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Real-Time Digital PWM With Zero Baseband
Distortion and Low Switching Frequency

Fernando Chierchie, Graduate Student Member, IEEE, and Eduardo E. Paolini

Abstract—A discrete-time pulse width modulator (PWM) with
zero baseband distortion for arbitrary band-limited modulating
signals is developed in this paper. It is based on adjusting the
duty-cycles of the PWM such that the samples of an ideal low-pass
filtered version of the PWM signal coincide with the discrete-time
samples of the modulating signal. Elaborating on previous ap-
proaches in the literature, it is shown that this problem can be
stated as a multidimensional inverse function approach, and
therefore it can be solved using iterative methods. Starting with
the duty-cycle values of a uniform PWM, the successive iterations
provide slight duty-cycle corrections that, in the limit, result in zero
baseband distortion even for low carrier-to-modulating frequency
ratios. Aiming at a practical, real-time implementation two new
results are provided. First, explicit bounds on the improvement
achievable after each duty-cycle correction are derived. Second, a
block processing architecture suitable for real-time implementa-
tion is proposed, and the increase of distortion caused by its use
is quantified. Several examples with typical band-limited signals
demonstrate the performance of the algorithm.

Index Terms—Digital modulation, harmonic distortion, power
amplifier, pulse width modulation, switching amplifier.

I. INTRODUCTION

E FFICIENT power amplification has attracted the attention
of the researches since the pioneering efforts of Black

[1], with his formalization of several pulse-modulation tech-
niques. One of the preferred techniques is pulse-width modula-
tion (PWM), with its almost endless variations and alternatives.
The traditional, “analog” PWM, known as natural PWM

(NPWM), has reduced harmonic content within the baseband.
This distortion is composed of the sidebands of the carrier
frequency, and for practical applications it can be reduced to
negligible levels by increasing the carrier frequency. Its dis-
crete-time implementation, known as uniform PWM (UPWM),
exhibits far greater harmonic distortion, composed not only of
the sidebands of the carrier frequency, but also of the deriva-
tives of the modulating signal [2]–[6], and therefore it cannot
be reduced by the same amount by increasing the carrier fre-
quency. In any case, this in-band distortion cannot be removed
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by the traditional low-pass filter that acts as a demodulator in
almost every PWM scheme.
Recent research efforts are devoted to develop variants to the

PWM modulation scheme to reduce or to eliminate the distor-
tion within certain frequency band, usually the baseband. Some
of these approaches are designed to attenuate certain specific
harmonics [7], or to emulate the behavior of NPWM (pseudo
natural PWM) [8]–[10], reducing or eliminating the harmonics
of the modulating signal. These schemes are usually based on
the assumption that the switching frequency is much greater
than the maximum frequency of the modulating signal.
A different alternative is to devise a modulation algorithm

that produces no distortion components within the baseband.
This approach is of interest, for example, in the neuroscience
field [11], [12], where algorithms for time encoding/decoding
of band-limited signals with perfect recovery have been devel-
oped; however, the demodulation process is not practical for
power applications. One of the first attempts to address this
problem was click modulation [13], [14]. Based on the prop-
erties of analytic signals, this complex modulation scheme is
capable of representing band-limited signals using PWM-like
waveforms with zero distortion in the baseband. It has not re-
ceivedmuch attention for several years, but recently this method
has captured the consideration of the researchers [14], [15]. Al-
though it is not well-suited for online implementation, new de-
velopments could change this scenario [16]. In this direction,
recent results have shown that band-limited, bounded signals
can be represented using two or three level PWM signals with
no distortion in the baseband using low frequency carriers. In
[17], the problem of determining the duration and position of
the pulses to minimize the average switching frequency with
in-band error-free encoding has been addressed. The solution
requires to equate certain number of coefficients of the Fourier
series of the modulating and of the PWM signal, and solving
a nonlinear system of simultaneous equations. The result is a
variable-frequency PWM signal, where the average switching
frequency can be slightly higher than the maximum harmonic
component of the modulating signal. Although some consider-
ations are provided for the modulation of non-periodic signals,
the method is not well suited for on-line implementation, not
only because the result is signal dependent, but also because the
knowledge of the entire modulating signal is required. Another
approach is studied in [18], where the modulation problem is
stated as determining the duty-cycles of a fixed frequency PWM
signal such that the samples of an ideal low-pass filtered ver-
sion of the PWM signal coincide with the samples of the modu-
lating signal, converting variable amplitude discrete-time sam-
ples to fixed amplitude, variable width pulses. The solution also
requires to solve a nonlinear system of simultaneous equations,
and an ad-hoc iterative algorithm is provided that guarantees
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exponential convergence. In [19] the relationship between the
modulating signal samples and the pulse widths is modeled with
a Volterra filter, and its inverse is used as a prefilter to reduce the
nonlinear distortion.
In this paper we develop a PWM coding algorithm for dis-

