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Abstract – The brain exhibits a wide variety of spatiotemporal patterns of neuronal activity
recorded using functional magnetic resonance imaging as the so-called blood-oxygenated-level–
dependent (BOLD) signal. An active area of work includes efforts to best describe the plethora of
these patterns evolving continuously in the brain. Here we explore the third-moment statistics of
the brain BOLD signals in the resting state as a proxy to capture extreme BOLD events. We find
that the brain signal exhibits typically nonzero skewness, with positive values for cortical regions
and negative values for subcortical regions. Furthermore, the combined analysis of structural and
functional connectivity demonstrates that relatively more connected regions exhibit activity with
high negative skewness. Overall, these results highlight the relevance of recent results emphasizing
that the spatiotemporal location of the relatively large-amplitude events in the BOLD time series
contains relevant information to reproduce a number of features of the brain dynamics during
resting state in health and disease.

Copyright c© EPLA, 2015

Introduction. – The brain behavioral and cognitive
repertoire is directly related to its ability to sustain a
wide variety of spatiotemporal patterns of neuronal ac-
tivity. The recent advent of a diversity of neuro-imaging
techniques allows for the direct observation of these pat-
terns and the design of experiments to relate dynam-
ics with cognition and behavior. At the same pace,
in functional magnetic resonance imaging (fMRI) the
size of the datasets of the brain signal (the so-called

(a)Both authors contributed equally to this work.
(b)E-mail: lucilla.dearcangelis@unina2.it (corresponding au-

thor)

blood-oxygenated-level–dependent or BOLD signal) is
such that novel numerical techniques are needed for a more
efficient signal representation and processing.

Following the initial studies on complex-network analy-
sis of fMRI [1,2] we have witnessed important advances in
the last decade by a plethora of studies uncovering the de-
tails of complex networks underlying both brain structure
and function at the macroscale [3–5]. The brain neural
dynamics and its associated functions are constrained by
the underlying wiring structure [6,7], (i.e., the so-called
structural connectivity, SC). A fundamental problem in
neuroscience is to understand how the same fixed structure
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gives rise to the large repertoire of functional correlations
(sometimes called functional connectivity, FC). This is
relevant because these correlations are reflecting the
transient states which are associated with perception,
cognition and action. This issue has been studied starting
by the earlier studies of Sporns [8,9] followed by others
using combined structure-function datasets [10–16].

At the same time, but from a different perspective, re-
cent results emphasize that the space-time location of the
relatively large amplitude events in the BOLD time se-
ries contains enough information to reproduce a number
of features describing the brain dynamics in the resting
state [17–20]. In the same direction, the presence of cor-
relations between relatively brief but large events in brain
activity is already documented [21]. The present work
investigates further details of their statistics and the rela-
tion of their features with the properties of the underlying
structural connectivity network.

The paper is organized as follows: In the next sec-
tion the two datasets analyzed are described: The first
one corresponds to fMRI recordings used to establish the
higher-order statistics of the resting state, whereas the
second one allows to investigate these features in relation
to the underlying structural connectivity. Results first
report on the distribution and spatial localization of ex-
tremal events, leading to a peculiar distribution of skew-
ness across brain structures. The results are compared
with a recent description of asymmetry in the variance,
which is shown to be simply proportional to the skewness.
Moreover, a potentially important source of spurious ar-
tifacts is rejected showing that the observed higher-order
statistics are unrelated to head motion during the record-
ings. Finally a combined structural and functional sta-
tistical analysis is made to demonstrate the presence of
correlations among extreme events in brain activity and
node connectivity. A final discussion will stress the rele-
vance of these results to brain function.

Methods. – Two different datasets were analyzed in
this work, one for the study of the higher-order statistics
and a second one for the combined structure-dynamics
analysis. The first database corresponds to data obtained
at the University of California, Los Angeles (UCLA), per-
formed with a SIEMENS Magnetom TrioTim Syngo MR
B15 scanner, we will call it the UCLA cohort. The second
dataset corresponds to data obtained in Cruces Univer-
sity Hospital (Bilbao, Spain) using a Philips Achieva 1.5 T
Nova scanner, here referred as the Bilbao cohort.

