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Abstract: We study a one-phase Stefan problem for a semi-in�nite material with temperature-dependent
thermal conductivity with a boundary condition of Robin type at the �xed face x = 0. We obtain su�cient
conditions for data in order to have a parametric representation of the solution of similarity type for t ≥ t0 > 0
with t0 an arbitrary positive time. This explicit solution is obtained through the unique solution of an integral
equation with the time as a parameter.
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1 Introduction
We will consider a phase-change problem (Stefan problem) for a nonlinear heat conduction equation for
a semi-in�nite region x > 0 with a nonlinear thermal conductivity k(θ) given by

k(θ) = ρc
(a + bθ)2

(1.1)

and phase change temperature θf = 0, where a, b are positive parameters, c, ρ are the speci�c heat and the
density of the medium respectively. This kind of thermal conductivity or di�usion coe�cient was considered
in [2, 3, 5, 6, 12, 14, 20, 22, 24]. Themodeling of this kind of problems is a greatmathematical and industrial
signi�cance problem. Phase-change problems appear frequently in industrial processes and other problems
of technological interest [1, 7–11, 13, 15, 16]. A large bibliography on the subject was given recently in [23]. Note 1:

Removed ‘recent’.
Themathematical formulation of our free boundary (fusion process) problem consists in determining the

evolution of the moving phase separation x = s(t) and the temperature distribution θ = θ(x, t) ≥ 0 satisfying
the conditions

ρc ∂θ
∂t
=
∂
∂x(

k(θ)∂θ
∂x)

, 0 < x < s(t), t > 0, (1.2)

k(θ(0, t))∂θ
∂x

(0, t) = h0
√t

(θ(0, t) − θ0), h0 > 0, t > 0, (1.3)

k(θ(s(t), t))∂θ
∂x

(s(t), t) = −ρl
∙
s(t), t > 0, (1.4)

θ(s(t), t) = 0, t > 0, (1.5)
s(0) = 0, (1.6)
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where h0 > 0 is the thermal transfer coe�cient, l is the latent heat of fusion of the medium and we assume

θ0(0, t) < θ0,

where θ0 > 0 is the ambient temperature.
An analogous problem to (1.2)–(1.6) was considered in [18] where the temperature and �ux-type con-

ditions on the �xed face x = 0 were studied. In order to have a parametric representation of the solution of
similarity type, su�cient conditions for data were obtained.

In [4, 17, 19, 21] free boundary problems were considered for the equation

ρc ∂θ
∂t
=
∂
∂x(

k(θ)∂θ
∂x)
− v(θ)∂θ

∂x
, 0 < x < s(t), t > 0, (1.7)

where the thermal conductivity k(θ) and the velocity term v(θ) are given by (1.1) and

v(θ) = ρc d
2(a + bθ)2

(1.8)

respectively with d > 0. In those papers temperature and �ux-type conditions on the �xed face x = 0 were
studied. In [4] a Dirichlet boundary condition at the �xed face x = 0 is considered. Under the Bäcklund
transformation the Stefan problem is reduced to an associated free boundary problem and the existence and
uniqueness local in time, of the solution is proved by using the Friedman Rubinstein integral representation
and the Banach contraction theorem. Furthermore, necessary and su�cient conditions for the existence of a
parametric representation of the solution of similarity type was found in [17]. In [21] a Neumann boundary
condition at the �xed face x = 0 is considered. A reciprocal transformation to the Stefan problem is applied
and a parametric representation of similarity type of the solution is obtained. The results given in [21] are
improved in [19] obtaining explicit solutions through the unique solution of a Cauchy problem.

Here we study the case without the velocity term, i.e. d = 0, in the di�erential equation (1.7) and we
consider a convective boundary condition on the �xed face x = 0.

In Section 2 we prove the existence and uniqueness of an explicit solution of similarity type of the free
boundary problem (1.2)–(1.6) for t ≥ t0 > 0 with t0 an arbitrary positive time when data satisfy condition
a
b >

l
c . This type of exact solution to problemswith parameters is useful to test by benchmarkingwith numer-

ical methods for di�erent data values.
In Section 3 we consider the case a

b =
l
c . In both cases the explicit solutions are obtained through the

unique solutions of the integral equations with the time as a parameter.
Besides, there does not exist any solution of similarity type to the free boundary problem (1.2)–(1.6) for

the case a
b <

l
c .