crete-time signals that exhibits no distortion in the baseband,
and propose an architecture that is suitable for real-time oper-
ation. These characteristics are preserved even for low PWM
carrier frequencies. The method is based on solving the same
problem as that in [18], i.e., determining the duty-cycles of the
PWM signal such that the samples of an ideal low-pass filtered
version of the PWM signal coincide with the discrete-time sam-
ples of the modulating signal. Our developments extend their re-
sults by making the following contributions: 1) demonstration
that this approach can be recast into the solution of a multidi-
mensional inverse function problem that can be solved using
standard iterative methods, 2) quantification of the distortion
level that is achievable after adjusting the duty-cycles in each it-
eration, and 3) development of a structure suitable for real-time
implementation based on overlapped block processing, and the
derivation of performance measures that quantify the increase
of the distortion caused by the finite length of the blocks.
The performance of the algorithm is demonstrated using sev-

eral test signals: low and high (near Nyquist) frequency sinu-
soids, sum of sinusoids for standard intermodulation distortion
(IMD) evaluation, filtered random noise, and a fragment of a
musical score. It is shown that very low distortion levels, with
an in-band signal to noise ratio (SNR) exceeding 90 dB can be
achieved, even when using a low frequency carrier. This results
in reduced switching losses, which are of paramount importance
for portable and/or high power applications. If the PWM carrier
frequency is increased, SNR can be further enhanced, allowing
the designer to trade-off between high efficiency amplification
or simpler reconstruction filter.
The paper is organized as follows. Section II summarizes

the spectral characteristics of PWM signals. The problem of
computing the duty-cycles that yield in-band error-free PWM
using an inverse function approach is studied in Section III. In
Section IV a block processing architecture suitable for real-time
implementation is developed together with explicit expressions
that quantify its impact on the baseband distortion level. The
computational complexity of the algorithm is also discussed,
and several alternatives to reduce the computational load are
explored, resulting in an algorithm that is suitable to run in stan-
dard hardware. Finally, simulation results for several band-lim-
ited signals are given in Section V, and some concluding re-
marks are given in Section VI.

II. BRIEF REVIEW OF THE SPECTRUM OF PWM SIGNALS

A three level PWM signal can be represented mathematically
as [2], [18]

(1)
where is the unit-step function, is the PWM period, and

is the normalized duty-cycle of the -th pulse, with
1.

1A two-level PWM signal can also be represented by limiting the nor-
malized duty-cycle to , and defining .

Given a band-limited modulating signal with a max-
imum frequency of , a discrete-time PWMmodulator can be
thought as a device that maps the samples into
a set of normalized duty-cycles , . Without loss of gen-
erality, and to simplify the presentation, it will be assumed that
the sampling frequency is coinciding with the PWM
frequency.
One of the most common discrete-time PWM modulators

is known as Symmetrical Double Edge Uniform PWM (SDE-
UPWM). The PWM signal is obtained by comparing the sam-
ples of themodulating signal with the output of an ascending/
descending counter. The frequency spectrum of SDEUPWM for
an arbitrary band-limited modulating signal is given by [2],

(2)

where is the Fourier transform of and

with being the Fourier transform of . The
transform represents the baseband distortion component
of the modulation, and represents the lateral side-bands
of the carrier frequency and its multiples. These harmonics are
weighed by a factor , and, therefore, their baseband effect
is negligible if , which is typical in practical applica-
tions. Under this assumption, the PWM signal in the baseband
can be approximated by

(3)

mainly including contributions from and . For low
ratios, the distortion is increased not only because of

the derivatives in (3), but also because of the side-bands due
to in (2).

