary number Ca = μU/σ , given by
the vertical drift velocity U , must be very small to achieve this symmetry. This
condition ensures that the fluid has basically no vertical motion during the evolution
of the instability. Assuming a balance between gravitational and viscous forces, i.e.
2πμU/F = πρg(R2

s − R2), we obtain the following relationship between Ca and Bo:

Ca =
F 2(F + 2)

2(F + 1)2
Bo. (2.3)

Because we perform experiments with F in the range 0.4 <F < 3.25, and Bo ≈ 0.01,
the condition Ca � 1 is satisfied. Note that the experiments of Kliakhandler et al.
(2001) are carried out in a different regime, in which the final drops are asymmetrical
in the z direction, showing differences in the upper and lower portions, and an
important vertical flow is present in the drop motion.

Here, we perform a series of experiments for different values of F and μ (see
table 1). Because Ca � 1, the value of μ only determines the time scale of the
instability and it does not significantly affect either the dynamics or the resulting
pattern. Therefore, viscosity does not characterize the cases presented below. The
variation of F is due to different sizes of the sliding drop that generates the initial
film, while keeping constant the wire diameter. In all the experiments we distinguish
two characteristic behaviours, which we classify as cases I and II (see the last column
of table 1). Case I includes the experiments whose secondary peak does not grow by
itself, but only due to decreasing of the absolute minimum. In other words, this peak
represents a linearly stable mode. Instead, the experiments in case II have a secondary
peak which effectively grows, thus behaving as an unstable linear mode. For brevity,
we consider in detail one experiment each case as representatives of typical evolutions
of the instability. When appropriate, results of the whole series of experiments are
also reported.

2.1. Case I: stable linear secondary mode

In this section, we choose experiment 8 (F = 1.73, μ = 23 poise) as a representative
of case I. Figure 3 shows snapshots of the evolution of the free surface. At t =0, the
rear part of the sliding drop (bottom of the photo) and the resulting trailing film
is observed in the picture. Two seconds later, a sinusoidal corrugation appears in
the upper part of the film with a typical local wavelength λ1, which we call primary
wavelength. As the amplitude of this perturbation grows, the size of the perturbed
region in the vertical (axial) direction also increases. The distance between maxima
is roughly λ1. Later on, secondary local maxima arise between the primary ones
(t = 4.7 s). A new typical wavelength, λ2, is defined as the distance between adjacent
primary and secondary peaks. Finally, all amplitudes saturate and the distances λ1 and
λ2 characterize the whole pattern. Figure 3 shows that the average distance between
secondary and primary maxima, λ2, is approximately half of λ1.
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Experiment F μ (poise) λ1(mm) λ2(mm) λ1/λm λ2/λc 2λc/λm Case

1 3.25 11.8 2.57 1.19 1.09 0.81 1.27 I
2 3.01 23.0 3.41 1.86 1.55 1.34 1.26 II
3 2.59 23.0 3.43 1.83 1.75 1.47 1.28 II
4 2.47 11.8 3.19 1.57 1.69 1.31 1.30 II∗

5 2.33 23.0 3.41 1.75 1.89 1.52 1.33 II
6 1.94 11.8 2.31 1.20 1.47 1.19 1.39 II
7 1.73 23.0 1.40 0.80 0.97 0.85 1.37 I
8 1.73 23.0 1.28 0.55 0.89 0.58 1.37 I∗

9 1.46 11.8 1.49 0.82 1.15 0.97 1.40 I
10 1.29 11.8 1.40 0.73 1.17 0.92 1.36 I
11 1.25 23.0 1.24 0.53 1.06 0.68 1.33 I
12 1.19 23.0 1.67 0.97 1.46 1.29 1.37 II
13 0.77 23.0 1.12 0.52 1.24 0.84 1.30 I
14 0.66 23.0 0.84 0.46 1.00 0.80 1.32 I
15 0.66 23.0 0.75 0.44 0.90 0.77 1.31 I
16 0.61 23.0 1.17 0.58 1.44 1.03 1.29 II
17 0.38 23.0 1.64 0.90 2.39 1.89 1.25 II
18 0.21 23.0 0.81 0.40 1.37 0.95 1.27 II

Table 1. Dimensionless film thickness and viscosity of each experiment, together with the
measured distances between primary (λ1) and secondary (λ2) peaks. The values of λc and
λm are the wavelengths of the critical (marginal instability) mode and that of the maximum
growth rate as given by the linear theory, respectively. The asterisk (∗) indicates experiments
reported in detail.

In order to quantitatively describe the time evolution of the system, we follow
the diameter of (a) a primary peak d1, (b) a contiguous secondary peak d2 and
(c) the absolute minimum, dmin, in between. In figure 4, we plot the timelines of
these diameters. Note that the secondary maximum is not an actual increase of the
secondary peak, but its importance is due to the fast decrease of dmin. The timelines
also show that the secondary maximum shows up at the beginning of the saturation
stage of the primary maximum.

Note also that the value of λ1 selected by the system is not univocally given by F ,
but it can vary around 10 % (see experiments 7 and 8 as well as 14 and 15 in table 1).
Moreover, experiments with very similar values of F and different viscosities can lead
to similar variations of λ1 (see experiments 10 and 11 in table 1). A more detailed
analysis of the experiments is presented in § 3 in relation to the linear stability theory,
taking into account the growth rates in the early stages of the instability.

