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a b s t r a c t

The site percolation problem on square lattices whose sites are grouped in two types of
energetically different patches is studied. Several lattices formed by collections of either
randomly or orderly localized and no overlapped patches of different sizes are generated.
The system is characterized by two parameters, namely, the size of each patch, l, and the
energy difference between the two kind of sites, ∆E. Particles are adsorbed at equilibrium
on the lattice. The critical coverage is determined by means of Monte Carlo simulations
and finite-size scaling analysis. The percolative behavior of the system as a function of
the parameters characterizing the heterogeneity of the energetic surface topography is
presented and discussed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Even though the problem of percolation has been known for many years and its various aspects have been dealt with by
relevant contributions, there are still interesting open questions to be discussed [1–7]. Percolation deals with the effect of
random dilution of elementary geometrical object located in lattices or in the continuum. Upon dilution of the elements, a
sharp transition is found to occur in the connectivity of the system. The percolation threshold is defined as the minimum
concentration or density atwhich an infinite cluster of occupied elements spans the system. Studies of percolation processes
are of interest not only for their potential utility in understanding a range of physical phenomena where the connectivity is
a dominant feature, but also because the geometric critical phenomena exemplified by percolation possess many striking
parallels with the thermally driven critical phenomena, as it is provided by the Fortuin–Kasteleyn mapping [8].

Most of the studies in the field are devoted to the percolation of particles that are irreversibly deposited. In part this is due
to the fact that the deposition (or irreversible adsorption) of particles on solid surfaces is a subject of considerable practical
importance. Inmany experimental systems, the relaxation timescales aremuch longer than the times of the formation of the
deposit. In such processes, the temperature of the system does not play a relevant role and it is not considered. However,
in numerous systems of both theoretical and practical importance, where the adsorbed particles are in thermodynamic
equilibrium, the spatial distribution of the particles might be characterized by using the percolation model [9,10]. In these
cases, the temperature governs the phase in the system and can be an important controlling factor in the percolation process.
Bymeans of a percolation study, in Refs. [11,12] it was shown that the spatial configuration of the adlayer (particles adsorbed
on a solid surface) at equilibrium recognizes peculiarities related to the phase transitions occurring in the adsorbate. Such
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a study implied the determination of the critical parameters as a function of the concentration (surface coverage) and
temperature. The main aim of the present paper is to go one step further and to include in the analysis the influence of
the energetic surface heterogeneities on the percolation of particles adsorbed at equilibrium onto such surfaces.

In recent years, the progress in the experimental techniques for surface analysis at atomic scales have improved our
knowledge about the energetic surface topography. These facts have encouraged the development ofmore refined atomistic
models for heterogeneous surfaces which in principle are capable to include the energetic surface topography in the
statistical description [13–19]. One of the aspects requiring a better understanding is the way in which the energetic
topography affects different adsorption processes. In fact, even though it has been shown that many molecular surface
processes are indeed dependent on the way adsorptive energy is spatially distributed on the surface (topography) [20–22],
a systematic study showing how the main characteristics determining the topography act on the percolation of adsorbed
particles at equilibrium is far to be exhausted. The present work intends to be a new step in this direction. Unlike adsorption,
where lateral interactions – necessary in order to get adsorption isotherms sensitive to the topography – compete with
topography in such a way to obscure its effects [23,24], percolation of monomers at equilibrium is found to have such a
sensitivity even for non-interacting particles. This is a great advantage and for this reason we restrict our study to the case
of null adsorbate–adsorbate interactions, in order to put forward with greater clarity the pure topographic effects.

The aim of this paper is to investigate the site percolation problem in a particular lattice with restricted geometry, i.e. the
patchwise lattice. These lattices, largely used to model adsorptive heterogeneous surfaces, are composed of two different
types of sites which in turn are grouped into homogeneous patches or finite domains. Our main motivation to study the
percolation properties of non-interacting particles at thermodynamical equilibrium on these structures is based on the fact
that previous results of adsorption, diffusion and reaction on both random [25–27] and ordered patchwise lattices [28–30],
have demonstrated to be very interesting from a theoretical and practical point of view.