III. PWM WITH ZERO BASEBAND DISTORTION

In [18] it is shown that every band limited signal of band-
width , bounded to can be represented by a
PWM signal with fixed carrier frequency , and that

can be recovered with zero baseband distortion through
ideal low pass filtering. The constraint is a theoretical limit
that must be satisfied to ensure that any band-limited signal can
be represented as a PWM waveform with zero baseband dis-
tortion. This bound depends directly on the ratio between the
PWM frequency and the maximum frequency of the modulating
signal, and its lowest bound is attained when the PWM fre-
quency equals the Nyquist frequency . Although this
restriction may seem severe, it can be easily circumvented in
practical applications. Violation of this bound results in a re-
duced (non-zero) distortion content within the baseband, that
still is far lower than that achieved with typical PWM imple-
mentations as it is shown in Section V-C.
In the following, we show that the problem of determining the

normalized duty-cycles of the PWM signal such that the sample
values of the ideally low pass filtered PWM signal coincides
with the samples of the modulating signal can be recast into
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an inverse function problem. The advantage of adopting this
framework is that several results regarding iterative solutions,
rates of convergence and error bounds can be used to quantify
the distortion level achieved in this application.
The PWM signal in (1) is composed of a pulse train

of widths , , that are a function of the
samples of the modulating signal , typically a scaled ver-
sion. Filtering the PWM signal with a ideal low-pass filter
results in the continuous-time signal ,
where “ ” stands for the continuous convolution operation and

is the impulse response of the ideal
low-pass filter with the cut-off frequency and unity gain.
Uniform sampling of at a rate results in the de-
modulated signal sample , whose value at the -th sample is
given by [18], [19]

(4)

with

(5)

where is the sine-integral function.
Equation (4) takes advantage of the even symmetry of
with respect to , i.e., . The first term de-
scribes the contribution of the -th duty-cycle to the value of
the -th demodulated signal sample, while the second represents
the contribution of the remaining pulses.
Let , , be the -dimensional vectors composed of

samples of the modulating signal , the filtered PWM signal
and the duty-cycles , , respectively.

Then, (4) can be rearranged as

(6)

and therefore

where the mapping relates the vector of duty-
cycles to the samples of the filtered PWM signal
.
Under this setting, the determination of the vector of duty-

cycles to achieve zero distortion within the baseband can be
stated as follows:
Problem Statement: Given the vector of modulating signal

samples, find the vector of duty-cycles such that
. If exists then the PWM signal has zero distortion

in the band .
The solution of the modulation problem is given by

, but explicit inversion is generally not possible for large
values of . A numerical, iterative procedure to compute is
proposed next.

A. Numerical Solution

The zeros of can be computed
iteratively using Newton-Raphson techniques. The convergence
of the recursion is ensured by Theorem 1 below. To account for
worst case error analysis the infinity norm for vectors,

, and the correspondent induced matrix norm
are used in the derivations.

Theorem 1: Given , , and pro-
vided that (the Jacobian of at ) is non-singular, then,

(7)

is well defined for , . Also such
that . Finally for all

(8)

where

with for (see (14), Appendix A),
and

Proof: See Appendix A-A.
Theorem 1 guarantees the convergence of the recursion.

Starting it with an initial guess (i.e., the duty-cycle
values of the classical SDEUPWM modulation described in
Section II), ensures the convergence in fewer steps because
the starting point is closer to . The theorem also provides a
bound for the difference between the duty-cycles at iteration
and the duty-cycles that achieve zero distortion.
The next theorem establishes a bound on the maximum base-

band error, given by the maximum difference between (the
samples of the modulating signal) and (the samples of the
filtered PWM at iteration ). It also demonstrates that a
slight correction in the duty-cycles produces a significant reduc-
tion in the baseband distortion.
Theorem 2: If , then

(9)

where is given by

for .
Proof: See Appendix A-B.

