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Experimental and clinical evidence supports the concept that metalloproteinases (MMPs), beyond different
physiologic functions, also play a role in the development and rupture of the atherosclerotic plaque. Interest in
MMPs has been rapidly increasing during the last years, especially as they have been proposed as biomarkers
of vulnerable plaques. Different components of themetabolic syndrome (MS) have been identified as possible
stimulus for the synthesis and activity of MMPs, like pro-inflammatory and pro-oxidant state, hyperglycemia,
hypertension and dyslipidemia. On the other hand, anti-inflammatory cytokines like adiponectin are
inversely associated with MMPs. Among the several MMPs studied, collagenases (MMP-1 and MMP-8) and
gelatinases (MMP-2 andMMP-9) are the most associated withMS. Our aimwas to summarize and discuss the
relation between different components of the MS onMMPs, as well as the effect of the cluster of the metabolic
alterations itself. It also highlights the necessity of further studies, in both animals and humans, to elucidate
the function of novel MMPs identified, as well as the role of the known enzymes in different steps of metabolic
diseases. Understanding the mechanisms of MS impact on MMPs and vice versa is an interesting area of
research that will positively enhance our understanding of the complexity of MS and atherosclerosis.
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1. Introduction

Metabolic syndrome (MS) is a clustering of risk factors for
cardiovascular disease (CVD) and type 2 diabetes mellitus (T2D). These
factors include hyperglycemia, raised blood pressure, dyslipidemia –

mainly represented by elevated triglyceride and low HDL-cholesterol –
and obesity (particularly with abdominal localization). Patients with MS
are twice as likely to be at risk of developing CVD over the next 5 to
10 years than individuals without the syndrome, and have a 5-fold
increased risk for T2D [1]. Different components of the MS have been
identified as possible stimulus for the synthesis and activity of
metalloproteinases (MMPs), like inflammatory and pro-oxidant state,
hyperglycemia and dyslipidemia. MMPs constitute a family ofmore than
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Table 1
Metabolic syndrome definitions according to different Consensus Statements.

National Cholesterol Education
Program-Adult Treatment Panel III,
2001 [9]

American Heart Association/National Heart,
Lung, and Blood Institute Scientific Statement,
2005 [10]

International Diabetes Federation, 2006 [8] Harmonizing the Metabolic Syndrome,
2009 [1]

Three or more of the following: Measure (any 3 of 5 constitute diagnosis
of metabolic syndrome)

Central obesity as defined by ethnic/racial,
specific WC and two of the following:

Three or more of the following:

WCN102 cm for men, N88 cm for
women

WCN102 cm in men, N88 cm in women Triglycerides≥150 mg/dl Central obesity as defined by ethnic/racial,
specific WC

Triglycerides≥150 mg/dl Triglycerides ≥150 mg/dl or on drug
treatment for elevated triglycerides

HDL-cholb40 mg/dl for men; b50 mg/dl
for women

Triglycerides≥150 mg/dl or on drug
treatment for elevated triglycerides

HDL-cholb40 mg/dl in men;
b50 mg/dl in women

HDL-chol b40 mg/dL in men; b50 mg/dL
in women or on drug treatment for
reduced HDL-chol

BP≥130/85 mm Hg HDL-cholb40 mg/dl in men; b50 mg/dl in
women or on drug treatment for reduced
HDL-chol

BP≥130/85 mm Hg BP≥130/85 mm Hg or on antihypertensive
drug treatment in a patient with a history
of hypertension

FPG≥100 mg/dl BP≥130/85 mm Hg or antihypertensive
drug treatment

FPG≥110 mg/dl FPG≥100 mg/dl or on drug treatment for
elevated glucose

FPG≥100 mg/dl or on drug treatment for
elevated glucose

WHR: Waist-to-hip ratio; WC: waist circumference; BP: blood pressure; FPG: fasting plasma glucose; chol: cholesterol.
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Fig. 1. MMPs classification according to their substrate specificity. In this figure, only
extracellular matrix substrates are shown.
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25 zinc-dependent endopeptidases able to degrade extracellular matrix
(ECM) components. MMPs play an important role during physiological
tissue remodeling in embryonic development [2], in bone resorption [3],
and in angiogenesis [4]. Although synthesized in several tissues and in
different physiologic states, their role in vascular pathologies has been
extensively studied [5]. However, a loss of activity control may result in
diseases such as arthritis, cancer, tissue ulcers, and atherosclerosis
among others. Nowadays there is no doubt about the behavior of MMPs
in patients with acute myocardial infarction, unstable angina, after
coronary angioplasty, suggesting that the importance of MMPs not only
in vulnerable plaques but also in restenotic lesions [6]. Circulating levels
of someMMPs have beenproposed as biomarkers of vulnerable plaques
[7]. So, the interest in MMPs has been rapidly increasing during the last
years, especially as they could be a relevant target for CVD treatment.

