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One of the main problems in controlling COVID-19 epidemic
spread is the delay in confirming cases. Having information
on changes in the epidemic evolution or outbreaks rise before
laboratory-confirmation is crucial in decision making for
Public Health policies. We present an algorithm to estimate
on-stream the number of COVID-19 cases using the data
from telephone calls to a COVID-line. By modelling the calls
as background (proportional to population) plus signal
(proportional to infected), we fit the calls in Province of
Buenos Aires (Argentina) with coefficient of determination
R2 > 0.85. This result allows us to estimate the number of
cases given the number of calls from a specific district, days
before the laboratory results are available. We validate the
algorithm with real data. We show how to use the algorithm
to track on-stream the epidemic, and present the Early
Outbreak Alarm to detect outbreaks in advance of laboratory
results. One key point in the developed algorithm is a
detailed track of the uncertainties in the estimations, since the
alarm uses the significance of the observables as a main
indicator to detect an anomaly. We present the details of the
explicit example in Villa Azul (Quilmes) where this tool
resulted crucial to control an outbreak on time. The
presented tools have been designed in urgency with the
available data at the time of the development, and therefore
have their limitations which we describe and discuss. We
consider possible improvements on the tools, many of which
are currently under development.
1. Introduction
The COVID-19 epidemic has been causing global damage to
practically all aspects of world society since early 2020.
Although a huge effort in many fields of sciences is being made
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to mitigate its effects, the disease is continuously spreading and, in many regions, a second wave is

causing great concern. The difficulties in controlling the epidemic are in part due to a crucial
combination of being highly contagious [1], having a long incubation period [2] during which
infections are possible a few days before symptoms onset [3], having mild or asymptomatic cases [1]
and also because the diagnosis may take a few days after contacting the Health Care system. In
particular, the latter yields that outbreaks spread and epidemic evolves while laboratory results are
being processed. This effect being more important in low- and medium-income countries due to
operational and logistic problems, generally caused by technological and economic inequalities [4,5].

We present in this work a method to mitigate the epidemic effects by estimating the number of
COVID-19 cases without having to wait for laboratory confirmations. This provides the Health Care
system with a tool to react in advance and evaluate current or next Public Health policies.

In mass accidents or major catastrophes, early warning systems (EWS) play a key role for disaster
mitigation [6–8] decreasing response times and improving their effectiveness. The main strategy of EWS
in infectious disease surveillance is the incorporation of information produced nearly from the infection
[9–11]. In this case, the symptoms onset and their detection by the individual and community health
systems is the first detectable signal of cases and, in particular, an outbreak. EWS based on syndromic
surveillance have been applied in epidemiological surveillance for early outbreaks identification and
confirmation [12–16]. One of the main characteristics of EWS is the utilization of health information
provided by the population in order to activate local alarms. Nowadays, with the wide use of cell
phone applications and specific health-system phone lines, important databases with information about
syndromic surveillance are generated each day [17]. Geo-location plays a main role in spatial and
temporal definition of the outbreaks detected by EWS [18].

In Buenos Aires Province (Argentina), the COVID-19 phone line 148 is one of the first contacts
between a person that believes themselves to be infected and the Health Care system. The trained
Health Care team receives and responds to people’s questions generating, simultaneously, a
syndromic surveillance database. If the person has symptoms that could indicate a COVID19
infection, they are instructed to follow the corresponding protocol. Importantly, such a syndromic
database was used as an input for estimation of cases and outbreak detection in Buenos Aires Province.

This work is divided as follows. In §2, we describe the COVID-line data and present the details of the
mathematical model to estimate the number of cases using the phone calls data. In §3, we show how
the model works in Buenos Aires Province and how it can be used to track on-stream the epidemic. In
§4, we present the Early Outbreak Alarm and show its details in Villa Azul (Quilmes) case. We discuss
the limitations and current improvements of the model in §5, and we present our conclusions in §6.
2. Estimating on-stream COVID-19 cases through calls to a COVID-line
We describe the mathematical model implemented to relate phone calls to a COVID-line to laboratory-
confirmed cases per district per day. In the following paragraphs, we outline the functioning of the 148
COVID-line and then we describe the details of the model.