B. Applications

Theorems 1 and 2 can be helpful at the design stage. For ex-
ample, if the designer fixes the maximum number of iterations
due to limited processing capabilities, Theorem 1 establishes
the maximum difference between the duty cycle at the -th iter-
ation and the limit . This value is useful to set the resolution
of the PWM: the number of bits must be chosen so that the
distance , i.e., it is within the resolution
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of the PWM. Theorem 2 provides a bound on the maximum
sample error that is attainable with this design.
In other scenario, the designer chooses to achieve a given max-
imum sample error . Theorem 2 establishes the
number of iterations required, and Theorem 1 can be used to
estimate the resolution of the PWM.
Examples: Assuming a maximum duty-cycle re-

sults in , and . As an example
of the first scenario, if the designer chooses to perform only one
iteration , (9) in Theorem 2 shows that the maximum
sample error satisfies . For SDEUPWM
modulation this error is (see Lemma 2
in Appendix A). Therefore, a single iteration of the algorithm is
capable of reducing the worst case error at least 50 times; RMS
distortion levels are usually even smaller. From Theorem 1 the
maximum difference between the corrected duty-cycles and the
limit is given by (8): that
can be resolved using a PWM counter of at least .
On the other hand, if the designer specifies a maximum error

sample value , (9) in Theorem 2
shows that this value can be achieved with iterations.
From Theorem 1 using (8) it is found that

that results in a PWM counter with at least
. This is a large value for practical applications; however,

there are several alternatives to achieve high PWM resolution
without requiring high frequency clocks, see for example [20],
Table I for a DSP platform and [21], [22] for FPGAs.

IV. ARCHITECTURE FOR REAL-TIME IMPLEMENTATION

In the previous section the computation of the duty-cycles
to achieve perfect reconstruction of finite length signals was ad-
dressed. However, its application requires the knowledge of the
entire vector of samples of the modulating signal, and there-
fore it is not suitable for on-line applications, especially when
is large. In this section, the problem of computing the duty-cy-
cles of arbitrary long signals (large ) using shorter segments
of length is solved using block processing techniques.
The result of the first iteration in (7), namely is used

to estimate the corrected duty-cycles for each block. These
modifications significantly reduce the computational require-
ments of the algorithm, making it feasible for a real-time im-
plementation. Error bounds due to block-length effects are also
derived.

A. Block Processing Architecture

The block processing architecture is based on overlapped
serial to parallel (SP) and parallel to serial (PS) converters
[Fig. 1(a)]. The SP and PS blocks can be easily constructed
using tapped delays, downsampling-by- blocks, and
upsampling-by- blocks, respectively, with .
These blocks are typically used in multirate systems (see for
example [23]) but other algorithms can also be used to stitch
the successive overlapped blocks of an arbitrary long signal. A
block vector is defined as

i.e., it is composed of consecutive samples taken every
samples. If there is no overlap, but if the last

samples of overlap with the first
samples of .

Fig. 1. Architecture for the block processing PWM algorithm.

The last configuration is chosen for the block implementa-
tion of the baseband distortion-free PWM (BBDFPWM) algo-
rithm shown in Fig. 1(a), using consecutive samples of the
modulating signal to compute duty-cycles, and discarding

samples at the edges of each block to recon-
struct the one-dimensional signal with the PS block. A block of
length of the modulating signal is shown in Fig. 1(b), where
the discarded samples are indicated with gray boxes. Without
loss of generality, we assume that is even.

B. Block Processing Errors

When duty-cycles are computed using the block processing
architecture described above, certain error in the calculation of
has to be expected because only samples instead of are

used in (6). In the following its dependence with the values of
and is analyzed.
The samples of the filtered PWM signal computed with the

block processing architecture will be noted as . In each block,
duty-cycles , with , and , have

to be computed using samples of the modulating signal, since
samples at each edge of the block are discarded. The block
processing error is defined as and achieves
its maximum value at and/or because all sam-
ples at the left or right side, respectively, are discarded as shown
in Fig. 1(b). A bound over is provided by the following The-
orem.
Theorem 3: The block processing error is bounded by

where

(10)

where is given by (5), and is given by
(14) (see Appendix A).