Bilbao cohort. This dataset comprises recordings
of structural and functional imaging in 12 (6 males)
healthy subjects, aged between 24 and 46 (33.5±8.7) who
provided information consent forms before the imaging
session. This work was approved by the Ethics Commit-
tee at the Cruces University Hospital; High-resolution
anatomical MRI was acquired using a T1-weighted 3D se-
quence (TR = 7.482 ms, TE = 3.425 ms; parallel imaging
(SENSE) acceleration factor = 1.5; acquisition matrix

size = 256 × 256; FOV = 26 cm; slice thickness = 1.1 mm;
170 contiguous sections). Diffusion weighted images
(DWIs) were acquired using pulsed gradient-spin-echo
echo-planar-imaging (PGSE-EPI) (TR = 11070.28 ms,
TE = 107.04 ms; 60 slices with thickness of 2 mm; no
gap between slices; 128 × 128 matrix with an FOV
of 23 × 23 cm). Changes in blood-oxygenation-level–
dependent (BOLD) T2* signals were measured using an
interleaved gradient-echo EPI sequence. The subjects lay
quietly for 7.28 minutes, and 200 whole brain volumes
were obtained (TR = 2.200 ms, TE = 35 ms; flip angle
90; 24 cm field of view; 128 × 128 pixel matrix; and
3.12 × 3.19 × 4.00 mm voxel dimensions).

Structural data preprocessing: To analyze the diffusion
weighted images we first applied the eddy current correc-
tion to overcome artifacts produced by changes in the gra-
dient field directions of the MR scanner and subject’s head
movement. Then, a local fitting of the diffusion tensor
was applied to compute the diffusion tensor model at each
voxel. Subsequently, a FACT (fiber assignment by contin-
uous tracking) deterministic tractography algorithm [22]
was employed, by using interactive software for fiber
tracking called “Diffusion Toolkit” [23]. Tractography
algorithms were developed to reconstruct white-matter
pathways in the brain connecting grey-matter regions from
diffusion tensor imaging (DTI) data. The FACT algo-
rithm reconstructs individual fibers and tracks them by
connecting the voxel where the fiber is initiated with the
adjacent one towards the fiber direction, and by iterating
this procedure until it is terminated according to the cri-
terion that the fiber arrives to a grey matter region. To
avoid sharp curvatures of axonal tracts we fixed a maxi-
mum angle variation of 35 degrees from a given voxel to
the following one (see [24]).

To calculate the structural connectivity matrices we
computed the transformation from MNI152 brain tem-
plate to individual fractional anisotropy maps. Using this
transformation, the 2514 region atlas was transformed to
the diffusion image space. Finally, the structural connec-
tivity matrices were obtained by counting the number of
fibers connecting each individual pair of ROIs.

Functional data preprocessing: The fMRI data was pre-
processed using FMRIB Expert Analysis Tool (FEAT [25],
www.fmrib.ox.ac.uk/fsl). The first 10 volumes were
discarded to avoid saturation effects, and the remaining
volumes were corrected for motion and slice timing. Spa-
tial smoothing was done with a 6 mm FWHM isotropic
Gaussian kernel and a band pass filter was applied be-
tween 0.01 and 0.08 Hz [26]. Using MCFLIRT, motion
time courses, average cerebrospinal fluid (CSF) signal, av-
erage white-matter signal and average global signal were
regressed out. Despiking and testing for additional scan-
ner artifacts were done using tools from FSL. Finally, the
functional data were spatially normalized to the MNI152
brain template to a resolution of 3 × 3 × 3 mm.

ROI extraction: We applied the method of spatially con-
strained clustering to functional data averaged over the
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subjects (n = 12) in order to extract the regions of interest
(ROIs), as explained in [27], and allow for the generation
of common ROIs. A spatial constraint is imposed to en-
sure that the resulting ROIs are spatially coherent and
clustering was performed based on temporal correlations
between voxel time series. To cluster at the group level,
a 2-level approach was applied in which the single-subject
data were first clustered and then all the subjects data
were combined to perform a second clustering. Finally,
we applied a parcellation into 2514 ROIs in order to get a
partition of the entire brain.

UCLA cohort. The study was approved by the IRB
Committees of the Veterans Administration as well as of
the University of California of Los Angeles (UCLA). After
signed informed consent, a group of 15 (7 males) partic-
ipants between the ages of 30 and 60 was instructed to
relax in the resting state avoiding falling asleep. A to-
tal of 244 frames were acquired with a TR = 2.500 ms,
TE = 30 ms and a flip angle = 80◦. The pre-processing of
the data was similar to the Bilbao dataset except that it
was re-sampled to a 4 × 4 × 4 mm resolution.

