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ABSTRACT: Key faults significantly affect the normal operation of the process originating risk conditions. These failures should
be identified even in the presence of missing measurements or outliers. In this work a new strategy to design sensor networks,
which are able to resolve a set of key faults when sensors fail, is presented. The procedure deals with failure isolation using the
Fault Resolution Degree concept. This is incorporated as a constraint of the minimum-cost design formulation, and the resulting
optimization problem is solved using MILP codes. The strategy only uses low uncertainty data that are readily available at the
process design stage. Application results of the methodology to case studies extracted from the literature are presented and
compared with those provided by other existing techniques.

1. INTRODUCTION

The selection of the set of process variables to be measured,
which is optimal with respect to some specified criteria and
simultaneously satisfies certain information requirements of the
system under analysis, is called the sensor network design
problem (SNDP). Even though a great number of works in the
literature devoted to the design of SNs have focused on monitoring
the normal process operation, the optimal location of instruments
to effectively diagnose plant faults has central importance for safety,
environmental protection, and process economy.
For the sake of brevity, only the most relevant works related

to the design of SNs for fault diagnosis purposes are briefly
reviewed in this section, given that this work is devoted to
presenting a contribution on that particular SNDP. Compre-
hensive reviews about the design of SNs for monitoring
purposes can be found elsewhere (Bagajewicz1 and Nguyen and
Bagajewicz2).
The first work about the location of sensors for fault

diagnosis was presented by Lambert3 who used the probabilistic
importance of events in causing a hazardous condition to
optimally locate instruments in a chemical plant. Later on,
Chuei-Tin et al.4 proposed a monitoring system based on a
parallel parameter estimation method designed to reduce the
chance of bias. Fault observability (O) and resolution (R)
criteria were selected to evaluate the performance of alternative
designs.
Raghuraj et al.5 developed a design strategy based on the use

of directed graphs to find a set of instruments that ensures the
O and the highest R of all failures under the assumption of the
occurrence of one fault at a time. The methodology was
extended to tackle sensor location problems in which some
faults had high probability of occurring simultaneously. Later
Bhushan and Rengaswamy6 used signed directed graphs to
represent the failure cause−effect model. Minimum-number
SNs were designed subject to fault O and single/multiple
resolution (S/MR) constraints.
A different approach was introduced by Bagajewicz et al.7 to

solve the SNDP from a fault diagnostic perspective. A MILP
formulation was analyzed to obtain minimum-cost SNs subject

to fault O and S/MR requirements, which were stated using
matrix algebra concepts. The solution of the optimization
problem was tackled using the procedure CPLEX of the GAMS
program.
Later on Bhushan and Rengaswamy8 proposed a design

formulation based on quantitative information about the
occurrence of faults and sensor failure probabilities. A
comprehensive analysis of the maximum-reliability and
minimum-cost SNDPs was later presented by the same authors
(Bhushan and Rengaswamy9). A lexicographic optimization
procedure that combined both objectives and heuristics to solve
large scale problems were also examined.
The robustness of the network to uncertainties/errors in the

underlying failure cause−effect model and probability data was
considered next by Bhushan et al.10 More distributed SNs were
preferred to incorporate robustness to modeling errors.
Regarding the treatment of inaccurate data, the main idea
was to ensure that the constraints involving uncertain data were
far from being active at the optimal solution. This robust design
formulation was solved by Kotecha et al.11 using Constraint
Programming, and recently it was extended to consider robust
upgrade and reallocation problems (Kolluri and Bhushan12).
Other contributions analyzed the design of SNs devoted to

detecting and identifying a set of process faults by means of
particular monitoring strategies. These works considered the
effect of measurement uncertainties but took no account on the
capability of the sensor structure to observe and resolve faults
under the presence of sensor failures. In this sense, Musulin et
al.13 and Gerkens and Heyen14 proposed methodologies to
design SNs for processes monitored using Principal Compo-
nent Analysis and model-equation residuals based techniques,
respectively. The resulting optimization problems were solved
using Genetic Algorithms.
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In chemical processes the occurrence of some particular
abnormal events may originate important economic losses,
hazardous working conditions, and huge environmental
damage. Therefore it is essential to quickly detect and identify
these key faults when they take place and perform adequate
control actions to reduce their consequences. In this sense, the
installed SN should be able to resolve the set of key failures
under the presence of missing measurements or outliers. In this
work a new strategy to deal with the optimal location of
instruments for satisfying this purpose is presented. It is
assumed that no selection of the technique used for monitoring
the future process operation is performed at the plant design
stage. The proposed approach tackles the key faults isolation
from a structural point of view. The resolution degree (RD) of
a key fault is defined with this aim. In contrast to previous
works, the design is addressed using simpler formulations,
which only use low uncertainty data that are readily available at
the process design stage.
The rest of the paper is structured as follows. In Section 2,

the definitions of fault O and S/MR are briefly revisited using
Boolean algebra vectors, and the concept of fault RD is
introduced. Different formulations for the design of SNs for
fault diagnosis are presented in Section 3, and they are also put
into the context of some previous works in the area. Next,
application examples of the proposed formulations for two case
studies extracted from the literature are provided. Results are
analyzed and compared with those obtained by other existing
techniques devoted to the design of robust SNs. A Conclusions
section ends this article.

2. CONSTRAINTS FORMULATION

In this work the constraints of the proposed SNDPs are
formulated in terms of the basic operators of Boolean algebra
(conjunction ∧, disjunction ∨, complement ¬) for binary
variables. These are used to express SN configurations and
failure cause−effect relationships. In this sense, a SN is
represented by a vector x of dimension I, such that xi = 1 if
variable i is measured and xi = 0 otherwise. Regarding failure
cause−effect relationships, they are stated in matrix form using
the (I × J) fault-sensor connectivity matrix A, where J stands for
the number of failures (Bagajewicz et al.7). This matrix is made
up of binary elements such that aij = 1 if the ith variable is
affected by the occurrence of the jth fault, and aij = 0 otherwise.
Therefore the jth column of the connectivity matrix, aj, is a
binary vector that represents all the variables which reveal the
jth failure if they are measured. There exist different techniques
to establish the cause−effect relationship between a fault
and the variables that it affects. Comprehensive reviews
about this issue can be found elsewhere (Raghuraj et al.;5