This paper is organized as follows. In Section 2 we describe the lattice-gas model and the Monte Carlo simulation
technique used to obtain the desired quantities for describing the percolation phase transition. Results are presented and
discussed in Section 3. Finally, some conclusions are drawn in Section 4. In the Appendix we establish a mapping between
this formulation of the problem (reversible adsorption of non-interacting particles on heterogeneous surfaces) and that
informed in Ref. [31] (irreversible deposition of particles on simple patchwise surfaces).

2. Model and calculation method

Let us consider that the substrate is represented by a two-dimensional square lattice ofM = L× L adsorption sites, with
periodic boundary conditions. In order to describe the system of N monomers adsorbed on M sites at a given temperature
T , let us introduce the occupation variable ci which can take the following values:

ci =

{
1, if site i is occupied
0, if site i is vacant. (1)

Particles can be adsorbed on the substrate with the restriction of at most one adsorbed particle per site and we consider
a null nearest neighbor (NN) interaction energy among them. If εi is the adsorption energy of one given surface site, the
Hamiltonian of the system is given by

H =

M∑
i

εici. (2)

Now,we describe themodel used for introducing the surface heterogeneities. Let us consider a square lattice of L×L sites,
as a board divided in shallow (S) and deep (D) square patches with l × l sites each one and energies ES and ED, respectively.
We assume that the number of S squares is the same as the number of D squares. S and D patches can be put in order onto a
square lattice, in such a way that any S (D) patch has four nearest neighbor D (S) patches, so the resulting structure will be
a perfect chessboard lattice or regular patchwise lattice. But if the squares in a chessboard are randomly occupied by S or D
patches, we have a random patchwise lattice. These lattices can be easily simulated on the computer. We suppose that the
patches are touched together, sharing common borders, and any overlap between them is entirely forbidden.

For fixed values of surface coverage, θ = N/M , and temperature T , the thermodynamic equilibrium is reached in
the canonical ensemble by using a standard Kawasaki algorithm [32]. The procedure is as follows. An initial arbitrary
configuration of N adsorbed monomers with the desired surface coverage is generated. Two sites are randomly selected,
and their position are established. Then an attempt is made to interchange its occupancy state with probability given by the
Metropolis rule [33]:

P = min {1, exp (−∆H/kBT )} (3)

where ∆H = Hf − Hi is the difference between the Hamiltonians at the final and initial states and kB is the Boltzmann
constant.

A Monte Carlo Step (MCS) is achieved when M pair of sites have been tested to exchange its occupancy state. The
equilibrium state can be well reproduced after discarding the first n′ MCS. Then, a set of n samples in thermal equilibrium
is generated by taking configurations separated from each other by a few MCS in order to avoid memory effects.
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The central idea of the percolation theory is based on finding the minimum coverage degree θ for which at least a cluster
[a group of occupied sites in such a way that each site has at least one occupied nearest neighbor site] extends from one side
to the opposite one of the system. This particular value of the coverage degree is named critical concentration or percolation
threshold, and it determines a phase transition in the system.

As the scaling theory predicts [6], the larger the system size to study, the more accurate the values of the threshold
obtained therefrom. Thus, the finite-size scaling theory give us the basis to achieve the percolation threshold and the critical
exponents of a system with a reasonable accuracy. For this purpose, the probability R = RX

L (θ) that a lattice composed of
L × L sites percolates at concentration θ can be defined [2,34,35]. Here, the following definitions can be given according
to the meaning of X: (a) RR(D)

L (θ) = the probability of finding a rightward (downward) percolating cluster; (b) RI
L(θ) =

the probability that we find a cluster which percolates both in a rightward and in a downward direction; (c) RU
L (θ) =

the probability of finding either a rightward or a downward percolating cluster and (d) RA
L (θ) ≡