2.1. COVID-line 148 in Buenos Aires Province
Buenos Aires Province (PBA for its acronym in Spanish) is the most populated province of Argentina, with
more than 17 million inhabitants. Around 13 million people live in the Metropolitan area surrounding the
City of Buenos Aires. Importantly, the remaining 4 million live in the vast area with low population density
known as the interior of the province. This demographic heterogeneity leads to a hyper-centralized Health
Care system. In order to attend to the growing demand for medical assistance caused by COVID-19, public
health authorities implemented in February 2020 a COVID-specific phone line that is reached by dialing
148. The objective of this COVID-line is to address all community concerns related to COVID, which
include questions, doubts, symptom reports and reference to the Health Care system, among others.

The staffing of the COVID-19 phone linewas increased as the epidemic spread in PBA. The call request
grew fromafewhundreds per day inMarchup to approximately 20kper dayat the endofAugust.Until late
June the system was able to meet the demand, and all calls requiring assistance were taken. We therefore
consider that during this regime an indicator coming from this COVID-line would be relatively
unbiased. This is specially true if one compares this to other indicators as testing, or laboratory
processing, which were changing their behaviour considerably as epidemic spread during this period.
We find that 1 April to 26 June is a period in which the COVID-line has been relatively stable.
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Figure 1. COVID-line 148 workflow. As people call the COVID-line upon their health perception, the COVID-trained operators
determine whether they correspond to suspicious or close-contact case. In such a case, their record is passed to the
epidemiological surveillance team and a COVID-19 swabbing is ordered. Some days later the swabbing laboratory result is
added to the corresponding record. The algorithm described in this paper works with the first part of the information which is
delivered on-stream as the operators determine the case passes the corresponding threshold.
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As people call the COVID-line 148, they enter into an automatic voice menu in which one of the
options corresponds to COVID-like symptoms. As users go into this option their call is taken by a
COVID-trained operator and a short questionnaire on their experience indicates whether the call does
not pass the threshold to be registered or corresponds to one of the two registered categories: close-
contact and suspicious case. If the call corresponds to any of these categories, then the operator
registers their data and in particular the district from which they are calling. We depict in figure 1 the
workflow of the COVID-line. At the early stage that the system was implemented, the record did not
contain reliable information on the exact address of the user. This crucial fact led us to develop the
system we explain below by restricting our information on the user to only their district. Although
future upgrades of the system are providing more accurate location of the call, the current work
restricts to the caller district and only once their call is taken by a COVID-trained operator.
2.2. Mathematical model to estimate cases from phone calls to the 148 COVID-line
We present the mathematical model to estimate the new infected using the phone call data, and apply it
to PBA. The reasoning in this section follows the same lines as in [19], but with different purposes and
different filtering in the dataset.

We consider a dataset of calls from many districts and during a given time range to a COVID-line.
Each one of these calls can either be

background: people with similar symptoms but not infected; or

signal: people infected with COVID-19:

Under reasonable assumptions of homogeneity in space and time we can model that background calls in
each district and time-window are proportional to the total district population and the time-window
length. Whereas signal calls are proportional to the total number of infected people in the district
whose record is opened in the corresponding time-window, even though their laboratory-confirmation
may be available in a later time. Therefore, if we divide all our dataset in chunks corresponding in
space to the districts in PBA, and in time to time-windows of Δt ( j ) days that can be arbitrarily chosen,
we can pose the following equations for all the chunks labelled by j:

n(j)c ¼ u p Dt(j) N(j)
p þ uI N

(j)
I , (2:1)
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where N(j)

p is the population of the corresponding district and N(j)
I is the number of confirmed infected at

the same district and whose record was opened during the corresponding time-window. On the left-hand
side, n(j)c is the fit to the total number of calls, whereas N(j)

c (not in the equation) is the total number of
actually placed calls. Observe, therefore, that this set of equations (one for each chunk j) can be
extended depending on the chosen time-window length. Once this set of j = 1… k equations has been
posed, we can fit the best values of coefficients θp,I that minimize the square distance between n(j)c and
N(j)

c . We stress that there are only two coefficients (θp,I) that must fit all k different equations for
each chunk.