Results. – We start by characterizing some elementary
statistical features. First, we determine whether the skew-
ness value has any clear spatial distribution across brain
structures by analyzing this quantity on each of the 90
Brodmann areas. In each region we compute the average
BOLD signal and determine the skewness value (fig. 1).
For the same Brodmann area situated in different hemi-
spheres, the skewness value does not differ significantly, as
expected since it is known that the BOLD time series of
homologous areas are correlated. In addition, this analy-
sis shows that cortical regions exhibit mainly skew positive
values, whereas subcortical areas exhibit negative values,
as depicted in fig. 1.

Related to this topic, are the recent results by Davis
et al. [28] proposing an ad hoc quantity to characterize
the asymmetry of the BOLD signals. The authors de-
fined the Amplitude Variance Asymmetry (AVA) metric
as the ratio between the variance of local maxima and
the variance of local minima in a BOLD time course (see
fig. 2). For symmetrical BOLD signals the variance of
local maxima is similar to the variance of local minima
resulting in an AVA value of one. The authors defined
two regimes: a “ceiling mode”, where the variance of local
maxima is larger than the one of local minima (AVA > 1),
and a “floor mode” where the variance of local-minima is
larger than the one of local maxima (AVA < 1).

A careful inspection of the BOLD signal should suggest
that the skewness of the time series might be related to
Davis et al.’s asymmetry. By evaluating the third moment
in the amplitude distribution, we can determine whether
a sequence is symmetric with respect to its mean. For a
sequence xi of length n, the skewness is given by

sk =
1
n

∑n
i=1 (xi − x̄)3

(√

1
n

∑n
i=1 (xi − x̄)2

)3 , (1)

Fig. 1: (Color online) Distribution of brain BOLD signal
skewness. The top panel illustrates the (normalized) skew-
ness density distribution of the BOLD signal recorded at the
gray matter’s voxels of six healthy subjects. The bottom panel
shows that the BOLD signals from cortical and subcortical
areas exhibit different skewness values (sk). After parcella-
tion of the data in 90 Brodmann areas, the skewness of the
average BOLD signal in each area was computed, and then
averaged across six healthy subjects. Areas with BOLD sig-
nals exhibiting sk > 0.05 are indicated in blue, in green areas
with sk < −0.05 and in pink areas with intermediate values.
The activity of cortical areas exhibits positive values, whereas
negative skewness values are found in subcortical zones.

where x̄ is the mean value of the sequence.
Qualitatively, null skewness indicates a symmetric dis-

tribution, while a negative/positive skewness value is
related to a longer tail on the left/right side of the den-
sity probability function, whereas most values (includ-
ing the median) are situated to the right/left of the
mean. While both skewness and the AVA values quan-
tify the same asymmetry in BOLD time series, skewness
is nonparametric.

As expected a functional relation between the skewness
and the AVA value is demostrated (fig. 2(A)), by comput-
ing both quantities for each voxel in the entire brain. We
used the logarithmic value of AVA in order to have pos-
itive and negative ranges of values, such as the ones for
the skewness. Comparing both indicators we can notice
that the “ceiling mode” and the “floor mode” reported by
Davis et al. correspond to the presence of extreme events
(up to ∼ 8 (fig. 2(E))) in the BOLD time series, that skew
the amplitude distribution, resulting in a skewness value
different from zero. It will be shown that Davis et al.’s
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Fig. 2: (Color online) The skewness and the AVA index are
equivalent estimations of the BOLD signal higher-order statis-
tics. Panel (A) shows AVA as a function of the skewness value
averaged over all brain voxels in one subject. The inset illus-
trates the two sets (peaks and pits) from which the AVA index
is defined. Panels (B) through (D) depict three examples of
BOLD signals corresponding to the colored boxes in panel (A).
Typically, nonzero values of skewness relate to the existence of
one or more extremely large (negative or positive) amplitude
events. Panel (E) shows how skewness behaves as a function
of the number of extreme events for all voxels in one brain.
Inset: we separated the skewness values into two groups: pos-
itive skewness (red) and negative skewness (blue), and count
the number of peaks (events) above 1 s.d. (dashed lines and as-
terisks as depicted in the examples presented in (F) and (G)).
The averaging over the number of extreme events demonstrates
that significant skewness (different from 0) values are found for
BOLD signals with up to ∼ 8 extreme events.

definition can be mapped to the usual higher-moments
statistics.