This review summarizes and discusses the effect of the different
components of MS, as well as the cluster itself, on MMP behavior.

2. Metabolic syndrome

The coexistence of CVD risk factor components of MS has been
known for years, however, in the last two decades, different clinical
definition of MS have been developed with the purpose of identifying
individuals of high risk. Whatever the uncertainties of definition and
etiology, MS represents a useful and simple clinical concept which
allows an early detection of T2D and CVD.

For the detection of individuals with MS, six major organizations
and societies have arrived at a consensus statement on the definition
that will hopefully be a pivotal point in the development of theMS as a
tool for clinical and public health use [1]. The consensus definition
represents a compromise of sorts between the previous International
Diabetes Federation (IDF) [8], the Adult Treatment Panel-III [9] and
American Heart Association/National Heart, Lung, and Blood Institute
definitions [10] (Table 1).

Prevalence estimated for the MS varies worldwide, in men it
ranges from 8% in India to 24% in the United States, while for women it
rises from 7% in France to 46% in India [11]. Differences depend in part
on lifestyle, sex, age and ethnicity. It is more common in Mexican
Americans (32%) and in patients with lower socioeconomic status and
sedentary lifestyles, less common in African Americans (22%), and in
Europeans (15%) [12]; it increases linearly with age from, about 7%
20–29 year olds to 45% in those over 60. Moreover, the latest NHANES
data found that the prevalence of theMS is increasing in bothmen and
women of all age groups [13].

Although the pathogenesis remains unclear, insulin resistance and
visceral obesity have been recognized as themost important pathogenic
factors. Both of these conditions appear to contribute to the develop-
ment of MS, although the mechanisms underlying these contributions
are not yet fully understood. Atherogenic dyslipidemia, elevated blood
pressure and elevated plasma glucose are its most widely recognized
components. However, the presences of pro-thrombotic and pro-
inflammatory states are also very common. In the insulin resistance
state, there is an excessive release of free fatty acids (FFA) and
adipocytokines from visceral adipose which are responsible, in part,
for the deranged lipoproteinmetabolism. The atherogenic dyslipidemia
consists not only in the increase of triglycerides and decrease of HDL-
cholesterol levels, but also in other alterations that include elevated
serum apoprotein B, presence of remnants of triglycerides rich
lipoproteins and increased proportion of small dense LDL particles
[14]. This modified LDL particle is known to be more atherogenic,
probably because of its easy to pass through the endothelial basement
membrane, its increased susceptibility to oxidation [15], its higher
toxicity to the endothelium and its selective binding to scavenger
receptors on monocyte-derived macrophages [16]. Other modified
lipoproteins are also frequently found in MS, such as large VLDL over-
enriched in triglycerides which could also be more atherogenic [17].
These VLDLs result from a liver with increased lipid deposits [18],
characteristic of the MS. The expanded adipose tissue constitutes a
source of pro-inflammatory cytokines, thrombotic and atherogenic
factors secretion. The C-reactive protein (CRP), a marker of chronic
inflammation, is correlatedwith adiposity, and recent evidence suggests
that CRP is not a mere marker of inflammation, but may also directly
contribute to atherogenesis and insulin resistance [12].

As was previously emphasized, the number of patients with CVD
fulfills the diagnostic criteria of the MS, defined according to any of the
mostuseddefinitions is increasingdaily (Table1).However, beyond these
factors, it is evident that MS constitutes a widespread web involving



Table 2
Behavior of MMP-s in consequence of the different components of the Metabolic Syndrome. The dissimilar results may be explained for the several models used as well as the
diversity of methods applied for the measurement of MMPs.

Metabolic syndrome component MMPs/TIMPs In vitro studies Cell type (Reference) In vivo studies Species (Reference)

Dysglycemia ↑MMP-1 Endothelia cells, macrophages [36]
↑MMP-2 Endothelial cells [36]; smooth muscle cells [41] Rodent aorta [37]; human plasma [47,48]
↑MMP-9 Endothelial cells, macrophages [36] Rodent aorta [37]
↑MT1–MMP Smooth muscle cells [41]
↓MMP-3 Endothelial cells, macrophages [36]
↑TIMP-2 Smooth muscle cells [41]
↓TIMP-3 rodent aorta [37]
↑TIMP-1 human plasma [49,50]