Musulin et al.13).
2.1. Observability. A fault diagnostic system should

observe fault symptoms and determine the root cause of the
failure. A fault is categorized as observable if it is revealed by at
least one sensor. The O of the jth fault for a given SN can be
verified using the conjunction operation between the fault

vector aj and the sensor vector x. That failure is observable if
the sum of all the elements of (aj ∧ x) is at least equal to or
greater than 1. Therefore the O of all process faults is
formulated as follows:

∑ ∧ ≥ =
=

j Ja x( ) 1 ( 1, ..., )
i

I

j i
1 (1)

where rvj = (aj ∧ x) is defined as the jth fault resolution vector.
2.2. Simple Fault Resolution. If only one failure occurs at

a given time, the instrumentation system must be able to
observe and resolve it. This means that the correct fault source
should be identified among all possible candidates. The R of
faults strongly depends on the topology of the process. If two
faults, j and k, affect the same process variables, that is,

=a aj k (2)

these failures cannot be resolved, and they are considered as a
single fault for the rest of the analysis.
Given the measurement vector x, let us consider the

conjunction operation between vectors rvj and rvk, which are
represented in Figure 1. Three different vectors are defined
from that conjunction:

∧ ¬v rv rv: j k1 (3)

¬ ∧v rv rv: j k2 (4)

∧v rv rv: j k3 (5)

It can be seen that v1 contains all the instruments of rvj not
included in rvk; in contrast v2 involves the sensors of rvk not
contained in rvj, and v3 has the common elements. If the three
vectors are nonzero, the occurrence of the jth process failure is
resolved in terms of the measurements contained in v1 and v3,
whose values deviate with respect to the steady state ones.
Regarding the kth fault, it can be identified using the sensors
included in v2 and v3.
If only two vectors are nonzero, the R of both faults is still

possible. If v2 is null, the jth process fault is revealed using the
observations included in v1 and v3, and the kth fault is identified
by means of the sensors in v3. If v1 is null, the measurements
contained in v3 allow solving the jth process failure, and those
in v2 and v3 provide the R of the kth fault. Finally, if v3 is null,
the R’s of the jth and kth faults are achieved using the
observations contained in v1 and v2, respectively.
Three different cases arise when only one vector has

elements. The first one corresponds to the nonobservability
of the jth fault (v1 = 0 and v3 = 0). The second one is associated
with the nonobservability of the kth fault (v2 = 0 and v3 = 0),
and the last one is related to the lack of R of both failures (v1 =
0 and v2 = 0). Previous analysis indicates that the SR of faults
j and k is achieved if at least two of the three vectors are
non-null, that is,

≥ ∀ ≠j kxNNV ( ) 2jk (6)

Figure 1. Conjunction between rvj and rvk.
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where NNVjk(x) is the number of non-null vectors that arise
from the conjunction between rvj and rvk. If only v1 and v2 are
non-null, the SR of the faults is maximum as it has been stated
by Raghuraj et al.5

Condition 6 implies that the resolution vectors (rv’s) of both
faults should differ in at least one element. A difference of
exactly one element arises if two of the three vectors are non-
null, v3 ≠ 0, and the other non-null vector has only one
element. Therefore, the SR of the jth fault is attained if rvj is
different from the rv’s corresponding to all the other process
failures, that is,

≠ ∀ ≠j krv rvj k (7)

It should be highlighted that if eq 6 is satisfied for a given SN,
the O of faults j and k is fulfilled since there exists a variable
affected by each failure in at least two of the three vectors.
Therefore, the constraints of O and SR of these faults can be
simultaneously tested using a single formulation.
2.3. Multiple Fault Resolution. If two or more faults have

a high probability of occurring simultaneously, they are grouped
and solved with respect to the others as a single fault (Raghuraj
et al.5). Let us consider two failures represented by the fault
vectors aj and ak. The associated multiple failure vector ajk is
defined as

= ∨a a ajk j k (8)

and it is incorporated into the connectivity matrix A.
The R of multiple faults is tackled considering the SR among

all the multiple and simple fault vectors. For each multiple fault
represented by the vector ajk, all the possible combinations
between the rv of ajk and the rv’s of the other faults denoted
as ap are analyzed, where ap may be a multiple fault vector
different from ajk or a simple failure one. For each combination
the following vectors should be examined:

∧ ¬v rv rv: jk1 p (9)

¬ ∧v rv rv: jk2 p (10)

∧v rv rv: jk3 p (11)

to determine if NNVjk,p(x) ≥ 2.
2.4. Resolution Degree. The risk associated with a fault

depends on its probability of occurrence and its consequences.
On the basis of the experience obtained from similar processes,
a categorization of faults can be performed at the design stage.
If hazard conditions for humans and the environment and
important economic losses are associated with the occurrence
of a process fault, it should be identified. Therefore the SN
must be able to resolve this key failure even if some of the
measurements that reveal the faulty state are not available.
The RD of the jth fault, RDj, is defined as the amount of

measurements belonging to rvj that can be missed while the
failure remains distinguishable. The RD strongly depends on
the topology of the process. Some faults have RD = 0, which
means no measurement can be missed at any time if it is
required, keeping the isolation of the failures. Other faults have
RD ≥ 1; therefore, they admit the loss of some observations.
2.4.1. Unitary Resolution Degree. A SN has a RD = 1 for

the jth key fault if it remains identifiable when one
measurement contained in rvj is missed. If rvj is constituted
by Rj measurements, then Rj sensor configurations, represented
by vectors rvj

r (r = 1...Rj) of dimension (Rj − 1), exist which are

able to identify the occurrence of the event. The following
inequalities should be examined to verify RDj = 1

≥ ∀ ≠ =j k r RxNNV ( ) 2 1...j k
r r

jr r (12)

This is a special case of the general one that is stated next.
2.4.2. General Resolution Degree. A SN has a RD = g for

the jth key fault if the failure remains identifiable when g
observations affected by the fault are not available. In this case
there exists tj = (Rj!)/(gj!(Rj − gj)!) sensor configurations of
dimension (Rj − gj), which are able to identify the occurrence
of the jth key failure. To verify RDj = gj, the NNVs that arise
from the conjunctions between each rvj

rand rvk
r are inspected.

≥ ∀ ≠ =NNV j k r tx( ) 2 1...j k
r r

jr r (13)

Application examples about constraints evaluation are
provided in Supporting Information.