2.2. Case II: unstable linear secondary mode

For this case, we choose experiment 4 (F = 2.47, μ = 11.8 poise) for a detailed analysis.
The corresponding snapshots are shown in figure 5. Though a similar behaviour to
the preceding experiment is observed, two main differences arise. First, the amplitude
of the secondary peak actually grows, not as an effect of the decrease of the adjacent
minimum as in case I, but due to its intrinsic growth rate. As a consequence, the
secondary peak reaches an amplitude comparable with the primary peak. Second, a
tertiary peak appears between secondary and primary maxima in this experiment.
Not all experiments in case II necessarily show a measurable tertiary peak.

The timelines of primary and secondary maxima as well as the minimum are shown
in figure 6. Here, we add a tertiary maximum timeline. Note that the evolution
of the secondary maxima strongly differs from that observed in the previous case
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Figure 3. Time evolution of the instability in experiment 8 (F = 1.73, μ= 23 poise)
corresponding to case I. The letters P and S stand for the location of the primary and
secondary peaks. The height and width of each picture correspond to 7.46 and 1.025 mm,
respectively.

(cf. figure 6). Now, the local secondary peak starts growing when the primary mode
begins to saturate. Almost simultaneously, a tertiary maximum appears without an
actual increase of the thickness of the fluid there, while the absolute minimum keeps
on decreasing. Therefore, the behaviour of the tertiary peak is analogous to that of the
secondary peak in case I. The relation λ2 � λ1/2 also holds in this case. Moreover, the
distance between the tertiary and secondary peaks, λ3, is approximately half that of λ2.

In both cases, the instability evolves with no apparent vertical motion of the
maxima. Nevertheless, after the last stages shown in figures 3 and 5, we observe that
when the primary drops become big enough, they tend to slide down faster than
the secondary and tertiary ones. As a consequence, the primary drops swallow the
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Figure 4. Comparison of timelines from experiment (exp.) 8 (case I) with the corresponding
numerical simulation (num.) of Navier–Stokes equations (§ 5). (a) Primary peak, d1, and nearby
minimum, dmin; (b) secondary peak, d2, and same minimum, dmin.

smaller drops, thus generating larger sliding drops. The study of this process is out
of the scope of this paper. The description of this advanced stage (which includes
coalescence of falling drops) is closer to the regime studied by Smolka et al. (2008).

In figure 7 we show the primary and secondary wavelengths measured in all
experiments (see the fourth and fifth columns of table 1). The good fitting with the
line λ2 = λ1/2 confirms the general validity of this pattern feature independent of the
case. Note that the difference between cases I and II is not related to the viscosity,
which only yields different time scales. The use of several values of μ does not modify
the relationship between λ1 and λ2, as seen in figure 7.

2.3. Growth rates of early stages

Because the amplitude of the perturbations is small in the early stages of the instability,
we plan to compare the measured growth rates in this stage with the linear theory
developed by Goren (1962) (§ 3). With this aim, we plot the evolution of the thickness
at the primary peak and define the amplitude of the perturbation as A= (d1 −dmin)/d0.
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Figure 5. Time evolution of the instability in experiment 4 (F = 2.47, μ= 11.8 poise)
corresponding to case II. The letters P, S and T stand for the location of the primary,
secondary and tertiary peaks, respectively. The height and width of each picture correspond
to 8.01 mm and 1.015 mm, respectively.

Thus, we fit the early stages with an exponential function in order to measure the
growth rates, γ e

1 . For instance, in figure 8(a) we show the evolution for experiments 8
(case I) and 4 (case II). As expected for later stages, nonlinear effects become
important and the exponential behaviour (linear model) loses validity. Note that
nonlinear effects modify this behaviour earlier in experiment 4 (case II) than in 8
(case I). In the fourth column of table 2 we report γ e

1 for the rest of the experiments.
Analogously, we proceed to calculate the corresponding growth rates of the

secondary peak, by defining its amplitude as A=(d2 − dmin)/d0 (see figure 8b).

3. Linear model
In order to have a framework for the understanding of the previous experimental

results, here we revisit the linear model of the instability developed by Goren (1962).
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Figure 6. Comparison of timelines from experiment 4 (case II) with the corresponding
numerical simulation of Navier–Stokes equations (§ 5). (a) Primary peak, d1, and nearby
minimum, dmin; (b) secondary peak, d2, tertiary peak, d3, and the same minimum, dmin.
Symbols correspond to experimental data and lines show simulation results.

He assumes axially symmetric perturbations of an infinitely long coated wire of
the form exp(γ t + ikz), where k =2π/λ is the wavenumber. The unperturbed state
corresponds to a fluid at rest and gravity effects are not considered. The dispersion
relation is given by

Γ ≡ γ
Rsμ

σ
=

1
2
(k2R2

s − 1)Δ1

Δ2 + (k2R2
s + 1)Δ1

, (3.1)

where

Δ1 = −1 + 2kR [K0(kR)I1(kRs) + I0(kR)K1(kRs)]

× [K1(kR)I1(kRs) − I1(kR)K1(kRs)]