1
2

[
RR
L (θ) + RD

L (θ)
]

≡

1
2

[
RI
L(θ) + RU

L (θ)
]
. The first step for determining the percolation threshold consists in evaluating the effective threshold

θX
c (L) for a lattice of finite size L. Once the temperature, the energy difference between the two kind of sites (∆E), the size of

the patches (l) and the patch distribution (for the ordered case) are fixed the following procedure is used: (a) the construction
of n samples for a given coverage (according to the schemepresented before) and (b) the cluster analysis by using theHoshen
and Kopelman algorithm [36]. n runs of such two steps are carried out for obtaining the number mX of them for which a
percolating cluster of the desired criterion X is found. Then, RX

L (θ) = mX/n is defined and the procedure is repeated for
different values of θ . For the case of random distribution of patches, the procedure is very similar, but the n samples involve
different random distributions of patches, in order to take an average over different surface structures.

The second step is the extrapolation of θX
c (L) towards the limit L → ∞ by using the scaling hypothesis. Thus, the

correlation length, ξ , can be expressed as

ξ ∝ |θ − θc |
−ν (4)

where the critical exponent ν is analytically shown to be equal to ν = 4/3 in the case of random percolation [2,4–6]. As
θ = θX

c (L) the correlation length reaches the linear dimension L of the lattice. Thus, we have

θX
c (L) = θc(∞) + AXL−

1
ν (5)

where AX is a non-universal constant. The maximum of the differences between |θ I
c(∞) − θA

c (∞)| and |θU
c (∞) − θA

c (∞)|
gives the error bar for each determination of θc . The interested reader is invited to see Ref. [11] for a more detailed analysis.

3. Results and discussion

The present percolation study involves adsorbed particles on heterogeneous surfaces under equilibrium conditions
(which makes the difference with the traditional percolation problem being concerned with irreversible adsorption). In
our calculations we have used values of L ranging between Lmin ≈ 40 and Lmax ≈ 400. With these lattice sizes we verified
that finite-size effects are negligible. Note, however, that the linear dimension L has to be properly chosen such that it is a
multiple of 2l.

Without any loss of generality, we consider that all energies are measured in units of kBT (or kBT = 1), and that ES = 0
and ∆E = ES − ED, in such a way that the adsorptive energy is characterized by the single adimensional parameter ∆E
(energy difference between the two kinds of adsorption sites).

Fig. 1 shows the adsorption isotherms (surface coverage, θ , as a function of chemical potential, µ) for three values of ∆E.
The isotherms were calculated theoretically using the following relationships:

θS =
e−β(ES−µ)

1 + e−β(ES−µ)
(6)

θD =
e−β(ED−µ)

1 + e−β(ED−µ)
(7)

θ = fSθS + fDθD (8)

where θS (θD) is the coverage of the shallow (deep) sites and fi are the fraction of sites of type i present on the surface (in
this case, fS = fD = 1/2).

Due to the absence of lateral interactions, the shape of the isotherms is independent of the distribution of the adsorption
sites (i.e. independent of l and if the patches are ordered or at random). As it can be clearly seen, a plateau appears which
gets wider as the temperature decreases or as the energy difference ∆E grows. This plateau corresponds to the situation
where half of the sites are occupied θ = 0.5, precisely the deeper ones. In the isotherms, for each chemical potential there
is a coverage degree associated and we study the percolation state of the system for each point.

Fig. 2 shows the frames corresponding to four of the studied situations with l = 1: (a) ordered patches and ∆E = 1.0;
(b) ordered patches and ∆E = 10; (c) random distribution and ∆E = 1.0; and (d) random distribution and ∆E = 10;
In all cases we choose θ = 0.6 because this value is close to the critical coverage degree for the random percolation case
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Fig. 1. Adsorption isotherms for three values of ∆E (energy difference between the two kinds of adsorption sites). The shape of the isotherms is
independent of both the size and the distribution of the patches due to the absence of lateral interactions between the adsorbed particles. Lines and
symbols represent theoretical calculations by using Eqs. (6)–(8).