Proof: See Appendix A-C.
A representation of as a function of , and param-

etrized for three different values of is shown in Fig. 2. The
surface plot shows that the bock processing error can be reduced
by either augmenting the block length , or by dropping out
a large number of samples ( small). It can also be noted
that the rate of error reduction decreases for , and for

. A good compromise between algorithm com-
plexity and block processing error may be obtained when se-
lecting parameters , to lie within this range. However, the
surface plot reveals that the main factor for reducing the block
processing error is a small bound on the maximum value
of the duty-cycle. In practical applications, this may be a con-
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Fig. 2. Maximum block processing error as a function of and , for
, 0.5, and 0.8.

flicting requirement due to reduced switch and bus voltage uti-
lization in power applications and the finite resolution of the
PWM pulse width in digital implementations.

C. Algorithm Complexity and Implementation Alternatives

The computation of the corrected duty-cycle is a two-step
procedure: the computation of the Newton’s correction term and
the calculation of the demodulated signal samples. A straight-
forward implementation of the former, given by (7), is compu-
tationally intensive but several alternatives can be considered
to lower the computational cost. A numerical analysis of the
Jacobian matrix, whose elements are computed by (12) (See
Appendix A), reveal that it is diagonal dominant, justifying the
use of incomplete Jacobian Newton (IJN) methods [24]. An in-
vertible matrix is defined as

if ,
otherwise,

where is an index set. The convergence properties of the
IJNmethod depends on the selection of [24]. The procedure
required to implement (7) using as an approximation
to the Jacobian is listed as a pseudo-code in Algorithm 1. Some
alternatives on the election of the index set are discussed
next.

Algorithm 1 Duty-cycle computation: pseudo-code

Require: : vector of modulating signal samples

for to do
for to do

using (11).
end for
Update using the chosen Jacobian method

end for

1) Full Jacobian: Computation of the inverse of the Jacobian
using Gauss-Jordan elimination has a complexity of . Al-
ternatively, can be computed as a finite number of terms

TABLE I
SNR AND COMPLEXITY OF IMPLEMENTATION ALTERNATIVES

of its power expansion series,
(see Appendix A), but complexity remains

because of the square on .
2) Tridiagonal Jacobian: A strong reduction in computa-

tional complexity to , while preserving good convergence
characteristics is achieved by choosing as a tridiag-
onal matrix [25]. The three main diagonals of the Jacobian
are preserved while the other elements are set to zero.
3) Diagonal Jacobian: In this case is com-

posed of the main diagonal of the Jacobian . Its inverse
is , resulting in com-
plexity.
4) Jacobian Free: As an alternative to the previous approx-

imations, could be set to a constant diagonal matrix
[26] setting also the complexity order to but without the
need for computing any element of the Jacobian matrix.
In addition to the computation of the Jacobian using any of the

methods described above, Algorithm 1 also requires the evalu-
ation of using (6) as a starting point of the
iterative procedure. This is a nonlinear function of the duty-cy-
cles . To further reduce the computational cost, in (6) is
approximated using (17) (see Appendix B), and therefore each
demodulated signal sample can be computed as

(11)

Number of Multiplications and Iterations: The largest
number of operations per sample required to compute
using (11) may be estimated as follows. Setting (as-
suming that is odd) results in the computation of just
a single duty-cycle in each iteration, namely the sample

. Since is non zero only for
and , and are symmetric around

(see Appendix B), the computation of each demodulated signal
sample demands only , resulting in complexity.
The approximated Jacobian methods described above may

require more than one iteration to increase the SNR by an
amount equivalent to that achieved by a single iteration of
the full Newton algorithm. However, even with two or three
iterations the number of operations required by these methods
is still much lower than those required by the full Jacobian.
Table I shows the increase of the SNR as a function of the
number of iterations obtained for a random band limited
signal with different Jacobian computation alternatives. This
Table shows that the diagonal Jacobian algorithm with three
iterations results in a good a compromise between
performance and computational load, and therefore it is chosen
for the experiences studied in Section V.
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The total number of multiplications per duty-cycle required
by this method, including the Jacobian approximation and the
computation of the sample of the demodulated signal, is given
by

where is the number of iterations, is the
number of multiplications required to compute with (11)
in each iteration and the last multiplications accounts for
the product between the Newton correction term and the error:

.