+ (kR)2 [K0(kR)I1(kRs) + I0(kR)K1(kRs)]
2

− (kR)2 [K1(kR)I1(kRs) + I1(kR)K1(kRs)]
2 , (3.2)
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Figure 7. Wavelength of primary mode, λ1, versus wavelength of secondary mode, λ2, from a
series of experiments with different values of F and μ. The open and close circles correspond
to μ= 23 poise and 11.8 poise, respectively. The values of F for each case can be seen in
figure 10 (see also table 1). The solid line is λ2 = λ1/2.
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Figure 8. Time evolution of the amplitude of the modes for experiments 8 (case I, circles)
and 4 (case II, triangles). The best fits for the early stages are given by the solid lines.
(a) Amplitude, A1 = (d1 − dmin)/d0, of the primary mode. (b) Amplitude, A2 = (d2 − dmin)/d0,
of the secondary mode.

and

Δ2 = −(1 + k2R2) + 2k3RR2
s

× [K0(kRs)I1(kR) + I0(kRs)K1(kR)]

× [K0(kRs)I0(kR) − I0(kRs)K0(kR)]

+ k4R2R2
s [K0(kRs)I1(kR) + I0(kRs)K1(kR)]2

− k4R2R2
s [K0(kRs)I0(kR) − I0(kRs)K0(kR)]2 . (3.3)

Here, In and Kn are the order n modified Bessel functions of the first and second kind
respectively. The resulting dispersion curves for the parameters of the experiments 8
(case I) and 4 (case II) are shown in figure 9.
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Experiment F μ (poise) γ e
1 (s−1) γ e

1 /γm γ e
1 /γ t

1 Case

1 3.25 11.8 1.91 0.77 0.78 I
2 3.01 23.0 0.76 0.59 0.81 II
3 2.59 23.0 0.72 0.56 0.92 II
4 2.47 11.8 1.61 0.64 1.00 II∗

5 2.33 23.0 0.70 0.55 1.01 II
6 1.94 11.8 1.74 0.72 0.96 II
7 1.73 23.0 0.98 0.82 0.82 I
8 1.73 23.0 1.12 0.94 0.99 I∗

9 1.46 11.8 1.98 0.92 0.96 I
10 1.29 11.8 1.74 0.87 0.92 I
11 1.25 23.0 1.11 1.10 1.11 I
12 1.19 23.0 0.71 0.72 0.97 II
13 0.77 23.0 0.64 0.98 1.10 I
14 0.66 23.0 0.63 1.16 1.16 I
15 0.66 23.0 0.52 0.96 1.02 I
16 0.61 23.0 0.33 0.68 0.91 II
17 0.38 23.0 0.25 1.08 3.30 II
18 0.21 23.0 0.08 1.18 1.49 II

Table 2. Dimensionless film thickness and viscosity of each experiment. The measured growth
rate of the primary mode for the early (linear) stage is denoted by γ e

1 , while γ t
1 is the

prediction from the linear theory. The corresponding theoretical maximum growth rate is γm.
The asterisk (∗) indicates experiments reported in detail.
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Figure 9. Dispersion curves given by the linear stability analysis (solid lines, (3.1)) for (a) case I
(experiment 8) and (b) case II (experiment 4). The wavenumber of maximum growth rate,
km, is represented by the vertical dotted line. The values of the measured growth rates for the
experimental wavenumbers k1 and k2 are shown as open and closed circles, respectively. The
dot-dashed lines, real part of (3.4), correspond to the longwave approximation by Craster &
Matar (2006).

An alternative simpler expression in the limit of long wavelengths was obtained
by Craster & Matar (2006) as

Γ =
1

16
(kRs)

2
(
k2R2

s − 1
) (

G4 − 4G2 + 3 + lnG
)

− iBo
kRs

2

(
G2 − 1 − 2 lnG

)
, (3.4)

where G =R/Rs = 1/(1 + F ). Because the Bond number Bo � 1 in our experiments,
the imaginary part of Γ corresponding to convection can be safely neglected here. The
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comparison between both approaches for the real part of Γ is also shown in figure 9.
Clearly, the longwave approximation yields higher growth rates with the maximum
shifted to a larger wavenumber. Note that the measured values of λ1 may fall in a
region where this approximation is not strictly valid (see figure 9a). Thus, we will only
use the exact linear model by Goren (1962) for comparison with our experimental
results. Instead, other authors, such as Smolka et al. (2008), used the approximation in
(3.4) to compare with their experiments which included an important axial flow rate.

Usually it is assumed that the wavelength, λm, corresponding to the maximum
growth rate, Γm, for the linear theory predicts the average distance between primary
drops. For instance, in experiment 8 reported in § 2.1 we find λ1 = 0.89λm (see figure 9a).
Note that in this experiment the value of λ2 (< λ1) falls in the stable region of the
spectrum (k2Rs > 1). Therefore, its secondary maxima are not predicted by the linear
theory and thus they are a consequence of nonlinear effects. The existence of this
maxima is due to the decrease of the adjacent minima and not due to an increase of
the fluid thickness at these peaks (see figure 4).

On the other hand, in experiment 4 (case II) the distance between primary peaks is
always greater than λm. Here, we find λ1 = 1.69λm, which has a theoretical growth rate,
Γ1, significantly lower (≈ 36 %) than the maximum one, Γm. Instead, we observe that
the distance between secondary peaks, λ2, is close to λm. Unlike the secondary peak
in case I, here it corresponds to a very unstable linear mode. Thus, we expect that its
growth rate is somehow related to the linear prediction. Note that now this peak is
due to a genuine increase of the fluid thickness at the local maxima (see figure 6b).
On the contrary, the wavenumber of the tertiary peaks falls in the stable region of
the dispersion curve and the peaks become apparent, just because of a decrease of
the adjacent minima, and not to a real increase of the thickness there, analogous to
the secondary mode in case I.