Fig. 2. Snapshots of typical equilibrium states for l = 1 and coverage θ = 0.6 in the following cases: (a) ordered patches, ∆E = 1, (b) ordered patches,
∆E = 10, (c) random patches, ∆E = 1, (d) random patches, ∆E = 10. Black squares: deep sites; white squares: shallow sites; circles: adsorbed particles.
The snapshots are a single Monte Carlo realization of the system.

(θc ≈ 0.5927...), which would be equivalent to the homogeneous surface (∆E = 0.0) in the studied model. The snapshots
shown in Fig. 2 are a single Monte Carlo realization of the system in each case. We can see that for ∆E = 10.0, all deep
adsorption sites are occupied and the remaining particles are distributed at random between the shallow sites.

Fig. 3 shows the percolation threshold, θc , as a function of the energy difference between the two kind of sites, ∆E, for
several values of patch size, l, in the case of ordered distribution. In all cases, θc grows upon increasing ∆E until it reaches a
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Fig. 3. Percolation threshold as a function of ∆E for different patch sizes in the case of ordered distribution of patches. Symbols represent Monte Carlo
simulation data and lines are a guide to the eyes.

saturation value, approximately close to∆E ≈ 6. This saturation value canbe explained for the case of l = 1 as follows.When
∆E is large enough compared to the thermal energy [see Fig. 2(b)], all the deep sites are occupied. Then, we can imagine an
effective lattice formed by the shallow siteswhere each element has eight effective neighbors (formore details see Ref. [31]).
For this kind of lattice, it is found that the percolation threshold for the irreversible adsorption is θc(zeff = 8) ≈ 0.41 [4].
As shallow sites constitute half of the sites, this corresponds to a fraction of occupied sites of θ ≈ 0.2, which added to the
fraction of deep sites, θ = 0.5, that are completely occupied, gives a total coverage of 0.7, which is the observed value of θc
for large enough values of ∆E, in the case of l = 1.

For larger values of l, the saturation value can also be explained in terms of zeff. Fromanother perspective, once all the deep
sites are occupied, the percolation problem becomes in finding the percolation threshold on the shallow patches, which are
embedded in a set of occupied sites belonging to the deep patches. The combination of this critical value, which is expected
to be smaller than the corresponding to a square latticewith periodic boundary conditions, and the fraction of deep occupied
sites lead to the observed saturation value θc ≈ 0.64 for l = 2 and θc ≈ 0.63 for l > 2.

Finally, for large values of l and small values of ∆E we can see a small decrease of the curves, with respect to the
homogeneous case (∆E = 0). This effect will be explained in detail in connection with Fig. 5.

Now, the results in Fig. 3 are presented in an alternativeway. Thus, Fig. 4 shows the percolation threshold, θc , as a function
of the patch size, l, for several values of ∆E, in the case of ordered distribution. In all the cases considered, θc decreases as l
increases. The solid lines in the figure are fitting curves by using an exponential decay. The curves corresponding to higher
values of ∆E produce larger values of the percolation threshold, θc .

Fig. 5 shows the percolation threshold, θc , as a function of the energy difference between the two kind of sites, ∆E, for
several values of patch size, l, in the case of random distribution. For l = 1 the value of θc is almost constant regardless the
value of ∆E. This can be explained as follows. Let us consider the case of large values of ∆E. If the deep sites are distributed
at random, the first group of incoming particles, up to θ = 0.5, occupies these sites. This is equivalent to the random
distribution of such particles. Then, the rest of the particles distribute at random in the remaining sites until percolation
occurs. All this is equivalent to the well known random deposition, with θc ≈ 0.5927. For small or intermediate values
of ∆E, the situation is not very different, since even thought not necessarily deep sites occupy first, the distribution of the
particles is completely at random. On the other hand, for values of l larger than 1, it can be observed that the curves initially
descend to values lower than θc (l = 1) and then rise until they reach a saturation value, which is higher upon increasing
l. The existence of a minimum in the curves for l > 1 can be easily understood from the analysis of Fig. 6. In the figure, the
curves of θc vs. ∆E for l = 2 and l = 4 are plotted along with the corresponding coverage of deep and shallow sites, θ c