This fit works better if all chunks correspond to periods inwhich the testingmethods have not changed
drastically, as it can be for instance if the number of daily tests ismodified considerably, or if new symptoms
are considered as thresholds for testing, among others. The reason for requiring this is to have a coherent
balance between the number of infected reported and the number of calls in all chunks all the time. With
this objective, is better to re-fit the parameters every time there are major changes in the testing and
reporting methods. It is also important to observe at this point that in using the same θp,I to fit regions
with very different sociocultural aspects may lead to eventual biases. Therefore, if the dataset is large
enough, it may be convenient in some cases to fit different θp,I for each region and use many time
windows for the fit. In such a case, these variations of θp,I along the regions may provide insightful
sociocultural information. In choosing how to do the fit, one is balancing between reducing relative
statistical uncertainty with many chunks, or reducing sociocultural biases by separating the regions.
Along this work, since we have a limited dataset, we have fitted all regions with the same θp,I
parameters, accepting that a slight bias may be introduced in the outcome.

Once the parameters θp,I in equation (2.1) have been fitted, including their uncertainty from the fit, we
can estimate the number of new infected in a given chunk as

n(j)I ¼ 1
uI

(N(j)
c � u p Dt(j) N(j)

p ): (2:2)

Observe that the right-hand side requires data that is obtained in the same day, and therefore one can
estimate the number of cases nI on-stream, without need of waiting for the laboratory results. Note, that
the algorithm allows the estimation of the total number of new cases in each chunk, but not the
determination of which of the calls correspond to the new cases. The uncertainty in the estimation of new
infected in each chunk, jn(j)I

, is computed by applying the usual error expansion formula on equation
(2.2). If variables are correlated, as for instance θp and θI, one should take this into account; however, in
our case we neglected this correlation in comparison to other terms. For the parameters θp,I, we use the
uncertainty coming from the fit, for Nc we use Poisson uncertainty, and for Np one should decide
whether to add a systematic uncertainty or only use Poisson, as we did in this work. Observe that since
Poisson uncertainty for Nc,p goes as

ffiffiffiffiffiffiffiffi
Nc,p

p
, then the absolute uncertainty jn(j)I

will increase as nI increases.

However, the relative uncertainty jn(j)I
=nI decreases when the number of estimated cases increase, which

makes the predictions more robust to fluctuations in terms of their relative size. This and other related
effects are explicitly seen in the figures of the examples discussed in the following sections. As discussed
below, uncertainties in the estimations play a central role in the design of the Early Outbreak Alarm, and
therefore should be handled with care, especially the systematic ones, if present.

In order to apply this algorithm in PBAwe have used the dataset of phone calls to the 148 COVID-line.
Weworkwith all the phone calls entering the COVID-line that reach the threshold for being close contact or
suspicious case. The reason for this filtering is because the district the user is calling from is registered by
the operator. Although the address is also in principle registered on most occasions, in practice, many
ambiguities, misspelled words, or other unintended errors yield that only approximately 50%�70% of
the times it can be correctly reconstructed. We consider the dataset of calls between 1 April and 26 June
only, because after this date the call centre was overloaded and all the calls could not be taken, yielding
intractable biases. For this period, we have fitted the data a few times in different datasets, obtaining
fairly similar results and with coefficient of determination always satisfying R2 > 0.85. In particular, as
cases were increasing, we were obtaining more accurate estimations for θI, as can be expected.

In order to show the robustness of the hypotheses, we show how this model works with data from
1 May to 26 June, divided in two equal length time-windows each. We consider all districts in PBAwhose
number of calls in these chunks is greater than 100. After this filtering we are left with 43 chunks, i.e. 43
data points. After performing the fit indicated in equation (2.1) we obtain

u p ¼ (5:16+ 1:59)� 10�6 calls per inhabitant per day
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Figure 2. Placed versus fitted calls during the fitted period (1 May to 26 June divided in two time-windows). The number of fitted
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and

uI ¼ 0:69+ 0:05 calls per infected people.