Notwithstanding that one cannot predict λ1 as the wavelength of maximum growth
rate given by the linear stability analysis, λm, this theory correctly describes the
observed growth rate γ e

1 at the early linear stage. The dimensionless experimental
growth rates, Γ e

1 , (see figure 8a and table 2) are plotted as ordinates of the respective
abscissa k1Rs in figure 9 (open circles), and we obtain a very good agreement with the
linear theory. Most of the experiments show similar behaviour with Γ e

1 ≈ Γ t
1 within a

10 % range. Notable exceptions to this results are the last two experiments in table 2,
which correspond to the smallest values of F . The reason for this discrepancy is
twofold: we lose resolution in the measurement of variations of a very thin film, and
the instability enters very fast into the nonlinear regime. Therefore, these two last
values of γ e

1 are less reliable. This hints that the measurement of growth rates may
be more involved than that of the wavelength.

Even though the linear theory predicts a negative growth rate for λ2 in case I
(stable mode), we observe a growing peak for experiment 8 (see figure 8b). Thus, the
evolution of this secondary maximum is out of the reach of the linear analysis, and
it is an entirely nonlinear effect. In turn, the secondary peak in experiment 4 (case II)
has a positive theoretical growth rate as in the experiment, but the value obtained
from the best-fit line is ≈ 30 % larger. This suggests that the observed growth is a
mixture of linear and nonlinear effects. Note, in passing, that within the linear theory,
γ (λ2) is close to γm. In general, the measured growth rates of the secondary mode
for experiments in case II depart from the corresponding linear theory predictions by
up to 45 %. It is usually very difficult to measure these growth rates because their
amplitudes are very small and the duration of the exponential growth behaviour is
very short.
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Figure 10. Ratio between the wavelength of primary mode, λ1, and that of the maximum
growth rate according to the linear theory, λm, versus the dimensionless film thickness, F . The
open and closed circles correspond to μ= 23 poise and 11.8 poise, respectively. When this
ratio ≈ 1, the situation is that of case I, while for significantly greater ratios (> 1.3) the
instability behaves as in case II. The lack of correlation between this ratio and F suggests that
the selection of λ1 is not governed by F .

In summary, the secondary peaks in experiments of case I (case II) correspond to
stable (unstable) secondary modes. Therefore, a given experiment belongs to case I
provided that

λ2 < λc, (3.5)

where λc = 2πRs is the critical (marginal) wavelength of the linear theory, and vice
versa to case II (see table 1). This expression has not yet a predictive value, because it
requires the knowledge of λ2, which can only be measured after the secondary mode
has grown enough (under either case I or case II). Because experimental evidence
suggests that λ1 = 2λ2 (see figure 7), the above criterion can be put in terms of the
primary peak wavelength as

λ1 < 2λc. (3.6)

This is confirmed by observing the last four columns in table 1, where the last column
has been obtained by analysing the time evolution of the secondary peaks as in § 2.1
and 2.2.

In order to be able to predict if a given experiment belongs to case I or case II by
observing only the distance between primary peaks, λ1 (which is the easier parameter
to measure), we give the following rule of thumb. Because for the range of F in the
experiments λc ≈ 0.65λm, we have that

λ1 < 1.3λm (3.7)

is the condition for case I, and vice versa for case II. In figure 10, we show the ratio
λ1/λm as obtained from different dimensionless film thicknesses, F (see the second
and sixth columns in table 1). By using (3.7), we obtain a classification in agreement
with that in the last column of that table. The experiments with λ1/λm around 1.3 are
more difficult to classify because the secondary modes are marginally stable. Figure 10
also shows that the selection of λ1 is not governed by F , in contrast to λm which is
a function of F . These results suggest that the details of the initial condition, which
are out of the range of optical detection, may play a role in the selection of λ1.
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Figure 11. Maximum diameter, d1, versus minimum diameter, dmin, as given by the quasi-static
model by Goren (1964) ((4.1), dotted line). The circles correspond to experimental data and the
solid line to numerical simulations of the Navier–Stokes equation (§ 5) using the experimental
value λ1. The dashed line corresponds to the simple model: d1/d0 + dmin/d0 = 2.

4. Quasi-static model
When nonlinear effects saturate the growth rate, the linear predictions fail and

another approach is needed. In the saturation stage, the kinematic effects are negligible
and one can look for quasi-static state solutions for the shape of the free surface. This
kind of model was also developed by Goren (1964) assuming that the system evolves
into a series of bulges connected by cylindrical bridges. This assumption is based
on his experimental observations where the secondary peaks were very small or not
present at all. The model is based on a minimization of surface energy subject to the
constraint of constant volume. The resulting variational principle yields a relationship
between the radii of both the primary peak h1 = d1/2 and the bridge hmin = dmin/2,
given by (see the Appendix)(

Rs

h1

)[(
Rs

h1

)2

− cos2 ρ

]
=

(
α

3π

)[ (
2 + 3 cos ρ − cos2 ρ

)
E2

(
π

2
, sin2 ρ

)

− E1

(
π

2
, sin2 ρ

)
cos2 ρ (1 + 3 cos ρ)

]
, (4.1)

where α = 2πRs/λ, cos ρ = dmin/d1 and E1((π/2), sin2 ρ), E2((π/2), sin2 ρ) are elliptic
integrals of the first and second kind, respectively.