D and
θ c
S , respectively. The starting point of the curves corresponds to the case of random percolation (∆E = 0, θc ≈ 0.5927), and

there are not differences between deep and shallow sites, being θ c
D = θ c

S ≈ 0.5927. Then, the coverage of the deep sites
increasesmonotonically until the filling of the strong sites is completed. On the other hand, the coverage of the shallow sites
decreases as ∆E is increased up to reaching a saturation value. This value corresponds to the minimum fraction of shallow
sites which is necessary to reach the connection between the extremes of the lattice. Several conclusions can be drawn from
the figure: (i) the curves of θ c

D vs.∆E do not depend on the patch size l, and consequently, the percolation process is governed
by the shallow sites; (ii) the coverage of the shallow sites for large enough values of ∆E increases with the patch size l. This
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Fig. 4. Percolation threshold as a function of the patch size, l, for several energy differences between the two kind of sites, ∆E, in the case of ordered
distribution of patches. Symbols represent Monte Carlo simulation data and lines are a guide to the eyes.

Fig. 5. Idem Fig. 3 for the case of random distribution of patches.

effect is responsible for the different saturation values observed in Fig. 5; and (iii) for a given l and ∆E ≤ 4, the slope of the
curve of θ c

D vs. ∆E is smaller than the absolute value of the slope of θ c
S vs. ∆E, so that the total θc =

1
2

(
θ c
D + θ c

S

)
coverage

decreases with respect to the homogeneous case and shows a minimum.
Fig. 7 shows the percolation threshold, θc , as a function of the patch size, l, for several values of ∆E, in the case of random

distribution. For∆E = 1, the percolation threshold decreases as l increases in agreementwith theminimum shown in Fig. 5.
The opposite occurs for ∆E = 5 and ∆E = 10.

In order to compare the two cases studied in the paper (ordered and random distribution of patches), Fig. 8 shows the
percolation threshold, θc , as a function of the patch size, l, for a fixed value of ∆E = 10. It can be noticed that in the ordered
(random) case, θc goes slowly downwards (upwards) and reaches a minimum (maximum) value at θc ≈ 0.63. Both curves
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Fig. 6. Total and partial percolation thresholds as a function of ∆E for the case of random distribution of patches and two different values of patch sizes
as indicated. Symbols represent Monte Carlo simulation data and lines are a guide to the eyes.

Fig. 7. Idem Fig. 4 for the case of random distribution of patches.

seem to converge to the same value for large l. Taking into account that larger connectivity of the lattice implies smaller
percolation thresholds [12], these observations can be explained in terms of the effective neighbors [31]. In the case of
ordered patches, the effective coordination number increases as l becomes larger, whereas the opposite occurs for random
distribution [31].

4. Conclusions

In the present paper we have studied the percolation behavior of the adsorbed monolayer composed by non-interacting
particles on a simple heterogeneous surface. In the framework of this model, the surface is assumed to be formed by a set
of homogeneous patches. Every adsorption site within a given patch has the same adsorption energy. However, different
patches have different adsorption energies. We have considered only two kinds of square patches with different energies,
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Fig. 8. Percolation threshold as a function of the patch size, l, for a fixed value of ∆E = 10, in the case of ordered (squares) and random distribution
(circles) of patches. Symbols represent Monte Carlo simulation data and lines are a guide to the eyes.

i.e. deep and shallowpatches,which are (i) arranged in a chessboard-like ordered structure or (ii) randomly located. In detail,
on the basis of this so-called bivariate trap model, simple energetic topographies are created by placing square patches of
l × l deep or shallow adsorption sites onto the lattice, which is represented by a two-dimensional array of L × L sites with
periodic boundary conditions. For simplicity we assume that the number of deep adsorption sites is equal to the number of
shallow adsorption sites, and we do not allow overlap of different patches.