It is worth noticing that the precise values of these fitted coefficients have a strong dependence on the
process of call filtering and call system architecture. In particular, these values differ from those in [19]
because we are considering a different level of filtering to obtain the district of each user. The fit for
this dataset yields a coefficient of determination R2 = 0.91, which indicates the robustness of the
involved hypotheses. In figure 2, we show the comparison between data and fit for the number of
phone calls, as posed in equation (2.1).
3. Tracking epidemic through model estimations
The mathematical model described in the previous section provides a framework to estimate many days
in advance the number of laboratory-confirmed cases per day, as a function of the spatio-temporal
distribution of phone calls to the COVID-line. This is a compelling achievement because the phone
call information is available on-stream, whereas laboratory confirmation of cases may require from a
few days to up to a week after patients report their first symptoms. Along this section we show how
this system can be used to have an estimate of the epidemic evolution on-stream, along with real case
results in PBA.

As this system was developed there was no time for validation. However, obtaining a very satisfactory
R2 * 0:85 in the fit was a signal that the model was insofar working well. As months went by, we had the
possibility of comparing in a long range time-window the model estimation against the measured
laboratory-confirmed number of cases per day per district. In figure 3, we show the comparison between
the estimation and the late laboratory-confirmed cases per day for any two districts in PBA. Similar
results are obtained for other districts. It is central to observe in this figure that the number of
laboratory-confirmed cases (red line) is information that is available many days after the corresponding
date, whereas the model estimation (blue) is available at the end of each day. As can be seen in the
figure, the estimation has a good agreement with the real data. There are a few date ranges in which
door-to-door swabbing through DETECTAR operatives [20] induce an expected sub-estimation in cases.

This syndromic surveillance has been used to follow the size, spread and tempo of outbreaks, to
monitor disease trends and to provide reassurance that a potential outbreak has not occurred.
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In particular, it has also been very useful as an early outbreak detection, as we detail in the next section.
Syndromic surveillance systems seek to use existing health data in real time to provide immediate
analysis and feedback to those in charge with investigation and follow-up of potential outbreaks.
Particularly, the data collected by the COVID-line calls proved to be a valuable and reliable input to
track the epidemic along the PBA.

The tracking of the epidemic through this model is especially useful when the capacity overload of
the diagnostic centres leads to delays in obtaining results. For this reason, having a real-time and
relatively unbiased estimation of cases gives the Public Health authorities the possibility of taking
actions in time [14]. Furthermore, in a disaster scenario prioritization, this tool takes a main role when
resources and time are limited, as occurred at the end of June in PBA. The calls-based syndromic
surveillance allowed a rapid characterization of the different PBA districts in terms of their
epidemiological status, and the consequent action was taken in order to mitigate the epidemic effects.
4. Early Outbreak Alarm
In this section, we detail a compelling by-product of the model in §2 to detect COVID-19 outbreaks
considerably earlier than through laboratory confirmation. We briefly describe the working of the
model and then provide its detail through the description of a real case that occurred in mid-May in
Villa Azul (Quilmes) and Villa Itatí (Avellaneda) in PBA.

4.1. Identifying an outbreak formation
Using the on-stream estimation of the cases per day in each district, we are interested in developing a
statistical and automatic tool that can trigger an alarm when a potential outbreak is on the rise.
Having an early alarm on this kind of epidemiological feature is a crucial tool to avoid its spread and
drastic consequences.

To detect a potential outbreak there are many indicators that should be simultaneously analysed. On
one hand it is important to have an estimation of the daily absolute and relative number of cases and, on
the other hand, it is also important to have an estimation on the daily variation of these observables. To
have an objective quantitative indicator of the potential of an outbreak in a given region, it is essential to
have a correct assessment of the uncertainties in all the estimations of the model. As the implemented
system is intended to be an Early Outbreak Alarm, we have considered that the important indicator is
the significance of all the basic indicators which signal an anomaly as they depart from zero. Here,
significance is defined as the distance to zero from the central value of the indicator, measured in
units of its uncertainty. Or, in other words,

significance ¼ central value
uncertainty

: (4:1)
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As can be seen in equation (4.1), the correct computation of the uncertainties (or error bars) is crucial for

the functioning of the Early Outbreak Alarm.
The developed algorithm computes every day the estimation for the total number of new cases in

each district in PBA. Since in the studied time-window, specially before June, the number of estimated
cases per day of many districts was approximately 5–10, we considered to include the estimation of
cases for the last 2 days. This would reduce the relative Poisson uncertainty due to small numbers.
We computed the number of estimated cases in absolute value, and also relative to 100 000
inhabitants to be equally sensitive to all districts.