The dotted lines in figure 11 correspond to d1 versus dmin as given by this equation
for experiments 8 (case I) and 4 (case II), respectively. Because the value of λ in this
formulation is arbitrary, we choose the experimental distance between primary peaks,
λ1. Note that the curves have physical meaning for dmin >D, i.e. dmin/d0 > 1/(1 + F ).
The last point of this line corresponds to the solution given by de Gennes, Brochart-
Wyart & Quéré (2004), where the bulges have the maximum possible height because
no liquid bridge connecting them is considered. In these figures, we also plot the
experimental values of d1 and dmin obtained from the frames of the videos by
capturing the neighbouring primary maxima and minima.

For case I, figure 11(a) shows that there is significant departure of Goren’s curve
with respect to the experimental points (circles), except very near the ending of the
evolution. This is an evidence that the system cannot be modelled as a series of
quasi-static states. This figure is similar to figure 2 of Goren (1964), but here we have
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a better time resolution than in his experiments. Moreover, we use the measured local
wavelength of the primary mode, λ1, as λ in (4.1), while Goren used a fitting value
which does not correspond to any particular experiment of his own.

Here, we propose another model based on the simple kinematic assumption that
the decrease of the minimum is equal to the increase of the primary maximum. This
yields a linear equation 2d0 = d1 +dmin (dashed line in figure 11) which nicely describes
the experimental data. This is a good approximation not only for the initial linear
stages but also for the nonlinear regime. The results of the numerical simulation
described in § 5 are also shown in figure 11(a). The agreement with the experimental
points is remarkable.

In case II, the results in figure 11(b) show larger discrepancy with the quasi-static
model than that in the previous case. The origin of this departure is related to
the existence of important secondary and tertiary maxima, which are neglected in
this model. The correlation between the increase of the primary maximum and the
decrease of the minimum is also broken when secondary maxima grow. Therefore, the
symmetric kinematic assumption fails to give a good prediction of the main features
of this case.

5. Numerical simulations
The previous models for the early and final stages provide a partial description of

the instability, because they miss many important features of the problem, such as
the appearance of secondary and tertiary peaks. Therefore, we perform nonlinear
numerical simulations by employing a code that solves the full Navier–Stokes
equations in axisymmetry for a viscous (Newtonian) and incompressible fluid. For
our experiments, gravity effects can be neglected. The fluid velocity, v, with radial
and axial components vr and vz, respectively, is scaled with a characteristic velocity
(Hammond 1983) V = σF 3/μ, the coordinates with fibre radius R, the time with R/V ,
the pressure p with σ/R, and the stress tensor T with μV/R. Thus, our equations in
dimensionless form are

∇ · v = 0, (5.1)

T = −p/F 3I + (∇v + ∇vT), (5.2)

Re [∂v/∂τ + v · ∇v] = ∇ · T, (5.3)

with Re = ρRV/μ = ρRσF 3/μ2.
The following kinematic equation holds at the free surface:

(n · v)|s = n · ẋs, (5.4)

where (.)|s indicates that the quantity is evaluated at the interface, n is the normal
unit vector to the free surface, and ẋs represents the velocity of the points (nodes)
lying on the interface that moves with the fluid velocity in the normal direction.

The numerical instability is triggered by imposing a slight perturbation to the
uniform film that coats the fibre. For that purpose, a monomodal wave of small
amplitude and wavenumber k1 = 2π/λ1 is employed in this section, because the linear
approximation with λ1 yields a good agreement with the growth rates observed in the
experiments (see figures 8 and 11). Thus, the initial condition takes the form

r(z, t = 0)|s = Rs + (Rs − R)ε0 cos(k1z). (5.5)
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The parameter ε0 is set to be sufficiently small to ensure that the instability grows in
the so-called linear regime at the initial stages; usually, ε0 = 10−3 is an appropriate
value. Effects due to different choices of the initial conditions are discussed in § 6.

Because we consider a periodic disturbance, just a half wavelength needs to be
solved; thus the boundary conditions at planes z = 0 and z = π/k1 are

vz = 0, ∂vr/∂z = 0, (∂r/∂z)|s = 0. (5.6)

At the wire surface, the no-slip condition is imposed. Only normal stresses are present
at the free surface because the air is considered inviscid. The air pressure is used
as a reference and, without loss of generality, set equal to zero; therefore, the stress
balance at the interface results

n · T|s =
κ

F 3
n, (5.7)

where κ is the curvature of the surface.
The numerical technique considers a convenient spatial discretization by combining

the Galerkin finite-element method with a suitable parametrization of the free
surface by means of spines (Kistler & Scriven 1982; Khesghi & Scriven 1984). The
physical domain is tessellated into quadrilateral elements. Biquadratic and bilinear
interpolations are used to approximate the velocity and pressure fields, respectively.
The weighted residuals are built in the usual form and a set of time-dependent ordinary
differential equations results. This set is reduced to a system of nonlinear algebraic
equations using a second-order finite-difference predictor–corrector scheme (Gresho,
Lee & Sani 1980) and an adaptive step-size control method is implemented to march
in time. The nonlinear algebraic system is linearized by mean of a Newton’s algorithm,
while the SuperLU routines (Demmel et al. 1999) are used to solve the linear system
at each iteration.