3. SENSOR NETWORK DESIGN FORMULATIONS FOR
FAULT DIAGNOSIS

In this section different formulations of the SNDP for failure
diagnosis are presented. Single objective optimization problems are
stated subject to constraints on faults O and S/MR and key faults
RD. At first minimum-cost and minimum sensor-number designs
are addressed, and then fixed-budget instrumentation problems are
tackled. Furthermore the work is put into the context of previous
publications in the area of SND.
In general let us assume that a set of J single/multiple faults

are considered for the process under analysis, whose fault
vectors are denoted as aj. If some of them are equal at first, a
preprocessing step is required to merge the corresponding
failures in a single one because they are indistinguishable.
The structure of the SN that allows the O of all process faults

at minimum cost is determined by solving Problem 14, which
comprises a set of J linear inequalities formulated in terms of
the binary variables contained in vector x:

∑ ∧ ≥ =
=

s t

j J

c x

a x

min

. .

( ) 1 1...
i

I

j i

x

T

1 (14)

where ci is the cost of the ith sensor.
A compact formulation of the SNDP that simultaneously takes into

account faults O and R constraints is represented by means of eq 15:

≥ = = ≠
s t

j J k J j k

c x

x

min

. .

NNV ( ) 2 1... , 1... ,j k

x

T

,

(15)

This problem comprises [J(J − 1)/2] nonlinear inequalities
restrictions. For a given pair of vectors rvj(x) and rvk(x), the
restriction NNVj,k(x) ≥ 2 can be expressed as follows:

∑

∑ ∑

= ∧ ¬

+ ∧ ¬ + ∧ ≥

=

= =

rv rv

rv rv rv rv

NNV min[1, ( ) ]

min[1, ( ) ] min[1, ( ) ] 2

j k
i

I

j k i

i

I

k j i
i

I

j k i

,
1

1 1
(16)
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To avoid the use of nonlinear constraints in the optimization
problem, eq 16 can be replaced by the following set of three
linear inequalities:

∑ ∑∧ ¬ + ∧ ≥ ∀ ≠
= =

rv rv rv rv j k( ) ( ) 1
i

I

j k i
i

I

j k i
1 1 (17)

∑ ∑∧ ¬ + ∧ ≥ ∀ ≠
= =

rv rv rv rv j k( ) ( ) 1
i

I

k j i
i

I

j k i
1 1 (18)

∑ ∑∧ ¬ + ∧ ¬ ≥ ∀ ≠
= =

rv rv rv rv j k( ) ( ) 1
i

I

j k i
i

I

k j i
1 1 (19)

where eq 17 represents the sum of the elements of rvj, eq 18 is
the sum of the elements of rvk, and eq 19 is the sum of the
elements that belong to (rvj ∪ rvk) but not to their intersection.
Therefore Problem 15 is transformed into Problem 20, which
involves a set of [3J(J − 1)/2] linear inequalities restrictions.
Identical restrictions come from many inequalities represented
by eqs 17 and 18, which are eliminated. Therefore Problem 21
arises that contains [J + (J(J − 1))/2] constraints. This set of
linear inequalities can be reduced further by eliminating
redundant equations following the procedure outlined by
Bhushan and Rengaswamy.15 Problem 21 is solved using MILP
codes, for example, the procedure CPLEX of the GAMS
program.

∑ ∑

∑ ∑

∑ ∑

∧ ¬ + ∧ ≥ ∀ ≠

∧ ¬ + ∧ ≥ ∀ ≠

∧ ¬ + ∧ ¬ ≥ ∀ ≠

= = ≠

= =

= =

= =

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭

⎪⎪⎪⎪

s t

rv rv rv rv j k

rv rv rv rv j k

rv rv rv rv j k

j J k J j k

c xmin

. .

( ) ( ) 1

( ) ( ) 1

( ) ( ) 1

1... , 1... ,

i

I

j k i
i

I

j k i

i

I

k j i
i

I

j k i

i

I

j k i
i

I

k j i

x

T

1 1

1 1

1 1 (20)

∑

∑ ∑

≥ =

∧ ¬ + ∧ ¬ ≥ = ≠

=

= =

s t

rv j J

rv rv rv rv j J j k

c xmin

. .

( ) 1 1...

( ) ( ) 1 1... ,

i

I

j i

i

I

j k i
i

I

k j i

x

T

1

1 1
(21)

The aim of this work is to address the design of SNs which
are able to resolve a set of key failures under the presence of
missing measurements or outliers. This is accomplished by
incorporating RD restrictions for a set of S key faults to

Problem 15. In compact form, the SNDP to be solved is
represented by eq 22, where g is the lower bound selected for
the key faults RD:

≥ = = ≠

≥ =

s t
j J k J j k

g s S

c x

x

x

min

. .

NNV ( ) 2 1... , 1... ,

RD ( ) 1...

j k

s s

x

T

,

(22)

Given that RDs restrictions (s = 1...S) are evaluated in terms
of the NNVs between the rvsr (r = 1...ts) and rvkr (k = 1...J,
k ≠ s), Problems 22 and 15 have the same type of constraints.
Using the proposed reformulation of the NNV restrictions into
a set of linear inequalities, Problem 22 is transformed into the
following one:

∑

∑ ∑

∑

∑ ∑

≥ =

∧ ¬ + ∧ ¬ ≥ = ≠

≥ = = ′

∧ ¬ + ∧ ¬ ≥ = = ′ ≠

=

= =

=

= =

s t

rv j J

rv rv rv rv j J j k

rv s S r t

rv rv rv rv s S r t s k

c xmin

. .

( ) 1 1...

( ) ( ) 1 1... ,

( ) 1 1... ; 1...

( ) ( ) 1 1... ; 1... ;

i

I

j i

i

I

j k i
i

I

k j i

i

I

s i s

i

I

s k
r

i
i

I

k
r

s i s

x

T

1

1 1

1

1 1

r

r r

(23)
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where ts′ = (Rs′!)/(gs!(Rs′ − gs)!) and Rs′ is the cardinality of as.
The resulting optimization problem involves [J + (J(J − 1)/2) +
J(∑s=1

S ts′)] constraints and, after the elimination of redundant
equations, it can be solved, for instance, using the code CPLEX of
the GAMS package.
It should be noticed that the incorporation of RD constraints

for the key faults frequently enhances their R when no sensor
fails. In general, the solution of Problem 23 involves more
sensors associated with the key faults in comparison with that

obtained when Problem 21 is solved. Therefore the R of the
key variables can be done using more than one rv under the
absence of sensor malfunctions, which means that alternative
ways to verify the failure condition of these particular faults may
be available.
If all the instruments have the same cost, the minimization of

the instrumentation cost can be replaced by the minimization
of the number of instruments; therefore, the previous problem
is stated as follows:

∑

∑

∑ ∑

∑

∑ ∑

≥ =

∧ ¬ + ∧ ¬ ≥ = ≠

≥ = = ′

∧ ¬ + ∧ ¬ ≥ = = ′ ≠

=

=

= =

=

= =

x

s t

rv j J

rv rv rv rv j J j k

rv s S r t

rv rv rv rv s S r t s k

min

. .