2 Existence and uniqueness of solution of the free boundary
problem with boundary condition of Robin type on the �xed face
for the case a

b > l
c

We consider the free boundary problem (1.2)–(1.6) with the parameters a, b and the coe�cients l, c satisfy
the condition

a
b
>
l
c
. (2.1)

Now, we give several transformations to obtain an equivalent problem to (1.2)–(1.6) which admits a simila-
rity-type solution.

If we de�ne

Θ = 1
a + bθ

, (2.2)
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then problem (1.2)–(1.6) becomes
∂Θ
∂t
= Θ2 ∂2Θ

∂x2
, 0 < x < s(t), t > 0, (2.3)

∂Θ
∂x

(0, t) =
−h∗0
√t

[
1

Θ(0, t) − Θ0], t > 0, (2.4)

∂Θ
∂x

(s(t), t) = bl
c
∙
s(t), t > 0, (2.5)

Θ(s(t), t) = 1
a
, t > 0, (2.6)

s(0)Q = 0, (2.7)

where h∗0 is a constant de�ned by

h∗0 =
h0
ρc

(2.8)

and

Θ0 = a + bθ0. (2.9)

Let us perform the transformation

χ(x, t) =
x

∫
0

dη
Θ(η, t) , Ψ(χ, t) = Θ(x, t) (2.10)

and

S(t) = χ(s(t), t). (2.11)

Problem (2.3)–(2.7) becomes
∂Ψ
∂t
=
∂2Ψ
∂χ2
+
h∗0
√t

[
1

Ψ(0, t) − Θ0]
∂Ψ
∂χ
, 0 < χ < S(t), t > 0, (2.12)

∂Ψ
∂χ

(0, t) = −
h∗0
√t

[
1

Ψ(0, t) − Θ0]Ψ(0, t), t > 0, (2.13)

∂Ψ
∂χ

(S(t), t) = 1
a( cabl − 1)

[
∙
S(t) +

h∗0
√t

(
1

Ψ(0, t) − Θ0)], t > 0, (2.14)

Ψ(S(t), t) = 1
a
, t > 0, (2.15)

S(0) = 0, (2.16)

where
∙
S(t) = (a − blc )

∙
s(t) + w

√t
(2.17)

and

w = −h∗0[
1
φ(0) − Θ0]. (2.18)

We remark that by hypothesis θ0(0, t) < θ0 and h0 > 0 results w > 0.
If we introduce the similarity variable

ξ = χ
2√t

, (2.19)

and the solution is sought of type

Ψ(χ, t) = φ(ξ) = φ( χ
2√t

), (2.20)

then the free boundary S(t) of problem (2.12)–(2.16) must be of the type

S(t) = 2Λ√t, t > 0, (2.21)
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with Λ > 0 an unknown coe�cient to be determined. Problem (2.12)–(2.16) yields

φ��(ξ) + 2φ�(ξ)(ξ − w) = 0, 0 < ξ < Λ, (2.22)
φ�(0) = 2wφ(0), (2.23)

φ(Λ) = 1
a
, (2.24)

φ�(Λ) = 2α∗(Λ − w), (2.25)

where
α∗ = bl

a(ac − bl)
> 0. (2.26)

Taking into account expressions (2.17) and (2.21), we have

s(t) = 2λ√t (2.27)

with
λ = Λ − w

a − blc
. (2.28)

If we integrate (2.22), we obtain

φ(ξ) = D[erf(ξ − w) + erf(w)] + C, 0 < ξ < Λ. (2.29)

From conditions (2.23)–(2.25) we have that

C = φ(0) = α
∗(Λ − w) exp((Λ − w)2) exp(−w2)

w
, (2.30)

D = √πα∗(Λ − w) exp((Λ − w)2), (2.31)

and the unknowns w and Λ must satisfy the equations

w exp(−(Λ − w)2) exp(w2)
√πw exp(w2)[erf(Λ − w) + erf(w)] + 1

= aα∗(Λ − w), (2.32)

(Λ − w) exp((Λ − w)2) =
h∗0w exp(w2)
α∗[h∗0Θ0 − w]

. (2.33)

Assumption (2.1) implies that the unknowns 0 < w < h∗0Θ0 and Λ must verify Λ > w. Then, for each
0 < w < h∗0Θ0 we solve equation (2.32) in the unknown Λ > w.

For this, we de�ne the real functions

W1(x) =
w exp(w2) exp[−(x − w)2]

1 + w exp(w2)√π(erf(x − w) + erf(w))
(2.34)

and
W2(x) = aα∗(x − w). (2.35)

Now, we have that Λ > w must be the solution of the equation

W1(x) = W2(x), x > w, (2.36)

which is equivalent to equation (2.32).