V. EXAMPLES

In this section the performance of the algorithm is evaluated
using different band-limited signals. In the first set of signals,
the maximum amplitude of the modulating signal is limited to
0.8 of the amplitude constraint [18], resulting in .
In the last example, the algorithm is tested with a signal which
does not satisfies this constraint.
To quantify the performance of the algorithm two indices are

computed: , the RMS value of the error , and the
signal to noise ratio,

where is the RMS value of .
Tests were performed using a normalized sampling and PWM

frequencies of , and the following modulating signals: 1)
low and 2) high frequency sinusoids, 3) filtered random noise,
and 4) intermodulation distortion (IMD) test signals. A fifth test
signal, composed of a short segment of a musical score, was
also used to test the performance of the algorithm when the am-
plitude limit is violated. In the first and second cases, the fre-
quency is chosen as 20% and 80% of the of the Nyquist fre-
quency . The third signal is random noise with normal dis-
tribution and band-pass filtered between and 0.272 of
the sampling frequency (corresponding to 250 Hz and 12 kHz
for ). The fourth signal follows DIN standard
45403 for IMDmeasurements, widely used in the broadcast and
consumer audio fields. It is composed of low and high frequency
sinusoids (usually 250 Hz and 8 kHz), where the latter has an
amplitude 12.04 dB lower than the former. For a sampling fre-
quency of 44.1 kHz, the normalized frequencies are
and 0.181, respectively.
In the following, the performance of the BBDFPWM algo-

rithm is compared to the SDEUPWM modulation described in
Section II.

A. Block Processing Error

The theoretical bound of the block processing error given by
(10) is depicted as a function of half the number of discarded
samples in Fig. 3 for (continuous
curve) and (dashed curve). The actual error values
for the four test signals described above (with ) are
also shown; the vertical dotted line indicates the operating point
chosen for the examples . Although the the-
oretical bound (10) is conservative, the closest signal to this
bound is the high frequency sinusoid because the contribution

Fig. 3. Block processing error bound as a function of for
: ; . Also shown are actual error values

for typical signals: low frequency sinusoid; high frequency
sinusoid; filtered random noise; two-tone IMD signal. The
vertical dotted line indicates the operating point chosen in Section V.

of the discarded samples in (6) is higher when the ratio
approaches .

B. Spectral Analysis

The effects of the block length , the approximate Jacobian
and the finite number of iterations on the spectral character-
istic of the BBDFPWM algorithm are addressed experimentally
in this section. For this study, the block length is fixed at ,
with samples discarded at both ends of
the block. Therefore, samples are retained for non-over-
lapped reconstruction. This operating point is indicated with a
dot in Fig. 2 and a thin dotted vertical line in Fig. 3, and it is com-
prised within the operating region suggested in Section IV-B.
Figs. 4–7 show the spectra for the four signals under anal-

ysis2. The dashed line at indicates the upper
baseband limit. For comparison purposes, the spectra for both
BBDFPWM and SDEUPWM are depicted.
Fig. 4 depicts the spectrum of the PWM signal when the

modulating signal is a low frequency sinusoid of frequency
. The advantages of the proposed modulation

scheme are revealed by the absence of any relevant harmonic
component other than the fundamental within the baseband.
The BBDFPWM achieves a SNR of 96.44 dB, while SDE-
UPWM achieves only 40 dB due to the presence of the third
and fifth harmonics as described by (2). The RMS error is
reduced from to .
Fig. 5 depicts the spectrum of the high frequency sinusoid of

frequency . The increase in the SNR is larger than
in the previous example raising from 25.94 dB for SDEUPWM
to 90 dB for BBDFPWM, mainly due to the elimination of the
subharmonic component at . The RMS error reduces from

to .
For the filtered random noise (signal 3) the SDEUPWMmod-

ulation exhibits distortion that extends beyond the Nyquist fre-
quency as shown in Fig. 6, with a noise floor in ex-
cess of . This baseband distortion is caused by the term

2The spectra are obtained via FFT computation. After filtering the continuous
PWM signal with an 8-th order low-pass filter with cut-off frequency

to avoid aliasing, the signal is sampled at and then time-windowed to
prevent spectral leakage and picket-fence effects [27]. In an actual measurement
set-up all these operations are performed by the input stage of a spectrum ana-
lyzer.
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Fig. 4. Frequency spectrum of the modulated signal. Modulating signal 1: si-
nusoidal of frequency .