( ) 1 1...

( ) ( ) 1 1... ,

( ) 1 1... ; 1...

( ) ( ) 1 1... ; 1... ;

i

I

i

i

I

j i

i

I

j k i
i

I

k j i

i

I

s i s

i

I

s k
r

i
i

I

k
r

s i s

x
1

1

1 1

1

1 1

r

r r

(24)

When the instrumentation project has a fixed budget, CT, the
maximization of the RD of the most critical failure s* is
proposed. The design should satisfy faults O and R, the amount
of available resources, and the RD of all the key faults. It is a

practical assumption that they remain solvable when at least
one measurement is missed. The formulation of this problem is
presented next.

∑

∑ ∑

∑

∑ ∑

≤

≥ =

∧ ¬ + ∧ ¬ ≥ = ≠

≥ = = ′

∧ ¬ + ∧ ¬ ≥ = = ′ ≠

*

=

= =

=

= =

s t

C

rv j J

rv rv rv rv j J j k

rv s S r t

rv rv rv rv s S r t s k

x

c x

max RD ( )

. .

( ) 1 1...

( ) ( ) 1 1... ,

( ) 1 1... ; 1...

( ) ( ) 1 1... ; 1... ;

s

T

i

I

j i

i

I

j k i
i

I

k j i

i

I

s i s

i

I

s k
r

i
i

I

k
r

s i s

T

1

1 1

1

1 1

r

r r

(25)

3.1. Relations between the Proposed Formulations
and Other Existing Works. This work is devoted to
presenting a new strategy to design an optimal SN, which is
able to resolve a set of key faults under the presence of failed
sensors or outliers. Only the following information is required:
(a) the cause−effect relations among faults and variables, which
come from the available process knowledge and simulation
results, (b) the set of key failures selected from previous
experience, and (c) sensor costs. All these low uncertainty data
are readily available by plant designers. The categorization of

faults allows taking into account both their occurrence probability
and consequences at the design stage in a simple way.
The procedure deals with key failures R when sensor

malfunctions occur from a structural point of view. With this
purpose key faults RD constraints are incorporated into the
optimization problem. It involves a linear objective function
and a set of linear inequality restrictions; consequently, it is
solved using MILP codes. It should be noticed that all the
constraints are only stated in terms of the original I binary
variables.
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There exist some connections between this work and other
contributions in the area of SND for fault diagnosis. In this
sense, Bagajewicz et al.7 used the concepts of matrix algebra to
formulate a minimum-cost SNDP subject to faults O and R
restrictions. The original optimization problem was reformu-
lated as a MILP by increasing the number of constraints from
[J + ((J − 1)/2)] to [J + (5J(J − 1)/2)] and the number of
binary variables from I to [I + (J(J − 1)/2)] . The formulation
presented in this work with the same purpose (Problem 21)
involves [J + ((J − 1)/2)] linear inequalities, and the number of
binary variables remains equal to I. Furthermore the
consequences of the presence of failed sensors or outliers on
the fault detection capabilities of the SN are not addressed in
their work.
Regarding reliabilities based methods, Bhushan and

Rengaswamy9 defined the Detection Unreliability of the jth
fault, Uj, as the probability that it occurs and the sensors
installed to observe it fail. Furthermore, a measure of the
Detection Unreliability of all the faults and pseudofaults, U, is
stated as the maximum Uj {j = 1...[J + ((J − 1)/2)]} .
A pseudofault is defined by means of the fault set Bij = Ai ∪
Aj − Ai ∩ Aj, where Ai and Aj are the sets of measurable nodes
affected by faults i and j, respectively. For each pair (i,j) of
faults, a pseudofault is generated and incorporated into the
original set of S/M faults to analyze faults R. The evaluation of
U requires knowing the fault cause−effect model, the
probability of occurrence of all the faults, and the reliabilities
of all the sensors that may participate in the network. It should
be noticed that these data are uncertain. First, the
aforementioned authors presented different formulations of
the SNDP. They dealt with the minimization of the U subject
to cost constraints, the minimization of the cost subject to U
value restrictions, the lexicographic optimization with reliability
as primary objective and cost as the secondary one, the
minimization of the cost subject to the O and R of all the faults,
etc. In their formulation of the last problem no failure
probability data are used; therefore, it is equivalent to Problem
21. Among all the proposed formulations, those authors
emphasized the use of the lexicographic procedure.
Later on Bhushan et al.10 presented a rather complex

lexicographic optimization framework for enhancing SN
robustness to uncertain data. They proposed to reduce the
effect of imprecise data on U by ensuring that the constraints
involving inaccurate information are far from being active at the
optimal solution. The methodology requires categorizing all
process faults previous to its application, taking into account
the inaccuracies associated with the evaluation of Uj. In their
formulation, three objectives are appropriately combined in a
single objective function. The primary objective is the
minimization of U, the second one is the maximization of the
minimum slack variable among all the slack ones contained in
the unreliability detection constraints of uncertain faults, and
the third one is to minimize the cost. The calculation of all the
weighting constants used in the objective function is based on
problem data. Three different scenarios of data inaccuracies are
analyzed. The second one corresponds to inaccuracies in failure
probabilities of some sensors with all fault occurrence
probabilities accurately known. For this scenario, the
optimization problem involves [2 + J + (J − 1)/2 + 4Ju]
linear constraints and [I + Ju] binary variables, where Ju stands
for the number of uncertain faults and pseudofaults and can be
solved using MILP codes.