The numerical code has been validated by Campana et al. (2004) to model
the instability of a film coating the inner wall of a capillary tube. The results
were successfully compared with a linear stability analysis (Goren 1962) and with
experimental data obtained by Goldsmith & Mason (1963). An additional validation
of the reliability of the code is achieved by comparing our simulations of the present
problem with the results obtained by Mashayek & Ashgriz (1995). Only negligible
differences in pinch-off times and interfacial shapes of the film for all cases treated
by Mashayek & Ashgriz (1995) are found.

We choose the axial length of the domain as λ1/2 to ensure that the simulation
will eventually include all the meaningful wavelengths observed in the experiments.
Without this consideration, one would be tempted to use instead half the wavelength
of the maximum growth rate of the linear theory, λm/2, thus precluding the appearance
of experimentally observed longer wavelengths.

5.1. Simulation of case I

In figure 4, we compare numerical and experimental timelines of consecutive primary
and secondary maxima, as well as that of the local minimum for experiment 8. There
is a remarkable agreement for the primary maximum and the minimum evolutions,
which holds not only for the linear stage but also for the late saturation regime. On
the other hand, the secondary maximum saturates later in the simulation than in the
experiment. As a consequence, its numerical thickness is lower than the experimental
one. This discrepancy is at most 5 % and is greater than the experimental error. As
predicted by the linear theory, there is no growth of the secondary peak in both
simulations and experiments.
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Figure 12. Numerical (solid line) and experimental (circles) interfacial profiles along the
primary wavelength at t = 3.3 s (experiment 4, case II). The primary, secondary and tertiary
peaks are indicated by P , S and T , respectively (see also figure 5.)

The numerical results of d1/d0 versus dmin/d0 are also plotted in figure 11(a).
The good agreement with the experimental points shows that the main geometrical
features of the shape of the surface are well reproduced by the numerical simulation.
In this experiment, the secondary mode is due to a nonlinear process that has only
minor effects over the primary peak. This type of behaviour is characteristic of the
experiments grouped in case I, where the secondary mode is linearly stable.

5.2. Simulation of case II

Here, we also find a good agreement between numerical predictions and experimental
data for the primary maximum and minimum timelines (see figure 6a) corresponding
to experiment 4. The behaviour of the secondary maximum is qualitatively well
described by the simulation (see figure 6b). Unlike case I, the onset of the numerical
secondary peak appears before the experimental one. Because this mode is strongly
unstable in the linear regime (see figure 9b), the final saturated value of the secondary
maximum is larger in the simulation than in the experiment. Nevertheless, the growth
rates of both curves in the corresponding early and intermediate stages are very
similar. Note that the secondary peaks are driven by nonlinear effects, but due to its
linear instability the actual growth rate is a combination of both linear and nonlinear
contributions.

The origin of the discrepancy between the simulated and actual evolutions of the
secondary peak (see figure 6b) must be somehow related to the differences between
the numerical and experimental shapes of the interfaces as shown in figure 12. There
is an increase of the area of the experimental primary peak that implies a decrease of
the amplitude of the secondary one respect to the numerical predictions. The larger
width of the primary peak and the steepness of its slope could be a consequence of
nonlinear injection of energy into short wavelength modes. However, this must be
disregarded because finer grid simulations, which better describe small wavelength
effects, yield very similar surface shapes.

In figure 6(c), we compare the timelines of the tertiary peak and the minimum
from experiments and simulations. The onset time of this maximum is well predicted
by the simulation. The tertiary maximum has the typical behaviour of stable linear
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Figure 13. Numerical simulation of the time evolution of the amplitude of the modes in
experiment 13 for λ1 (a) below and (b) above 10 % of 1.3λm. Time is scaled by ts = V/R. The
results confirm the criterion given by (3.7).

modes, which do not grow but remain flat as a plateau. This scenario is similar to
that observed for the secondary maximum in case I.

Note that the tertiary mode may be affected by gravity in an indirect way. During
the formation stage of the tertiary peaks, there may be convection of developed
primary and secondary beads (i.e. large amplitude peaks) which leads to differences
in the evolution of downstream and upstream tertiary peaks. Additional simulations
including gravitational effects, not reported here for brevity, show that a better
agreement for the tertiary maximum is achieved when this lack of symmetry is taken
into account. Note that gravity effects are not relevant in the formation stage of
primary and secondary peaks.

5.3. Numerical generation of cases I and II

Here, we aim to numerically confirm the rule of thumb given by (3.7) with respect to
the prediction on the behaviour of the secondary mode corresponding to either case I
or case II. Thus, for several values of F in the range of the experiments, we calculate
the numerical evolution of the instability by perturbing the flow with a given value of
λ1. This wavelength is selected to be either above or below 1.3λm, so that we expect to
find a secondary mode that behaves as case II or case I, respectively. Figure 13 shows
the numerical evolution of the amplitudes as obtained for F = 0.77 (as in experiment
13 in table 1) assuming λ1 below and above 10 % of 1.3λm. We note that for the smaller
λ1, d2 does not grow as expected for case I. On the contrary, the larger λ1 leads to a
growing d2, with a short exponential behaviour followed by saturation, as described
for case II. Additional computations, not shown for brevity, confirm this trend.

6. Effects of initial conditions
Because it is difficult to ascertain the initial state of the actual small amplitude

perturbations that trigger the instability in the experiments, we study the influence
of the initial conditions on the evolution and final state of the system by using a
numerical code.