Hypertension ↑MMP-2 Arterial tissue [53] Human plasma [52]
↑MMP-9 Arterial tissue [53]; smooth muscle cells [57] Human plasma [52,55,56]
↑MMP-s Rodent aorta [54]
↑MMP-1 Smooth muscle cells [57]
↑MMP-3 Smooth muscle cells [57]

Anti-hypertensive treatment ↓MMP-9 Smooth muscle cells [59] Human plasma [58]
↑TIMP Smooth muscle cells [59]

Dyslipidemia ↑MMP-9 Human plasma [66]
Hypertriglyceridemia ↑MMP-1 Human plasma [66]

↑TIMP-1 Macrophages [61]
Low-HDL ↓MMP-2 Human plasma [65]

↓MMP-9 Human plasma [7,65]
Oxidized-LDL ↑MMP-1 Vascular endothelial cells [60]

↑MMP-9 Macropahges [61]
↓TIMP-1 Macrophages [61]

High-LDL ↑MMP-9 Human plasma [68]
↑MMP-2 Human plasma [68]

Dense-LDL ↑MMP-2 Human plasma [67]
High-apoprotein B ↑MMP-2 Human plasma [65,67]

Obesity/abdominal obesity ↑MMP-3, 11, 12, 13, 14 Rodent adipose tissue [71]
↓MMP-7, 9, 16, 24 Rodent adipose tissue [71]
↑MMP-9 Human plasma [75]
–MMP-9 Human plasma [79]

Decrease weigh ↓MMP-9 Rodent adipose tissue [79] Human plasma [76]
Inflammation

CRP-hs ↑MMP-2 Human plasma [66,68], rodents [63]
↑MMP-9 Human plasma [7,65,68]
↑MMP-1 Human plasma [66]

Adiponectin ↓MMP-2 Human plasma [68]
↓MMP-9 Human plasma [68]
↑TIMP-1 Macrophages [81]
↓MMP-9/TIMP-1 Human plasma [82]
—MMP-1 Human plasma [85]

Leptin ↑MMP-2 Endothelial cells [86]
↑MMP-9 Endothelial cells [86]

TNF-α ↑MMP-2 Rodent [89]
↑MMP-9 Rodent [89]
↑TIMP-1 Rodent [89]

IL-1 ↑MMP-s Fibroblasts and smooth muscle cells [91]
↓TIMP-2 Fibroblasts and smooth muscle cells [91]
↓TIMP-4 Fibroblasts and smooth muscle cells [91]

NF-Kβ ↑MMP-1, 3, 9 Fibroblasts and smooth muscle cells [91]
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several conditions such as inflammation and pro-coagulant status and
hormonal alterations among others.
3. Metalloproteinases

MMPs are able to degrade extracellular matrix (ECM) components
such as collagens, proteoglycans, elastin, laminin, fibronectin and
other glycoproteins [19]. MMPs comprise a family of 25 identified so
far related gene products and, based on sequence homology and
substrate specificity, they can be classified into five groups: collagen-
ases, stromelysins, gelatinases, membrane type, and remaining MMPs
[4,20] (Fig. 1). Moreover, these enzymes collectively can also cleave
several non-ECM proteins, such as adhesion molecules, cytokines,
protease inhibitors, and other (pro-) MMPs [21]. MMPs are synthe-
sized by multiple vascular cell types, including endothelial cells,
vascular smooth muscles cells, fibroblasts, myofibroblasts, and the
systemic-circulatory monocyte and macrophages, as well as the local
tissue macrophages.

MostMMPs are secreted as inactive, latent pro-enzymes, and require
a proteolytic process to become active. Under normal physiological
conditions, the MMP activities are exactly regulated at the transcription
level, at precursor zymogensactivation, through interactionwith specific
ECM components, and by inhibition of endogenous inhibitors [22].

The activation of zymogens can be carried out through chemical or
proteolitic pathways. In the first case, chemical factors like thiol-
modifying agents and oxidized glutathione, reactive oxygensmolecules
usuallyproduce in vitro activation [23]. In vivonitric oxide (NO)has been
found to activate pro-MMP-9during cerebral ischemia, demonstrating a
chemical activation of pro-MMP [24]. The proteolitic activation is the
most important biologically pathway, and it frequently takes place in an
activation cascade by tissue proteinases. On the other hand, MMPs
previously activated likeMMP-3,MMP-7, andMMP-10 can also activate
other secreted pro-MMPs [4]. In fact, MMPs activation requires a
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complex cascade of catalytic activation which conduces to an amplified
proteolytic effect.

The MMPs with collagenase activities share the ability to cleave
fibrillar collagen types I, II, and III into smaller fragments, which in turn
canbedegradedbyother proteasesof theMMPfamily. Themost studied
collagenases are MMP-1, MMP-8 and MMP-13. Gelatinases consist of
MMP-2 andMMP-9, and they are themain enzymes responsible for the
degradation of type IV collagen and denatured collagens (gelatins),
elastin, fibronectin and laminin, among other proteins.