The strategy proposed in this work and the one presented by
Bhushan et al.10 have different purposes. The first one is
devoted to satisfy both the R of all faults when no sensor fails
and the R of the key faults under the presence of sensor
malfunctions at minimum cost. That is, the optimal SN should
satisfy two requisites, and one of them corresponds to the
whole set of faults and the other one is associated with a
specific set of important failures. The second methodology is
focused on the whole set of faults and aims at optimizing
system performance measures at minimum cost using
reliabilities data. Even though no uncertainties are considered
in our methodology, the second scenario of Bhushan at al.’s10

procedure might be used for comparison purposes, taking into
account that our categorization of faults is fixed.
Given that neither to guarantee the R of all the faults nor to

satisfy the R of a specific set of faults are objectives of the
aforementioned reliabilities based strategy, no indication is
provided about how to verify if these conditions are achieved.
In this article additional steps for this technique are devised to
tackle those issues using the second scenario. To satisfy the R
of all the faults, different runs of the optimization procedure
should be performed increasing the upper bound of the cost
restriction, and the (PFPj − Uj) differences for each run should
be inspected, where PFPj is the jth process failure probability (j
= 1...[J + ((J − 1)/2)]) . For a given capital resource, the
solution satisfies the R of all the faults when all the differences
(PFPj − Uj) are greater than zero.
Regarding the R of key faults when sensors fail, different runs

of the optimization procedure should also be performed
increasing the upper bound of the cost restriction. For each
capital resource, the original procedure gives a solution x which
involves a set of Jx sensors. In this article it is proposed to
define the set (Jx ∩ Js) for each key fault, where Js represents
the set of sensors affected by the key fault, and to recalculate
the differences (PFPj − Uj), where j stands for the key fault and
their associated pseudofaults. The new values of Uj are obtained
taking into account that the probabilities of the failed sensors
that participate in (Jx ∩ Js) are equal to 1. The total number of
differences that should be evaluated for the sth key fault is
Rs!/(gs!(Rs − gs)!). The solution satisfies the R of all key faults,
when the Rs!/(gs!(Rs − gs)!) (s = 1...S) differences (PFPj − Uj)
are greater than zero for a given capital resource. It should be
noticed that the uncertainties of sensor reliabilities affect Uj
values; therefore, it cannot be accurately declared that faults are
resolvable.

4. CASE STUDIES

A continuous stirred tank reactor (CSTR) and a fluid catalytic
cracker unit (FCCU) are selected as case studies to show the
application of the proposed strategy and compare its results
with respect to those provided by a reliabilities-based method
(Bhushan et al.10). Both processes are nonlinear and have been
used in previous works related to the design of SNs for fault
diagnosis.

4.1. Continuous Stirred Tank Reactor. The CSTR
flowsheet, extracted from the work by Kramer and Palowitch,16

is represented in Figure 2, and process variables notation is
included in Table 1. In this reactor a positive order reaction of
A to B takes place. Part of the reactor outlet stream is recycled
to that unit through a heat exchanger to provide temperature
control. Also the recycle flow rate is controlled, and the reactor
residence time is controlled by maintaining a constant level in
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this unit. Pressure and physical properties are assumed
constant.
Raghuraj et al.5 analyzed the fault cause−effect model for this

system and determined seven identifiable faults, which are
shown in Table 2.
Four minimum-cost SNDPs are formulated considering fault

O, SR, and RD constraints. The selected key process fault
corresponds to vector a4. Instrumentation costs are reported in
Table 3. Because measurements of temperature and level are
necessary for reactor control loops, their costs are set at zero.
The results of the proposed design problems are shown in
Table 4.
The amounts of inequalities constraints associated with each

problem are 7 (for O constraint), 28 (for SR constraint), 49
(for SR, RD4 ≥ 1 constraints), and 49 (for SR, RD4 ≥ 2
constraints). But after the procedure of reduction of redundant
equations they become 1, 7, 9, and 9, respectively.
When SR constraints are imposed, the problem solution is

equal to that reported by Raghuraj et al.,5 while the solution
that satisfies the O of all the faults at minimum cost is different
because no costs are considered in that work. Table 4 shows
that the number of sensors of the solution set increases if RD
restrictions are imposed. In comparison with the solution that
satisfies only SR constraints, the measurement of TW0 should be
incorporated if a RD4 ≥ 1 is required. Furthermore CB and TW0

participate in the solution vector when the lower bound of the
RD increases to 2. An analysis of the RD for the rest of the
faults indicates that none of them admit a RD greater than zero.
Table 5 presents the rv’s of each fault for the last three design

problems contained in Table 4. For each design, the rv’s differ
in at least one element. This fact demonstrates that all faults can
be resolved by means of the optimal SN. Furthermore, it can be
seen that an increment in the required RD originates an
increase in the number of elements of the rv’s. It should be also
noticed that the incorporation of RD restrictions enhances the
R of key variables when no sensor malfunctions are present. In
this sense Table 5 shows that the rv for the key fault a4 when
RD4 ≥ 1 is made up of variables T and TW0; therefore, there
exist two alternative ways of resolving the key fault when no
sensor fails.
Furthermore, the reliabilities-based methodology proposed

by Bhushan et al.10 is applied to design robust SNs for the
system under analysis. The following values are selected for the
process faults probabilities (PFPs) and sensor faults proba-
bilities (SFPs): PFPa1 = 10−1, PFPa2 = 10−2, PFPa3 = 10−2,
PFPa4 = 10−1, PFPa5 = 10−2, PFPa6 = 10−2, PFPa7 = 10−2,
SFPCB = 10−3, SFPT = 10−2, SFPTW0 = 10−2, SFPFW = 10−3,
SFPFR = 10−3, SFPTR = 10−2, SFPCA = 10−3, SFPL = 10−3,
SFPFP = 10−3, which are similar to those provided by Bhushan
and Rengaswamy.9

For comparative purposes, the aforementioned strategy is
run assuming that only SFPs are uncertain, and among all the
instruments only those affected by the occurrence of fault
a4 (Js = [CB, T, TW0]) are inaccurate. For different upper
bounds on the capital resources (C*), Table 6 presents the
results of the methodology, that is, the solution vector x, the
values of U, ϕs,4 (slack variable associated with the unreliability
detection constraint of the uncertain fault), and Xs (slack
variable for the cost restriction). To analyze if all the faults are
resolvable when no sensor failure occurs, the (PFPj − Uj)
differences (j = 1...[J + ((J − 1)/2)]) are inspected, as it is
explained in the previous section of this work, and the
nonresolvable pairs of faults are determined. These are also
included in Table 6. It can be seen that, for low budgets of the
instrumentation project (C* < 2000), some faults are
indistinguishable. For C* = 2000, the R of all faults is attained

Figure 2. CSTR flowsheet.