Lemma 2.1. For each 0 < w < h∗0Θ0 there exists a unique solution Λ = Λ(w) of equation (2.36).

Proof. It is easy to prove that

W1(w) =
w exp(w2)

1 +√πw exp(w2) erf(w)
> 0, W1(+∞) = 0,

W1 is a decreasing function and from (2.1)wehave thatW2 is an increasing function. So, there exists a unique
solution Λ(w) of equation (2.36).
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Taking into account (2.32) and Lemma 2.1 we can rewrite equation (2.33) as

V1(w) = V2(w), 0 < w < h∗0Θ0, (2.37)

where
V1(x) = −x + h∗0bθ0

and
V2(x) = √πh∗0ax exp(x

2)[erf(Λ(x) − x) + erf(x)]

with Λ(x) the unique solution of (2.36).

Lemma 2.2. There exists a unique w ∈ [0, h∗0bθ0) solution of (2.37).

Proof. The function V2 satis�es V2(0) = 0, V2(x) > 0 for x > 0. Moreover, V1 is a decreasing function and
V1(x) > 0 for x ∈ [0, h∗0bθ0), V1(h

∗
0bθ0) = 0 and V1(x) < 0 for x ∈ (h∗0bθ0, h

∗
0Θ0). Then there exists at least

one w ∈ [0, h∗0bθ0) which is a solution of (2.37).
To prove uniqueness we suppose that there exist two solutions w1 and w2 to (2.33) such that w1 < w2.

Then
h∗0w1 exp(w2

1)
α∗[h∗0Θ0 − w1]

<
h∗0w2 exp(w2

2)
α∗[h∗0Θ0 − w2]

and from (2.33) we obtain

(Λ(w1) − w1) exp((Λ(w1) − w1)2) < (Λ(w2) − w2) exp((Λ(w2) − w2)2).

Taking into account that the function f(x) = x exp(x2) is an increasing function, we have that

Λ(w1) − w1 < Λ(w2) − w2.

Moreover, also since V1(w1) = V2(w1) and V1(w2) = V2(w2), after some calculations we obtain
w2 − w1
√πh∗0a

= w1 exp(w2
1)[erf(Λ(w1) − w1) + erf(w1)] − w2 exp(w2

2)[erf(Λ(w2) − w2) + erf(w2)]

which contradicts our hypothesis since the right-hand side is negative. Thus w1 = w2.

Theorem 2.3. Let us assume the hypothesis (2.1).
(i) If (Θ, s) is a solution of the free boundary problem (2.3)–(2.7), then Θ = Θ(x, t) is a solution, in variable x,

of the integral equation

Θ(x, t) = C + D[erf(
∫
x
0

dη
Θ(η,t)

2√t
− w) + erf(w)], 0 ≤ x ≤ s(t), (2.38)

where t > 0 is a parameter, and C and D are de�ned by (2.30) and (2.31) respectively, where w and Λ are
the unique solutions of (2.32) and (2.33). The free boundary s(t) is given by (2.27) and (2.28). Moreover,
the function Y(x, t) de�ned by

Y(x, t) = 1
2√t

x

∫
0

dη
Θ(η, t) − w, 0 ≤ x ≤ s(t), t > 0, (2.39)

satis�es the conditions

∂Y
∂x

(x, t) = 1
2√t

1
Θ(x, t) , 0 < x < s(t), t > 0, (2.40)

Y(0, t) = −w, t > 0, (2.41)
∂Y
∂t

(x, t) = − 12t(Y(x, t) +
D
√π

exp(−Y2(x, t))
Θ(x, t) ), 0 < x < s(t), t > 0, (2.42)

Y(s(t), t) = Λ − w, t > 0. (2.43)
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(ii) Conversely, if Θ is a solution of the integral equation (2.38) with s given by (2.27) and function Y de�ned
by (2.39) satis�es conditions (2.40)–(2.43), C and D are de�ned by (2.30) and (2.31) respectively, where w
and Λ are the unique solutions of equations (2.32) and (2.33), then (Θ, s) is a solution of the free boundary
problem (2.3)–(2.7).