Fig. 5. Frequency spectrum of the modulated signal. Modulating signal 2: si-
nusoidal near Nyquist frequency, .

Fig. 6. Frequency spectrum of the modulated signal. Modulating signal 3:
band-limited random noise.

in (2), and it virtually disappears for the BBDFPWM
modulator. The SNR increases from 45.43 dB for SDEUPWM
to 99.24 dB for BBDFPWM and the RMS error is reduced from

to .
The spectrum of the standard IMD test (signal 4) depicted in

Fig. 7 also shows the high performance of BBDFPWM mod-
ulation. The SDEUPWM spectrum ex-
hibits undesired side-bands around with an am-
plitude of , but two other unwanted frequency compo-
nents of similar amplitude appear near and a last com-
ponent of nearly at . These spurious tones are

completely removed by BBDFPWM modulation (SNR=97.38
dB), revealing its higher linearity. The RMS error is reduced
from to .
Although BBDFPWM should not exhibit harmonic distortion

in the baseband, it is expected that some distortion components
may appear because of the approximate solution of Algorithm
1 and the error caused by block processing. However, in the
spectra of the two first examples (Figs. 4 and 5) no distortion
components can be observed. Only in the last two examples,
the error of the BBDFPWM algorithm are revealed by a small
frequency component (below ) near the boundary of the
baseband .
These results are summarized in Table II, that lists the

SNR for both BBDFPWM and SDEUPWM. The proposed
modulation method is able to increase the SNR by at least
50 dB. For each of the signals of the previous examples
the mean and maximum pulse width variation among SDE-
UPWM and BBDFPWM ( ,

, respectively) were also
computed. It is noticeable that such performance enhancement
can be achieved by minimum adjustments of the PWM pulse
width values. These results, however, are in accordance with
the postulates of Theorems 1 and 2.

C. A Practical Case Not Satisfying Constraint

The proposed BBDFPWM algorithm was also tested using
a real audio signal (the song “Like a Rolling Stone” from Bob
Dylan), also analyzed in [19]. The signal is sampled at 44.1 kHz
with a resolution of 16 bits and the PWM frequency is also set
to .
The maximum value of the modulating signal

was varied between 0.5 and 1. The am-
plitude constraint is violated when . The
maximum amplitude limit is set to to avoid unde-
sired overmodulation in SDEUPWM. The parameters of the
BBDFPWM are: block length , diagonal Jacobian al-
gorithm with three iterations , and a single duty-cycle
recovered from each block . The histogram of the
signal, depicted in Fig. 8(a), shows that the distribution of the
amplitudes is approximately Gaussian (solid curve, with zero
mean and variance ). The signal at full modulation
index is shown in Fig. 8(b), where the bound
is indicated with a dashed line. Fig. 8(c) shows that the SNR
for BBDFPWM and SDEUPWM decreases with increasing
values of . However, the SNR of the BBDFPWM clearly
outperforms the SDEUPWM by nearly 40 dB, even when the
amplitude constraint is not honored.
The BBDFPWM algorithm also compares favorably with

similar approaches in the literature. For example, in [19] a
discrete-time Volterra prefilter was employed to reduce distor-
tion in PWM applications. Using this same test signal, with

, both approaches are able to achieve a SNR above
90 dB. However, this performance is reached with only 276
multiplications per duty-cycle when using the BBDFPWM
modulator, and rises to 1342 multiplications per duty-cycle
(485% higher) for the Volterra prefilter.