As an approach to the hypothesis of the linear analysis, it is assumed that the sliding
drop leaves a uniform film of thickness F , over which eventual disturbances evolve.
The latter can be represented by a linear combination of a large number of modes of
infinitesimal amplitude. In the simulation, only a finite number of modes with very
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Figure 14. Radii of the interface profiles for a numerical experiment.

small finite amplitude can be used. Thus, the interfacial disturbance is expressed as

r(z, 0) = Rs + (Rs − R)ε0

Nm∑
i=1

βi cos(kiz), (6.1)

where ki = kmax/Nmi is the wavenumber of the ith mode, and kmax and Nm are
the maximum wavenumber and maximum number, respectively, of modes of the
disturbance. The parameter ε0 � 1 is the maximum admissible amplitude of the
modes (relative to the initial thickness), and −1 � βi � 1 is a random number.
Different multimodal disturbances are constructed by changing the random seed for
βi and setting ε0 = 10−4, kmax = 2km and Nm = 50. We also use periodic boundary
conditions at the end of the computational domain.

In figure 14, we show interfacial shapes at different times for experiment 4 (case II).
Because the maximum initial peak-to-peak amplitude of the disturbance (∼ 0.5 μm
for t = 0) is below the transverse resolution of the optical system (2.9 μm pixel−1), this
initial perturbation would not be detected experimentally. Only for t > 1.2 s (second
graph in figure 14) the perturbation would become visible. We finish the simulation
when the interface reaches a predefined minimum dimensionless thickness h = 0.05.

Figure 15 shows the discrete Fourier spectra of the corresponding interfacial profiles.
In the first part of the evolution (t � 3 s), the amplitude of modes with kiRs > 1 and
ki � km is quickly damped. Only modes in a region around km remain excited with
growing amplitude, which agrees with the linear theory. Because the modes close to km

have similar growth rates to Γm, they will be amplified with similar speeds. This can be
seen for t = 1.2 s and t = 3 s in the second and third graphs of figure 15, which show
that the relative amplitudes of the modes close to km are not significantly different.
This is because all these modes have similar growth rates close to Γm. After t = 3.6 s,
a secondary mode appears, whose wavenumber is very close to 2km, analogous to
what is observed in the experiments.
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Figure 15. Fourier’s power spectra corresponding to the interface profiles in figure 14. The
vertical dashed lines, from left to right, indicate km, 2km and 3km.

However, these results cannot explain the selection of the primary mode in
experiment 4 and those in case II (cf. figure 10), where the primary mode differs
up to 80 % of km. This suggests that the actual experimental set-up can generate
imperceptible perturbations which excite modes with wavenumber closer to k1.
Therefore, the most unstable mode predicted by the linear theory would not dominate
the evolution.

The following numerical experiments show a hypothetical situation in which this
occurs. We consider experiment 4 (case II) with three initial perturbation spectra
centred around k1 and different widths. In figure 16, we show the Fourier power
spectra for three different interfacial disturbances at t = 0 (first column) and t = 1.2 s
(second column). From top to bottom, the disturbances at t = 0 for a given power
have more localized spectra around the primary mode k1 and, correspondingly, larger
amplitude. In the three cases, the maximum initial amplitude of the perturbation is
below the optical resolution of the experimental system, and therefore, at t = 0 the
free surface would look practically flat. At t =1.2 s, the amplitudes of the interfacial
waves are large enough to be registered by an eventual optical system. In case (a),
which has the most diffused initial spectra, the maximum at t = 1.2 s is very close to
the most unstable mode predicted by the linear theory, km. On the other hand, cases
(b) and (c), which have narrower spectra around k1 lead to maxima closer to k1, so
that the observable wavenumber will strongly differ from km.

The simulations suggest that the primary mode can differ from the theoretical most
unstable mode even though the initial perturbations are small enough for the linear
theory to hold. Note that if a certain mode with wavenumber k1 (different to km) is
excited with large enough amplitude (relative to the others modes), the mode with k1
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Figure 16. Numerical experiment with excited modes centred around k1. We show the
evolution of the Fourier spectra of the interfacial disturbances for different initial perturbations.
The spectra have less dispersion around k1 from (a) to (c). In all figures, the vertical dashed
line at left indicates k1Rs , and the right one, kmRs .

will prevail over the one with km and it will be observed as the experimental dominant
mode.

7. Conclusions
We report two different behaviours of the evolution of the instability, namely case I

and case II. We find that the basic distinction between them depends on the behaviour
of the evolution of the secondary peaks of the instability. The analysis reported here
for a large set of experiments allows us to discriminate between both cases in terms of
the wavelength of the primary peaks, instead of the time evolution of the secondary
ones. This yields the simple condition: λ1 < 1.3λm for case I and vice versa for case II.

In case II, the secondary mode significantly grows and becomes comparable with
the primary mode (see e.g. experiment 4 in table 1). This is because the linear growth
rate of the secondary mode is larger than γ e

1 .
In case I, there is a secondary mode with small amplitude which is a consequence

of nonlinear effects appearing when the primary mode has grown enough. In general,
λ1 is close to λm in a 20–30 % range. Only when λ1 ≈ λm the final pattern shows a
series of main beads separated by an average distance as that suggested by using the
criterion of maximum growth rate in the linear theory.