Proof. (i) From the previous computation we have

Θ(x, t) = φ(ξ) = C + D[erf(ξ − w) + erf(w)] = C + D[erf(
∫
x
0

dη
Θ(η,t)

2√t
− w) + erf(w)],

that isΘ is a solutionof the integral equation (2.38). By elementary computationswehave that the function Y,
de�ned by (2.39), satis�es conditions (2.40), (2.41) and

∂Y
∂t

(x, t) = − 1
4t√t

x

∫
0

dη
Θ(η, t) −

1
2√t

x

∫
0

Θxx(η, t) dη

= −
1
2t (Y(x, t) + w) −

1
2√t

(Θx(x, t) − Θx(0, t))

= −
1

2√t
(
Y(x, t)
√t
+ Θx(x, t))

= −
1
2t(Y(x, t) +

D
√π

exp(−Y2(x, t))
Θ(x, t) ),

that is (2.42). Finally, we get

Y(s(t), t) = 1
2√t

s(t)

∫
0

dη
Θ(η, t) − w =

χ(s(t), t)
2√t
− w = S(t)

2√t
− w = Λ − w,

that is (2.43).
(ii) In order to proof that (Θ, s) is a solution of the free boundary problem (2.3)–(2.7), we get

Θxx(x, t) = (
D

√πt
exp(−Y2(x, t))

Θ(x, t) )
x
= −

D
√πt

exp(−Y2(x, t))
Θ2(x, t)

(Y(x, t) + D
√π

exp(−Y2(x, t))
Θ(x, t) ).

We have

Θt(x, t) =
2D
√π

exp(−Y2(x, t))Yt(x, t) = −
D

√πt
exp(−Y2(x, t))(Y(x, t) + D

√π
exp(−Y2(x, t))

Θ(x, t) );

then (2.3) holds. Furthermore,
Θ(0, t) = C. (2.44)

Taking into account (2.30), (2.31), (2.40), (2.41) and (2.44), we obtain

Θx(0, t) =
D

√πt
exp(−Y2(0, t))

Θ(0, t) =
w
√t
,

that is (2.4). Moreover,

Θ(s(t), t) = C + D[erf(Y(s(t), t)) + erf(w)] = C + D[erf(Λ − w) + erf(w)] = 1a ,

that is (2.6). Finally, by using (2.26), (2.31), (2.40) and (2.43), we have

Θx(s(t), t) =
D

√πt
exp(−Y2(s(t), t))

Θ(s(t), t) =
aD
√πt

exp(−(Λ − w)2) = aα
∗(Λ − w)
√t

=
1
√t

bl
ca − bl

(Λ − w) = blλ
c√t
=
bl
c
∙
s(t),

that is (2.5).
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Theorem 2.4. Let us assume hypothesis (2.1).
(i) The integral equation (2.38) has a unique solution for t ≥ t0 > 0 with t0 an arbitrary positive time.
(ii) The free boundary problem (1.2)–(1.5) satisfying hypothesis (2.1) has a unique similarity-type solution

(θ, s) for t ≥ t0 > 0 (with t0 an arbitrary positive time) which is given by

θ(x, t) = 1
b [

1
Θ(x, t) − a], 0 < x < s(t), t ≥ t0 > 0, (2.45)

s(t) = 2(Λ − w)
a − blc

√t, t ≥ t0 > 0, (2.46)

where Θ is the unique solution of the integral equation (2.38), where C and D are de�ned by (2.30) and
(2.31) respectively, w and Λ are the unique solutions of equations (2.32) and (2.33).

Proof. (i) If we de�ne Y(x, t) by (2.39), then (2.38) is equivalent to the Cauchy di�erential problem

{{
{{
{

∂Y
∂x

(x, t) = 1
2√t

1
(C + D erf(Y(x, t))) ≡ G(x, t, Y(x, t)), 0 < x < s(t), t > 0,

Y(0, t) = −w,
(2.47)

with a parameter t > 0. We have
!!!!!!!
∂G
∂Y

!!!!!!!
≤

D
C2√πt

which is bounded for all t ⩾ t0 > 0, 0 ≤ x ≤ s(t), for an arbitrary positive time t0. Then, problem (2.47) (i.e.
the integral equation (2.38)) has a unique solution for t ≥ t0 > 0, for an arbitrary positive time t0.

(ii) This follows taking into account Theorem 2.3 and from elementary but tedious computations.

Remark 2.5. The free boundary given by (2.46) satis�es s(0) = 0.

Remark 2.6. Observe that Y(x, t) does not possess a limit at (0, 0) because Y(0, t) = −w < 0 for t > 0 and
lim Y(s(t), t) = Λ − w > 0 when t goes to 0.