We have used the Monte Carlo technique in order to determine the equilibrium conditions of the lattice once l, L, T an θ
are fixed. The thermodynamic equilibrium is reached in the canonical ensemble byusing a standardKawasaki algorithm [32].
Once the equilibrium is established, then we consider each independent state in order to analyze the percolation transition.
The numerical scheme used for that is based on the Hoshen and Kopelman algorithm [36]. Finally, the determination of
θc(l, ∆E) is done by using extensively the finite-size scaling analysis.

We conclude this work remarking the distinctive qualities of the site percolation problem on simple patchwise lattices.
θc(∆E) for fixed values of l slowly grows up to a saturation value as the energy difference between shallow and deep patches
increases for ordered distribution of patches. In the case of random distribution, the same limiting behavior is observed for
large values of ∆E but the curves pass through a minimum for l > 1. A singular behavior is observed for l = 1 where
θc = 0.5927. θc(l) for fixed values of ∆E presents a quite different behavior depending the spatial distribution of patches.
In fact, for ordered structures θc(l) exponentially decreases upon increasing l. For larger values of ∆E the decay is more
pronounced. In contrast, when the patches are randomly distributed a slow decay is shown for weak values of∆E. However,
for larger values of ∆E the curves raise up to a saturation value. It is important to remark that for fixed values of ∆E and in
the limit l → ∞ the percolation threshold becomes independent of the spatial distribution of energetic surface topography.

Finally, wewould like to emphasize that the studied problem (percolation of the adsorbedmonolayer at equilibrium) has
a clear linkwith the randomdeposition ofmonomers on the same surface;we consider twodifferent deposition probabilities
depending on whether the particle is dropped on deep or shallow sites. This point is clarified in the Appendix. The present
work encourages the analysis of the competitive effect of the ad–ad interactions with the surface heterogeneities on the
percolative behavior of the system. Such a study is in progress.
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Appendix

In this article we have studied the percolation behavior of adsorbed particles at equilibrium. On the other hand, in
Ref. [31] the authors have performed a similar study but by considering the irreversible deposition of particles on the same
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heterogeneous lattice. In that version of the problem, two occupation probabilities, p and q, for a site belonging to the shallow
and deep sites, respectively, have been defined. The state of the system is specified by these two independent variables p
and q. If the network is very large and p and q are sufficiently small, the size of any cluster is likely to be small. But if p and
q are close to unity the network should be entirely connected and an infinite cluster of occupied sites spans the network. In
this Appendix we shall show that there exists a mapping between both versions of the problem.

In order to explain such mapping, it is interesting to know how the particles are distributed over the deep and shallow
patches. Thus, we define the site specific surface coverage, θD and θS , as the fraction of occupied deep and shallow trap sites,
respectively. Such partial specific concentrations, θD and θS , can be also interpreted as the probabilities p and q for each kind
of sites. Thus, it can be established that:

θS =
eβµ

1 + eβµ
(9)

θD =
eβ(µ+∆E)

1 + eβ(µ+∆E)
(10)

θ =
θS + θD

2
. (11)

From Eqs. (9) and (10), and by using β = 1, we can easily obtain ∆E as:

∆E = ln
[

θD(1 − θS)

θS(1 − θD)

]
. (12)

Thus, we identify θS and θD with the values of p and q of Ref. [31]. From the above equations, both partial surface
concentrations can be obtained from knowing θ and∆E. Therefore, p and q (or θS and θD) are the corresponding probabilities
for each kind of site, associated to each pair (∆E, θ) of the present paper.
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