Table 1. CSTR Variables Notation

notation variable

CA CB reactor concentrations of A and B
CA0 feed concentration of A
Cl Cr CT controller output signals: level, recycle flow, temperature
F F0 FP FR FW flow rates: reactor outlet, feed, product, recycle, cooling

water
L reactor liquid level
Pp pump head
T T0 TR TW0 TW temperatures: reactor, feed, recycle, cooling water inlet

and outlet
U heat transfer coefficient
VL Vr VT control valve stem positions: level, recycle flow,

temperature
Pl recycle takeoff pressure
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at minimum cost, and the solution is equal to that obtained
solving Problem 21 or Problem 23 using the constraint RD4 ≥
0. An increment of the capital resources (C* > 2000) originates
the increment of ϕs,4 and/or Xs, but U remains at (−3) because
the pseudofault (1, 4) imposes a limit on the U value.
Furthermore, it is simulated that the sensors included in

(Jx ∩ Js) are out of service, one at a time, for different C* values,
and the R of the key fault a4 is analyzed. The procedure
outlined in Subsection 3.1 of this work is applied, and the
results are shown in Table 7. It point outs that for low budgets
the key fault is nondistinguishable (C* < 2000) or non-
observable (2000 ≤ C* < 2500). For C* = 2500, the R of the
key fault is achieved at minimum cost, and the solution is
equal to that obtained solving Problem 23 using the constraint
RD4 ≥ 1. For all the combinations of two instruments, a similar
analysis is conducted by simulating that two of the sensors
included in (Jx ∩ Js) are not available.
Simulation results are included in Table 8, which shows that

the key fault is nondistinguishable for C* < 2000 or
nonobservable for 2000 ≤ C* < 3200). For C* = 3200, the
R of the key fault is attained at minimum cost and the solution
is equal to that achieved solving Problem 23 using the
constraint RD4 ≥ 2.
Furthermore, worst-case simulations are carried out by

increasing the SFPs, one at a time, for some capital resources.
Increases of 1 from the SFPs nominal values on the log10 scale
are performed. Results show that some solutions differ from the
ones presented in Table 7. For instance, increasing the SFP of
either T or Tr for C* = 2000, the new solution is x = [CB T
TW0 TR L], and by applying the modified procedure proposed
in subsection 3.1 it is determined that the pairs of faults 4,7;
1,2; 1,3; 2,3; and 5,6 are nonresolvable. The same situation
arises increasing the SFP of Tr for C* = 2500.
Previous results highlight that the proposed modifications of

the reliabilities-based methodology can be applied to analyze
the R of all the faults when no sensor fails and the R of the key
faults in the presence of missing measurements or outliers, but
at the expense of an extra computational work. Furthermore it
should be noticed that the categorization of faults in resolvable
and nonresolvable is not unique, because it depends on the
selected values of the SFPs.

4.2. Fluid Catalytic Cracker Unit. The process flowsheet
for the FCCU, extracted from the work by McFarlane et al.,17 is
represented in Figure 3, and variables notation is included in
Table 9.
Preheated feed and hot slurry recycle are mixed and injected

into the reactor riser, where they make contact with hot
regenerated catalyst, and totally vaporize. As a result of the
cracking reactions, coke is deposited on the surface of the
catalyst, which should be regenerated because coke poisons it.
In the disengaging zone of the reactor, gas and catalyst are

separated. Then catalyst is returned to the stripping section of the
reactor where steam is injected to remove entrained hydro-
carbons. Reactor product gas is passed to the main fractionator
for heat recovery and separation into various product streams.
Spent catalyst is transported from the reactor to the

regenerator where it is fluidized with air. Carbon and hydrogen
on the catalyst react with oxygen to produce carbon monoxide
and water. Gas travels up the regenerator into the cyclones
where entrained catalyst is removed and returns to the bed. The
regenerator is run at conditions of temperatures and excess
oxygen to ensure that virtually all carbon monoxide produced
in the bed is converted to carbon dioxide before entering the
cyclones. Regenerated catalyst flows over a weir into the
regenerator standpipe. The level of catalyst in the standpipe
provides the driving force for catalyst flow through the
regenerated catalyst U-bend to the reactor riser.
Raghuraj et al.5 reported seven identifiable faults for this case

study, which are included in Table 10. Furthermore the
assumed sensor costs are shown in Table 11.
The minimum-cost sensor configurations obtained by solving

Problems 14 and 21 are displayed in the first two rows of Table
12, and they are coincident with those reported in previous
works. The following rows of this table correspond to the
solution of Problem 23 for different RD constraints. Failures
associated with fault vectors a4, a5, and a7 are selected as key
process faults. For the process under analysis, it is not possible
to require RDs greater than zero for the other faults. The
amounts of inequalities constraints associated with each
problem are:7 (for O constraint), 28 (for SR constraint), 70
(for SR, RD4 ≥ 1 constraints), 133 (for SR, RD4 ≥ 2
constraints), 84 (for SR, RD5 ≥ 1 constraints), 49 (for SR,
RD7 ≥ 1 constraints), and 49 (for SR, RD7 ≥ 2 constraints).
But after the procedure of reduction of redundant equations
those quantities become 2, 5, 7, 7, 5, 7, and 7, respectively.

Table 2. CSTR Fault Cause−Effect Model

fault vector fault source affected variables fault vector fault source affected variables

a1 U TW CB T TW0 TR a5 Cl Pl Pp F0 CB T TW0 CA L
a2 VT CB T TW0 FW TR a6 VL CB T TW0 CA L FP
a3 Vr Cr CB T TW0 FR TR a7 CA0 CB T TW0 CA
a4 CT T0 CB T TW0

Table 3. CSTR Sensor Costs

sensor cost sensor cost sensor cost

CB 700 FW 200 CA 700
T 0 FR 300 L 0
TW0 500 TR 500 FP 300

Table 4. CSTR Results

constraints solution cost

O T 0
SR T FW FR TR CA L FP 2000
SR, RD4 ≥ 1 T TW0 FW FR TR CA L FP 2500
SR, RD4 ≥ 2 CB T TW0 FW FR TR CA L FP 3200

Table 5. CSTR Resolution Vectors

fault vector SR SR, RD4 ≥ 1 SR, RD4 ≥ 2

a1 T TR T TW0 TR CB T TW0 TR

a2 T FW TR T TW0 FW TR CB T TW0 FW TR

a3 T FR TR T TW0 FR TR CB T TW0 FR TR

a4 T T TW0 CB T TW0

a5 T CA L T TW0 CA L CB T TW0 CA L
a6 T CA L FP T TW0 CA L FP CB T TW0 CA L FP
a7 T CA T TW0 CA CB T TW0 CA
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In Table 13 the rv’s of each fault for the design problems
associated with rows 2 to 4 of Table 12 are displayed. For each
design, it can be seen that the rv’s differ in at least one element.
The same behavior is verified from the analysis of the rv’s
obtained using the solutions of the last three optimization
problems presented in Table 12. These rv’s are not included for
the sake of space.
From Table 13 it can be seen that the rv associated with a4 is

made up of measurements SN2 and Fwg if only SR restrictions
are considered. When the constraint RD4 ≥ 1 is imposed to the
optimization problem, that rv also contains the measurement
SN1. Consequently there exist three alternative ways of
resolving the key fault when no sensor fails. These are