Testing for spurious artifacts. Despite the efforts to
mechanically restrain the subject head during the record-
ing, it is known that brief and transient small move-
ments still occur. Thus, it is important to control for
the possibility that the presence of extreme events in the
BOLD signals is due to spurious motion artifacts. There-
fore, we accounted for this possibility by first correcting
movements in the pre-processing of the data using the
MCFLIRT [29] tool of the FSL software. From this first
step we saved the time series of residuals, corresponding
to the motion along the six degrees of freedom: trans-
lation (x(t), y(t), z(t)) and rotation (Rx(t), Ry(t), Rz(t)).
Since the largest source of error comes from transla-
tions, we limited our analysis to these degrees of free-
dom. The absolute translation time series, defined as
T (t) = (x(t)2 + y(t)2 + z(t)2)1/2, and a threshold U were
used to identify the instances with T (t) values above this
threshold. Those times t(i) correspond to relatively large
motion, thus we tested for their contribution to extreme

Fig. 3: (Color online) The estimation of skewness and AVA are
both inmune to potential head motion’s artifacts. (A) Loga-
rithm of AVA as a function of skewness for the raw time series
(black), and for different degrees of corrections corresponding
to deleting 10 (red), 20 (green) and 30% (blue) of frames, po-
tentially contaminated with head motion. (B) and (C): the
range of maximum and minimum values for both AVA and
skewness remains approximately constant despite the different
degree of motion corrections.

events in the following manner: the value of the BOLD sig-
nal at t(i), in the entire brain, was replaced by the value
resulting from performing a linear interpolation between
the BOLD signal at times t(i − 1) and t(i + 1). This was
repeated for a range of U values resulting in a deletion of
up to 30% of the original BOLD time series.

As shown in fig. 3(A) the functional shape of the rela-
tion between the skewness and the AVA values remains
unchanged despite a sensible reduction in the datasets.
Moreover, the range of skewness values is also independent
of the percentage of volumes analyzed once this becomes
larger than 10% (fig. 3(B)). From this analysis we conclude
that extreme events, and consequently the BOLD time
series statistics, are not originated from spurious head
motion artifacts and that similar values of skewness are
preserved from the original time series to very short ones,
achieved after removal of up to 30% of the original time
points.

Combined analysis of dynamics and structure. Next
we turn to analyzing the relation between the higher-order
statistics and the underlying structure. Since the BOLD
signal can be shaped by the structural features of the brain
network, we analyze the relation between the structural
topology of a node and the skewness of the signal at the
node. We perform a combined analysis of the BOLD sig-
nal at each volume with the level of connectivity of the
underlying structural network.

For that purpose, we apply a statistical analysis origi-
nally developed to evidence magnitude correlations in seis-
mic catalogs [30] and already used to demonstrate the
presence of correlations among extreme events in brain
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activity [21]. This approach is based on a systematic com-
parison between conditional probabilities evaluated in the
raw time series and conditional probabilities evaluated in
a time series where the activity is randomly reshuffled.
In this way one explicitly takes into account the role of
statistical fluctuations, which can obscure significant cor-
relations in experimental time series. For each subject, we
start by evaluating at each ROI the skewness sk of the
time series and the total number of fibers k as the sum
of all fibers connecting that ROI to any other ROI in the
system.

We then evaluate the conditional probability to mea-
sure a skewness with value larger than sk0 in all ROIs
with connectivity larger than k0, P (sk > sk0|k > k0),
where sk0 and k0 are fixed values of the skewness and
connectivity degree chosen in their distributions. For
each pair of parameters, we also evaluate the probabil-
ity P ∗(sk > sk0|k > k0) for several independent random
realizations of a catalog where the skewness values at ROIs
are randomly reshuffled, but keeping their connectivity de-
gree. For 105 independent realizations of reshuffled data,
we find that P ∗ is distributed as a Gaussian with mean
value Q(sk0, k0) and standard deviation σ(sk0, k0), since
data are uncorrelated by construction.

The relevant quantity for our analysis is then δP (sk >

sk0, k > k0) = P (sk > sk0|k > k0) − Q(sk0, k0), i.e.
the difference between the value of P in the real cata-
log and its mean value in reshuffled catalogs. If δP (sk >

sk0, k > k0) > σ(sk0, k0), we can say that the number of
ROIs satisfying both conditions, sk > sk0 and k > k0,
is larger in the real time series than in any realization of
reshuffled catalogs and, therefore, we conclude that activ-
ity and connectivity are positively correlated. Conversely,
if |δP (sk > sk0, k > k0)| < σ(sk0, k0), the value measured
in the real temporal series is compatible with values ob-
tained for reshuffled catalogs and, therefore, quantities are
uncorrelated.