3 Existence and uniqueness of solution of the free boundary
problem with boundary condition of Robin type on the �xed face
for the case a

b = l
c

We consider
a
b
=
l
c
. (3.1)

Similarly to what made in the previous section, problem (1.2)–(1.6) becomes (2.3)–(2.9).
By using (2.10) and (2.11) we have (2.12), (2.13), (2.15), (2.16) and

∙
S(t) = −

h∗0
√t

[
1

Ψ(0, t) − Θ0]. (3.2)

We introduce the variable (2.19) and the similarity solution given by (2.20), that is

Ψ(χ, t) = φ(ξ) = φ( χ
2√t

).

The free boundary S(t) of problem (2.12), (2.13), (2.15), (2.16) and (3.2) must be of the type (2.21) with
Λ > 0 an unknown coe�cient to be determined and from (3.2) we have that

φ(0) =
h∗0

h∗0Θ0 − Λ
. (3.3)
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Then problem (2.12), (2.13), (2.15), (2.16) and (3.2) yields

φ��(ξ) + 2φ�(ξ)(ξ − Λ) = 0, 0 < ξ < Λ, (3.4)

φ�(0) =
2h∗0Λ

h∗0Θ0 − Λ
, (3.5)

φ(Λ) = 1
a

(3.6)

and (3.3).
If we integrate (3.4), we obtain

φ(ξ) = D[erf(ξ − Λ) + erf(Λ)] + C, 0 < ξ < Λ. (3.7)

From the boundary conditions we have that

C = φ(0), D =
√πh∗0Λ exp(Λ2)

h∗0Θ0 − Λ
, (3.8)

and Λ is the unique solution of the equation

√πx exp(x2) erf(x) =
h∗0bθ0 − x
ah∗0

, 0 ≤ x ≤ h∗0bθ0. (3.9)

Theorem 3.1. Let us consider hypothesis (3.1).
(i) If (Θ, s) is a solution of the free boundary problem (2.3)–(2.7), then Θ = Θ(x, t) is a solution, in variable x,

of the integral equation:

Θ(x, t) = C + D[erf(
∫
x
0

dη
Θ(η,t)

2√t
− Λ) + erf(Λ)], 0 ≤ x ≤ s(t), (3.10)

where t > 0 is a parameter C and D are de�ned by (3.8) and Λ is the unique solution of equation (3.9). The
free boundary s(t) is given by

s(t) =
2h∗0Λ exp(Λ2)
h∗0Θ0 − Λ

√t. (3.11)

Moreover, the function Y(x, t) de�ned by

Y(x, t) = 1
2√t

x

∫
0

dη
Θ(η, t) − Λ, 0 ≤ x ≤ s(t), t > 0, (3.12)

satis�es the conditions
∂Y
∂x

(x, t) = 1
2√t

1
Θ(x, t) , 0 < x < s(t), t > 0, (3.13)

Y(0, t) = −Λ, t > 0, (3.14)
∂Y
∂t

(x, t) = − 12t(Y(x, t) +
D
√π

exp(−Y2(x, t))
Θ(x, t) ), 0 < x < s(t), t > 0, (3.15)

Y(s(t), t) = 0, t > 0. (3.16)

(ii) Conversely, if Θ is a solution of the integral equation (3.10) with s given by (3.11) and function Y de�ned
by (3.12) satis�es conditions (3.13)–(3.16), D and C are de�ned by (3.8) and Λ is the unique solution of
equation (3.9), then (Θ, s) is a solution of the free boundary problem (2.3)–(2.7).

Theorem 3.2. Let us consider hypothesis (3.1).
(i) The integral equation (3.10) has a unique solution for t ≥ t0 > 0 with t0 an arbitrary positive time.
(ii) The free boundary problem (1.2)–(1.5) has a unique similarity-type solution (θ, s) for t ≥ t0 > 0 (with t0 an

arbitrary positive time) which is given by

θ(x, t) = 1
b [

1
Θ(x, t) − a], 0 < x < s(t), t ≥ t0 > 0, (3.17)

and (3.11), whereΘ is the unique solution of the integral equation (3.10), where C andD are de�nedby (3.8)
and Λ is the unique solution of equation (3.9).
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Remark 3.3. The free boundary given by (3.11) satis�es s(0) = 0.

Remark 3.4. The free boundary problem (1.2)–(1.6) has not a similarity-type solution for the case a
b <

l
c . We

note that in this case from (2.26)we have α∗ < 0, then from (2.30)we obtainφ(0) < 0 and taking into account
(2.18) and (2.33) we have Λ > w > (a + bθ0)h∗0 . Then (2.32) has not solution.
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