Table 6. CSTRResolution of All Faults for Different Capital Resources

C* X U ϕs,4 Xs nonresolvable pairs of faults

1200 CB T TR −2 4 0 1,2; 1,3; 2,3; 4,5; 4,6; 4,7; 5,6; 5,7; 6,7
1500 CB T TR −2 4 300 1,2; 1,3; 2,3; 4,5; 4,6; 4,7; 5,6; 5,7; 6,7
1800 CB T TR −2 4 600 1,2; 1,3; 2,3; 4,5; 4,6; 4,7; 5,6; 5,7; 6,7
2000 T FW FR TR CA L FP −3 0 0 -
2200 T FW FR TR CA L FP −3 0 200 -
2500 T TW0 FW FR TR CA L FP −3 2 0 -
2800 CB T FW FR TR CA L FP −3 3 100 -
3000 CB T FW FR TR CA L FP −3 3 300 -
3200 CB T TW0 FW FR TR CA L FP −3 5 0 -

Table 7. CSTRResolution of key Faults for Different
Capital Resources: Loss of One Measurement of (Jx ∩ Js)

C* failed sensor nonobservable and nonresolvable faults

1200 CB 4,5; 4,6; 4,7
T 4,5; 4,6; 4,7

1500 CB 4,5; 4,6; 4,7
T 4,5; 4,6; 4,7

1800 CB 4,5; 4,6; 4,7
T 4,5; 4,6; 4,7

2000 T 4
2200 T 4
2500 T -

TW0 -
2800 CB -

T -
3000 CB -

T -
3200 CB -

T -
TW0 -

Table 8. CSTRResolution of Key Faults for Different
Capital Resources: Loss of Two Measurements of (Jx ∩ Js)

C* failed sensor nonobservable and nonresolvable faults

1200 CB T 4; 4,5; 4,6; 4,7
1500 CB T 4; 4,5; 4,6; 4,7
1800 CB T 4; 4,5; 4,6; 4,7
2000 T 4
2200 T 4
2500 T TW0 4
2800 CB T 4
3000 CB T 4
3200 CB T -

T TW0 -
CB TW0 -

Table 9. FCCU Variables Notation

notation variable

Ψf effective coking factor
Hris reactor riser height
F1 F2 F3 F4 flow rates: wash oil, diesel fuel oil, fresh

feed, slurry
Fc coke production
Fsc Fwg flow rates: spent catalyst, wet gas
Fv11 flow through wet gas compressor

suction valve
FB Frgc effect of feed type on: coke,

regenerated catalyst flow
Patm Prb P4 pressures: atmospheric, at riser bottom,

in the reactor
Crgc carbon regenerated catalyst
V12 wet gas flare valve position
K12 wet gas flare valve flow rating
T2 Tsc temperatures: fresh feed, spent catalyst
SN1: Qin dTr Tr Qslurry Qout Qcrack
Qcatout Qf f ΔHcrack

Sensor Network 1

SN2: Fv12 dP5 P5 Sensor Network 2

Table 10. FCCU Fault Cause−Effect Model

fault vector fault source affected variables

a1 Crgc Fsc SN3
a2 Hris F1 SN3 Fc
a3 ΨF F2 SN3 Fc FB
a4 T2 Qrgc SN2 P4 Prb Fwg SN1 Tsc

a5 Frgc SN2 P4 Prb SN3 Fc Fwg SN1 Tsc

a6 F4 F3 SN2 P4 Prb SN3 Fc FB Fwg SN1 Tsc

a7 FV11 Patm V12 k12 SN2 P4 Prb

Table 11. FCCU Sensor Costs

sensor cost sensor cost sensor cost

SN2 100 SN3 700 Fwg 300
P4 100 Fcoke 300 SN1 500
Prb 100 FB 300 Tsc 500

Table 12. FCCU Results

constraints solution cost

O Prb SN3 800
SR SN2 SN3 Fc FB Fwg 1700
SR, RD4 ≥ 1 SN2 SN3 Fc FB Fwg SN1 2200
SR, RD4 ≥ 2 SN2 SN3 Fc FB Fwg SN1 Tsc 2700
SR, RD5 ≥ 1 SN2 SN3 Fc FB Fwg 1700
SR, RD7 ≥ 1 SN2 P4 SN3 Fc FB Fwg 1800
SR, RD7 ≥ 2 SN2 P4 Prb SN3 Fc FB Fwg 1900
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constituted by the following pairs of measurements: (SN2, Fwg),
(SN2, SN1), and (Fwg, SN1). A similar analysis of the rv’s for the
last three optimization problems presented in Table 12 indicates
that the incorporation of RD constraints for the key fault a7
enhances its R when no sensor fails, but this behavior is not
verified for the fault vector a5.
Next, the reliabilities-based methodology presented by

Bhushan et al.10 is applied to design robust SNs for the
FCCU system. The following values are selected for failure
probabilities: PFPa1 = 10−2, PFPa2 = 10−2, PFPa3 = 10−2,
PFPa4 = 10−1, PFPa5 = 10−2, PFPa6 = 10−2, PFPa7 = 10−2,
SFPSN2 = 10−3, SFPP4 = 10−3, SFPPrb = 10−3, SFPSN3 = 10−3,
SFPFcoke = 10−3, SFPFB = 10−2, SFPFwg = 10−3, SFPSN1 = 10−2,
SFPTsc =10

−2, which are similar to those used by Bhushan and
Rengaswamy.9 The strategy is run considering that the
uncertain data are the SFPs, and the inaccurate sensors are
those which reveal the occurrence of the key faults. For reasons
of space only the results obtained when the inaccurate sensors
are those associated with the key fault vector a4 (Js = [SN2, P4,
Prb, Fwg, SN1, Tsc]) are included in this work.
For different upper bounds on the capital resources (C*),