A third and decisive observable that signals the level of danger of an outbreak is the daily increase of
estimated cases. Given the daily estimation provided by the mathematical model, we can recognize a
rapidly increasing curve in many ways. We have chosen to fit a straight line to the case estimation for
the last 3 days and use the slope of this line as an estimation of the central value of the daily increase.
We also use the significance as the most relevant indicator to decide the level of danger of each
district. In this case, the computation of the error bar in the slope of the line includes all the
uncertainties in each day estimation included in the computation of the fit uncertainty through the
least-squares residuals. We use 3 days to fit a line because it is the minimum time needed to see a 2-
day consecutive increase, while being still well ahead of the laboratory results. In addition, 3 days is
also a good time-window for the specific COVID-19 characteristics.

This Early Outbreak Alarm has provided the PBA Health Care administration with very important
tools to identify possible outbreaks during the rise of the epidemic curve. Since the granularity of the
algorithm is very poor (districts), the system needs to be complemented with other independent
indicators, in particular those which can help to provide a more accurate location of the outbreak.
This was usually done by calling back manually the recorded cases, and then by sending DETECTAR
operatives [20] to verify if in fact the in situ conditions would be as predicted. The Early Outbreak
Alarm has indicated many outbreaks that have been controlled between mid-April and mid-June. In
particular, we describe in the following paragraphs the very special1 case of Villa Azul (Quilmes) and
provide the details on how the Early Outbreak Alarm indicated the Quilmes district.

4.2. Case study: Villa Azul, Quilmes
We report the details of one of the outbreaks indicated by the Early Outbreak Alarm in mid-May in
Quilmes district. This case was the first major outbreak in a low-income neighbourhood in PBA and
had a great impact in the news [21], not only for its magnitude but also because of its early detection
that drove a strict lock-down and isolation of the outbreak to control its spread to the close
neighbourhoods.

On 20 May, the alarm was indicating a large number of estimated cases in Quilmes district (figure 4);
in particular, Quilmes had the top estimation in number of cases per inhabitants of the last 2 days, as
measured through the significance of the indicator. In addition to this, the indicator of the daily
increase fit was also indicating Quilmes as the top district in significance (figure 5). This last indicator
on the daily increase fit to the last 3 days can be visualized in figure 6a, where we plot the daily
estimation for the last 7 days on Quilmes. The fit is obtained using the last three data points in red.
Given all these indicators pointing to Quilmes district, the surveillance team took the duty to locate
the phone calls and observed an excess coming from Villa Azul, a low-income neighbourhood in
Quilmes and next to Avellaneda district.

These observations indicated in advance by the Early Outbreak Alarm needed to be verified by an
independent complementary indicator. On the following day, a DETECTAR operative [20] was sent to
Villa Azul, where the acute situation was verified and door-to-door swabbing with urgent laboratory
results started right away. As first results were confirming the outbreak in Villa Azul, the PBA
Administration decided on a strict lock-down and isolation for 14 days from 24 May [21].

4.3. Villa Azul epidemiological and operational description
Villa Azul (Quilmes) and Villa Itatí (Avellaneda) are two adjacent low-income neighbourhoods. The last
demographic analysis indicates that Villa Azul has a population of 3128 and Villa Itatí 15 142. High-
density building and housing, and tiny streets bring the population into close contact. These
characteristics make these neighbourhoods susceptible to a fast spread [22]. Taking this into account,
1This case covered the headlines in the news for several weeks [21].
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early outbreak detection implies a main challenge in these complex cases where detection and
propagation block must be done when the first few cases are reported. In particular, the above-
described early alarm for the outbreak occurred in Villa Azul allowing a fast response of the Health
Care system team to mitigate and control its propagation to Villa Itatí.