Even though the secondary mode in case II is also a consequence of nonlinear
effects, it grows practically with the maximum growth rate of the linear theory
because λ2 is close to λm. Therefore, it is sometimes difficult to distinguish between
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Figure 17. Sketch of the instability as assumed by the quasi-static model by Goren (1964).

primary and secondary beads in the final pattern. Only the detailed observation of the
evolution allows us to determine which bead has evolved from a primary mode and
which bead from a secondary one. As a conclusion, we note that the mere observation
of the average distance between adjacent beads of comparable amplitude in the final
pattern can be misleading because of the uncertainty to distinguish a primary bead
from a secondary bead.

We acknowledge support from Agencia Nacional de Promoción Cientı́fica y
Tecnológica (ANPCyT, Argentina) through grant PICTR 00094/2002. The authors
are researchers of Consejo Nacional de Investigaciones Cientı́ficas y Técnicas de la
República Argentina (CONICET).

Appendix. Minimal energy: Goren’s solution
In order to obtain a quasi-static solution, Goren (1964) studied a minimal energy

problem. He took a portion of fluid between two consecutive peaks (see figure 17). In
his approach no secondary peak was considered. The symmetry of this problem allows
us to restrict the analysis to the region 0 <z < λ/2. Because the model is quasi-static,
kinetic energy is negligible and only the surface tension effects are taken into account.
The surface energy is proportional to

S = 2π

∫ λ

0

r
√

1 + r ′2dz = 2π

∫ rmin

rmax

r
√

1 + z′2dr, (A 1)

and it should be minimized with the constant volume constraint

V = π

∫ λ

0

r2dz = π

∫ rmin

rmax

r2z′dr. (A 2)

The problem can be solved using the Euler–Lagrange equations with the functional

F [r, z(r), z′(r)] = r
√

1 + z′2 + βr2z′,

where β is the Lagrange multiplier. Note that ∂zF =0 and, in consequence,
∂z′F = const . This allows the first integration

rz′
√

1 + z′2
+ r2β = const. (A 3)

We use the maximum radius, d1/2, as the characteristic length, so that the
non-dimensional variables are X =2z/d1, Y = 2r/d1 and β̃ = 2h1β . The boundary
conditions at the tip of the bulge are Y ′(0) = 0 and Y (0) = 1. This allows us to rewrite
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Figure 18. Comparison between simulation (lines) and experimental interfacial shapes
registered by Goren (1964) (symbols).

(A 3) as

X′2 = γ 2(1 + X′2), γ ≡ β̃ − 1

Y
− β̃Y. (A 4)

By solving X′ as a function of γ (i.e. Y ), we obtain the following relationship:

X′ = − |γ |
1 − γ 2

. (A 5)

Note that X′ < 0 for 0 <X <X0, because the peak is at X =0, and the thickness
should decrease to reach its minimum value at X = X0, where the plateau between
bulges begins. From that point to z = λ/2 there is no change in r . Using the expression
for γ given in (A 4), we obtain

X′ =
dX

dY
= − |1 − kY 2|√

(1 − Y 2)(k2Y 2 − 1)
, (A 6)

with k = 1 − 1/β̃ . The return points are Y =1 at the peak, and Y = 1/k = dmin/d1 at
X = X0. We now make the following change of variables:

Y 2 = 1 − sin2 ρ sin2 ψ. (A 7)

where cos ρ = 1/k. The point X =X0 is given by the condition Y = cos ρ = dmin/d1 (or
ψ = π/2). The integration of (A 6) leads to

X = cos ρE1(Φ, sin2 ρ) − E2(Φ, sin2 ρ), (A 8)

where

E1(Φ, sin2 ρ)=

∫ Φ

0

1√
1 − sin2 ρ sin2 ψ

dψ, E2(Φ, sin2 ρ)=

∫ Φ

0

√
1 − sin2 ρ sin2 ψdψ

are the elliptic functions of the first and second type, respectively. The point X0

corresponds to Φ = π/2. The region λ/2 < z < λ could be treated analogously using
symmetry arguments. Now, it is possible to evaluate the total volume V by considering
the expressions of z and r as a function of Φ . The value of V is that of the original
flat coating in the considered portion. The final result is given in (4.1). Note that the
corresponding equation in Goren’s original paper is not properly written.
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To check the validity of his approximation, Goren measured the interfacial shape of
the annular coating by taking photographs of the instability with an experimental set-
up similar to described in § 2. By comparing his experimental and theoretical results,
Goren obtained a reasonable agreement for the interfacial shape of the film, except for
his thickest coating (F = 2.12 over a wire of d = 152.4 μm). For this case, he observed
a satellite drop (secondary lobe) in the later stages of the evolution, which obviously
cannot be predicted by his theory. Goren argued that such satellite drop could be
caused by kinetic effects or gravity drainage. The appearance of such secondary lobe
in Rayleigh instability over annular films is a very well documented process today
and it can be predicted using both evolution equations for the interfacial profile
(Gauglitz & Radke 1988) and more accurate numerical simulations (Mashayek &
Ashgriz 1995). In figure 18, we show a comparison between our numerical solution
and the experimental data of Goren. A very good agreement between both results
for all stages of the evolution is observed. This points out that the appearance of the
secondary lobe in Goren’s experiment is not a consequence of gravity drainage but
of the dynamics, which cannot be captured by this quasi-static model.
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