Table 14 presents the solution vectors and the values of U, ϕs,4

and Xs. Furthermore, the procedure described in the previous
section is applied to study the R of all the faults when no sensor
fails. For each C*, the set of nonresolvable faults is determined
and also displayed in Table 14. It shows that, for C* < 1700,
some faults are nonresolvable. For C* = 1700, the R of all the
faults is achieved at minimum cost, and the solution is equal to

that obtained solving Problem 21 or Problem 23 using the
constraint RD4 ≥ 0. An increment of the capital resources
(C* > 1700) originates the increase of ϕs,4 and/or Xs, but U
remains at (−5) because the fault a1 and the pseudofaults (1,2),
(2,3), and (5,6) restrict the U value.
For the same C* values considered in Table 14, a simulation

study is carried out to analyze the R of the key fault a4 when the
instruments included in (Jx ∩ Js) are out of service one at a
time. Table 15 contains some results of the analysis performed
using the modified technique outlined in Subsection 3.1. From
that table, it can be observed that for C* < 2300 the key fault is
nondistinguishable or nonobservable. For C* = 2300, the R of
the key fault is attained, but the optimal SN cost is greater than
that corresponding to the sensor arrangement obtained solving
Problem 23 using the constraint RD4 ≥ 1 (see the third row of
Table 12 and the sixth row of Table 14).
A similar analysis is performed considering that two of the

sensors included in (Jx ∩ Js) are out of service for the same C*
values reported in Table 14. For reasons of space the
corresponding results table has been omitted from this article.
Simulation results indicate that the R of the key fault is
achieved when C* is set at 2900. The solution is made up of all
the sensors. Therefore its cost is greater than that
corresponding to the SN obtained when Problem 23 is solved
considering the restriction RD4 ≥ 2 (see the fourth row of
Table 12 and the last row of Table 14).
These simulation studies demonstrate that if the modified

reliabilities-based methodology is run to satisfy the R of the key

Figure 3. FCCU flowsheet.

Table 13. FCCU Resolution VectorsSR and RD4 Constraints

fault vector SR SR, RD4 ≥ 1 SR, RD4 ≥ 2

a1 SN3 SN3 SN3
a2 SN3 Fc SN3 Fc SN3 Fc
a3 SN3 Fc FB SN3 Fc FB SN3 Fc FB
a4 SN2 Fwg SN2 Fwg SN1 SN2 Fwg SN1 Tsc

a5 SN2 SN3 Fc Fwg SN2 SN3 Fc Fwg SN1 SN2 SN3 Fc Fwg SN1 Tsc

a6 SN2 SN3 Fc FB Fwg SN2 SN3 Fc FB Fwg SN1 SN2 SN3 Fc FB Fwg SN1 Tsc

a7 SN2 SN2 SN2
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faults when sensors fail, even at the expense of extra
computational work, the solution set may differ from that
obtained using the strategy proposed in this work because the
first procedure uses inaccurate information.
For some capital resources, worst-case simulations are also

carried out by increasing the SFPs one by one. Increases of 1
from the SFPs nominal values on the log10 scale are performed.
Results show that some solutions are different from the ones
presented in Table 14. For instance, increasing the SFP of Fwg
for C* = 1700, the new solution is x = [SN2 P4 Prb Fwg
SN1 Tsc]. By applying the modified procedure described in the
previous section, it is determined that the faults a1, a2, and a3
are nonobservable and the pairs of faults 1,2; 1,3; 2,3; 4,5; 4,6;
and 5,6 are nonresoluble. Therefore the categorization of faults
in resolvable and nonresolvable is not unique, since it depends
on the SFP values.

5. CONCLUSIONS
This work is devoted to presenting a new strategy to design an
optimal SN, which is able to resolve a set of key faults under the
presence of failed sensors or outliers.
The required data are the cause−effect relations among faults

and variables, the set of key failures, and sensor costs. All these
low uncertainty data are readily available by plant designers.
The categorization of faults allows taking into account both
faults occurrence probability and consequences at the design
stage in a simple way.

The procedure deals with the key failures isolation when
sensor malfunctions occur from a structural point of view. With
this purpose key faults RD constraints are incorporated into the
minimum-cost design problem. It involves a linear objective
function and a set of linear inequality restrictions; consequently this
problem is solved using MILP codes. Given that constraints are
only expressed in terms of the original I binary variables and existing
procedures for eliminating redundant equations are applied, the
solution of the resulting optimization problem is rather simple.
It should be noticed that the incorporation of RD constraints

for the key faults frequently enhances their R when no sensor
fails. In general the R of these failures can be done using more
than one rv; that is, alternative ways to verify their failure
condition exist under the absence of sensor malfunctions.
Furthermore a modified reliabilities-based methodology is

outlined in this work which can be applied to analyze the R of
all the faults when no sensor fails and the R of the key faults
under the presence of missing measurements or outliers, but at
the expense of an extra computational work. It should be
noticed that the categorization of faults in resolvable and
nonresolvable obtained using the modified technique is not
unique, because it depends on the selected values of the SFPs.
For the same reason the solution set may differ from the one
achieved using the strategy proposed in this work. These
conclusions arise from the results attained by the application of
the structural method to case studies extracted from the
literature and those provided by the simulations conducted to
put it into the context of other existing techniques.
In conclusion, the structural procedure presented in this article

can be straightforwardly used by engineers to tackle the proposed
SNDP due to the low uncertainty of the required information and
the simplicity of the optimal design formulations.
In future works studies about the design of SNs devoted to

detect and identify process faults using particular monitoring
strategies will be carried out.
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■ NOTATION
A fault-sensor connectivity matrix
aj jth fault vector
C sensor cost vector
CT Budget of the instrumentation project
g number of missing measurements
I number of measurable variables
J number of failures
NNV number of non-null vectors
PFP process failure probability
Rj number of measurements contained in rvj
RDj jth fault resolution degree
rvj jth fault resolution vector
rvj

r jth fault residual resolution vector
S number of key faults
SFP sensor fault probability
tj number of sensors configurations used to resolve the jth

fault when sensors fail
Uj jth fault detection unreliability
x solution vector
Xs slack variable for the cost restriction
ϕs,j slack variable associated with the unreliability detection

constraint of the uncertain jth fault

■ ACRONYMS
CSTR continuous stirred tank reactor
FCCU fluid catalytic cracker unit
MILP mixed-integer linear programming
O observability
R resolution
RD resolution degree
rv resolution vector
S/MR single/multiple resolution
SNDP sensor network design problem
U detection unreliability
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