Once the strict lock-down and isolation had been implemented, water and food supply were
delivered by the social care team. People were not allowed to leave the house during the entire
isolation. Active surveillance health teams started with a door-to-door symptoms monitoring. Those
cases with clinical manifestation related to COVID-19 were tested. Confirmed cases were isolated
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inside their houses in cases where this was possible (if there was an empty room for example) and in
cases where it was not, the people were sent to an out-of-hospital centre.
5. Outlook and scope
The development of the mathematical model to estimate the number of COVID-19 cases was done in
urgency and adapting it to the available data. There was no time to request changes in data
acquisition or processing. Of course, the algorithm and the system can be improved in many
directions. We discuss some of these features in the following paragraphs.

One of the major weaknesses in the algorithm is the large granularity, which corresponds to districts.
District populations in the area are on average 500 000 people. This issue is translated in that the Early
Outbreak Alarm stops working once the density of cases is such that there are more than a few
outbreaks in each district. This happened in late June in PBA. In a future implementation, we are
carrying out a workaround for this issue by obtaining a reliable address from the COVID-trained
operator who takes the call. A more stable solution would be to obtain this information from the
telephone company; however, regulations many times block this possibility.

On the other hand, the algorithm has a very important benefit that is its unbiasedness. Given that the
COVID-line works 24 h a day, 7 days of the week and with a fair equal methodology all the time, the
algorithm estimation does not rely on tests availability or overloaded testing facilities, among others.
Of course, the system does have slight biases that may come—for instance—from different
backgrounds due to different features in the districts, or seasonally social behaviour as months go by.
Some of these biases may be solved by re-fitting the model once in a while, others by fitting different
models in different regions.

Importantly, the algorithm provides information about the background calls that vary in space and
time. Further studies could be done in order to understand and extract properties of the background,
as it can be its seasonality, variations according to regions, to public announcements or news, etc.

The crucial point in the mathematical model is that it recognizes anomalies due to collective
behaviours. Therefore, we find that the mathematical model and the Early Outbreak Alarm algorithms
can be useful for many other epidemiological diseases—as for instance dengue—and other events
such as natural catastrophes, among others. We are currently working on the improvement of this
system in many aspects, also including machine learning algorithms, and these advancements will be
published in a future work.
6. Conclusion
We have created a syndromic surveillance algorithm based on the correlation between phone calls to a
COVID-line, districts population and reported cases. This algorithm works by understanding that
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phone calls to a COVID-line are in part from non-infected people having similar symptoms (background)

and in part from infected people (signal). By observing that background has to be proportional to district
population, whereas signal proportional to reported cases, we have fitted our assumption. The coefficient
of determination for Buenos Aires Province (PBA) is always R2 > 0.85 for different samples, which
indicates the robustness of our hypothesis. In addition, we have validated our model with real data.

In this paper, we have described themodel, its estimations and howwe compute their error bars. Also, it
has been shown how the estimations, which are obtained in-stream, can be used to address Public Health
policies without requiring to wait for laboratory results, which require many more days to converge. The
algorithm worked in PBA from April to June, since during this time the COVID-trained call centre was
not overloaded. Therefore, the estimation was relatively unbiased.

We have shown how this estimation can be used to create an Early Outbreak Alarm. Furthermore, we
describe how the construction of indicators that have to do with daily cases, and daily increase of cases,
can indicate outbreaks in advance. The relevant statistical variable in this case is the significance, since it
is a real measure on how far from zero are the indicators. Importantly, this system can detect an outbreak
and, in particular, we exemplify its application in the outbreak detection in Villa Azul (Quilmes).

The limitations to the EarlyOutbreakAlarmwerediscussed in this paper.Manyof themarise because of
the characteristics of the data available at the moment of its (urgent) development. We have pointed out
many ways to improve its sensitivity and accuracy, on which we are currently working. This alarm
would also be useful, not only for other epidemiological diseases but also for events that yield changes
in collective behaviour, such as dengue epidemic, natural catastrophes or others.

The presented algorithm and mathematical model provide a helpful tool to prevent the spread of
SARS-CoV-2 and could be useful in improving the measures discussed recently [23]. This algorithm
has been one of the main tools in the PBA Health Care system dashboard during the epidemic, and
its current and upgrade versions are still being used to track the epidemic and detect outbreaks.
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