In fig. 4 (top) we show the value of δP (k > k0, sk > sk0)
evaluated for all ROIs in the system and averaged for the
12 subjects as a function of sk0 and for different values of
k0. For each value of δP we draw the error bar equal to
σ(sk0, k0) and inspect if the error bar excludes the value
δP = 0. In this case there is evidence for the existence of
correlations. Data show that for small values of k0 the lo-
cal activity on average does not exhibit relevant correla-
tions with the ROI connectivity. However, for k0 ≥ 50 a
clear maximum is detected for values of the skewness in the
range (−0.3, −0.2), whose positive value excludes δP = 0,
considering error bars. We conclude that there is evidence
of correlations for ROIs with skewness −0.3 < sk < −0.2.
Since δP (sk > sk0, k > k0) decays to zero for sk > −0.2,
we conclude that highly connected regions (k > 50) tend
to exhibit a high activity level as evidenced by a large
negative skewness. This result is confirmed if we use
2σ(sk0, k0) as error bar. A similar conclusion can be drawn
from fig. 4 (bottom), where δP (sk > sk0, k > k0) is plot-
ted as function of k0 for different sk0. The two curves

δ
δ

Fig. 4: (Color online) Correlations between the higher-order
statistics of the brain activity at one point and its local un-
derlying connectivity. Top: conditional probability difference
δP (k > k0, sk > sk0) as a function of the connectivity param-
eter k0 for different skewness parameter sk0. Bottom: condi-
tional probability difference δP (sk > sk0, k > k0) as a function
of sk0 and for different values of k0. Error bars are equal to
σ(sk0, k0).

obtained for k0 = −0.2 and −0.3 show an evident in-
crease as a function of k0 with respect to the other curves,
with the error bar excluding δP = 0. Finally we notice
that there is not a clear evidence of correlations between
ROIs with positive skewness and connectivity, and only for
k0 = 60 the conditional probability exhibits a relatively
small smooth maximum for sk0 = 0.4 (fig. 4, top). This
suggests that correlations play a relevant role in regions
with high negative skewness, i.e. activity is strongly cor-
related to local connectivity in subcortical areas, and that
the relation between activity and connectivity is nonlinear.

Discussion and conclusion. – In this work we have
studied the third-moment statistics of the brain BOLD
signal in the resting state and its relation with the underly-
ing structural connectivity. We find that the BOLD signal
exhibits typically nonzero skewness, with positive values
for cortical regions and negative values for subcortical re-
gions. Furthermore, the combined analysis of structural
and functional connectivity shows that the amplitude of
the signal’s skewness at a given region is directly related
with the structural degree of the region.

The present results parallel the findings by Davis
et al. [28] using an ad hoc asymmetry index. The fact
that the BOLD signal skewness can be equivalent to Davis
et al.’s index [28], suggests some discussion of their con-
clusions in the light of the structural-functional relation
presented here. The authors in [28] concluded that the
main difference in the resting activity profiles of asym-
metry were found between adults and children. Further-
more, and perhaps being the most intriguing result, these
differences were related with the fact that children with
higher IQ exhibited adult-like AVA patterns. Although we
did not investigate this issue in our study, the structural
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underlying patterns we found seem to support the previ-
ous results, since developmental changes are usually re-
lated with structural changes.

Interestingly, our results show that negative skewness
correlates with more connected regions. In recent work
it has been shown that developing hippocampal networks
follow a scale-free topology with the existence of functional
hubs. In addition, these functional hubs are composed by a
subpopulation of GABAergic inhibitory intraneurons [31].
The fact that inhibitory neurons work as hubs may give
insights into the observed correlations between negative
skewness values and high connectivity. Negative skewness
values represent transient extreme events of the BOLD sig-
nal below the mean signal value, and may arise from collec-
tive cooperation of fast de-activation processes. The fact
that inhibitory neurons are organized as functional hubs,
may explain why correlations are found between highly
connected areas and negative skewness values.

The finding that skewness varies across cortical and
subcortical regions suggests future work to elucidate how
skewness and structural connectivity relate to the topo-
graphical brain distribution. Overall, the present results
indicate that higher-order statistics and its structural re-
lation reflect important and novel dimensions of brain
dynamics that deserve further exploration.
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