VI. CONCLUSION

A PWM algorithm capable of achieving high signal to
noise ratios (in excess of 90 dB) for bounded, band-limited
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Fig. 7. Frequency spectrum of the modulated signal. Modulating signal 4: IMD test.

Fig. 8. Audio signal experiment: (a) histogram; (b) time domain; (c) SNR as a function of for BBDFPWM and SDEUPWM .

TABLE II
BASEBAND SNR AND DUTY-CYCLE VARIATION

signals was developed in this paper. The method is suitable
for real-time operation by using block processing techniques.
Newton method is employed to approximately invert the
non-linear mapping produced by the PWM modulation, and
explicit error bounds for the different approximations are given.
This modulator greatly increases the SNR for typical signals
with respect to standard PWM modulators. The low switching
frequency at which the algorithm can operate allows to reduce
switching losses, and may enable the use of switching ampli-
fiers for applications where a high ratio between the frequency
of the carrier and modulating signal is prohibitive.

APPENDIX A
THEOREMS’ PROOFS

To simplify the notation, we define the function
. The Jacobian of will be noted as and ,

where each element of is given by (6). Using (6), the

element of is given by

(12)

The derivative of w.r.t. for all is

(13)

The term in (4) can be interpreted
as the contribution of the other duty-cycles to the current de-
modulated signal sample. It is bounded by , a function of
the maximum duty-cycle :

(14)

Its maximum value is for [18]. With
these definitions, the recursion (7) can be written as

Some results for and its Jacobian follows.



2760 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 60, NO. 10, OCTOBER 2013

Lemma 1: is Lipschitz and is bounded.
Proof: The maximum value of the second derivative of
can be found taking the derivative of (13) and evaluating

it at , yielding

where
ranges between for . It can also be
shown that

(15)

which is less than one for . Using Newman series
and (15), it can be shown that is bounded by

Lemma 2: The vector is bounded.
Proof: From the definition

where we used that coincides with the samples that are
equal to the desired demodulated signal. On the other hand

and hence .
Lemma 3: If is well defined for all in a convex

region and

then

Proof: See [25], pages 269–270.

Theorem 4: Given an open set and a convex set
such that . Given the differentiable function

and continuous for , let
, and .

If is Lipschitz: and

and ,
then the recursion

is well defined for , and verifies
. Also such that .

Finally for all

Proof: See [25], pages 270–272.
A) Proof of Theorem 1:
Proof: The demonstration is straightforward. From

Lemma 1 and Lemma 2,

Therefore, the hypothesis of Theorem 4 are verified and hence
Theorem 1 is proved.

B) Proof of Theorem 2:
Proof: Noticing that ,
and , a bound on

the difference between the samples of the filtered PWM
that results of the use of the -th iteration pulse width

and modulating signal samples can be com-
puted as

From Lemma 3,

Finally, using Theorem 1,
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C) Proof of Theorem 3:
Proof: The worst case error occurs at instant

. The -th sample of the filtered PWM (demodulated
signal) is

and the value of this sample using block processing is

where denotes the demodulated signal computed using only
one block. The error at instant is

(16)

The maximum error is achieved when the lateral areas of the
function add with the same sign to its maximum possible

value. Under this assumption (16) can be written using and
subtracting the contribution of area of the samples processed
within the block, obtaining (10) in Theorem 3. To facilitate the
computations, may be approximated as

replacing in (16) with (17) (see Appendix B) for
. The coefficients that depend on and

are given by the equation at the top of the page, where
is the poly gamma

function of order .

APPENDIX B
APPROXIMATION OF

The function given by (5) depends on the integer vari-
able and on the real variable . To avoid compu-
tation of the function and the integral involved it can be
approximated with a Taylor series as

if ,
if

(17)
where

Utilizing the mean value theorem the Lagrange reminder can
be simplified to , where is the 8th
derivative of with respect to , and . Its
maximum is obtained for and resulting in

Evaluating using (17) is fairly accurate and its compu-
tation is much simpler than using the function.
This approximation can be used to compute the demodulated

signal samples . To make the computation of causal, co-
efficients , and are truncated to samples, re-
placing (17) in (4), results in

where for : , , , and
for : , , and .
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