The tissue inhibitors of metalloproteinases (TIMPs) are specific
inhibitors of MMPs that participate in controlling the local activities of
MMPs in tissues [25]. Four TIMPs (TIMP-1, TIMP-2, TIMP-3 and TIMP-4)
have been identified and are able to inhibit the activities of all known
MMPs. The four members have many similarities and overlapping
specificities, but their biochemical properties and local expression
patterns exhibit their distinctive features [26]. Consequently, the net
resultant MMP activity in tissues is locally determined by the balance
between the levels of activated MMPs and TIMPs.

Related to the focus of this review, the role ofMMP in atherosclerosis
and in obesity will be briefly described.
3.1. MMPs and atherosclerosis

During the last decade, MMPs have been extensively studied in the
pathogenesis of the atherosclerosis process and CVD because of their
major significance in vascular remodeling. Different MMPs have been
identified in atherosclerotic plaques and in regions of foam cell
accumulation and have been directly associated with plaque remodel-
ing as well as plaque vulnerability [27–29]. Gelatinases in general are
highly expressed in fatty streaks and atherosclerotic plaques compared
to normal regions of the vessel. Fatty streaks and fibroatheromas with
hemorrhage and calcification, and fully occluded lesions are enriched in
MMP-2 and MMP-9 [30,31]. On the other hand, collagenase MMP-1
expression is undetectable in normal arteries, but has been localized in
the fibrous cap and the shoulder regions of carotid atherosclerotic
lesions, while macrophages within carotid lesions are the major source
of intraplaque MMP-8 formation [32].

Different MMPs acting together could completely degrade the
arterial ECM. Extracellular matrix degradation by MMPs could cause
reduced fibrous cap thickness and collagen content, which are typical
features of vulnerable plaques.
3.2. MMPs and obesity

Expanded fat tissue has demonstrated to be an active organ, where
MMPs also exert a role, as has been extensively studied recently.

As it is known, development of obesity is associated with excessive
modifications in adipose tissue involving adipogenesis, angiogenesis
and proliferation of ECM. Hypertrophy and hyperplasia of adipocytes
requires the proliferation and differentiation of preadipocytes. Further-
more, basement basalmembrane surrounds adipocytes, therefore it has
to be extensively remodeled to allow the hypertrophic development of
adipocytes. Observations in vivo models suggest that MMPs may
contribute to adipose tissue remodeling by degradation of ECM and
basement membrane components or by activation of latent growth
factors [33]. Moreover, partial inhibition of gelatinolytic activity inmice
is associated with moderate effects on adipose tissue development and
cellularity [34].

Adipose tissue behavior in relationship to MMP/TIMP balance is
also related with the fact that adipocytes are an additional source of
circulatingMMPs.We should also bear inmind that in obesity, there is
an increased secretion of different pro-inflammatory cytokines which,
in turn, promote a higher synthesis of MMPs in the vasculature [35].
This issue will be discussed extensively below.
4. Effect of different components of the metabolic syndrome
on MMPs

Besides the effect of the proteolitic activation and the TIMPs inhi-
bition, MMPs are also regulated at the transcription level. Different
features related with theMS have been identified as possible regulators
of MMPs synthesis (Table 2). However, in the study of these enzymes,
different factors which can contribute to controversies should be taken
into account. Among these factors we can consider, e.g.: the cellular
diversity in the origin of MMPs, the variety of methods to evaluate
MMPs (mRNA synthesis, protein expression, and enzyme activity), and
the fact that not all available antibodies distinguish the active forms of
these enzymes from their pro-enzyme forms, among other causes. All
these factorsmust be taken into account at themoment of analyzing the
results from different studies.
4.1. Hyperglycemia

Several in vitro and in vivo studies have shown that glucose regulates
MMPs. Glucose can modulate the production, expression and activity of
MMPs in specific cell lines, however, not all the MMPs respond in the
same way. Endothelial cells cultured in hyperglycemic conditions
present increased expression and activity of MMP-1, MMP-2 and
macrophage-derived MMP-9, but decreased expression and protein
levels of MMP-3 [36]. Moreover, in aorta of diabetic rats an increased
synthesis of active and latent forms ofMMP-2 andMMP-9was observed
[37]. Reactive oxygen species (ROS) are considered a causal link between
elevated glucose and metabolic abnormalities [38]. It has been observed
that oxidative stress upregulates MMP-9 expression in trophoblast cells
from human term placentas [39] and MMP-9 activity in alveolar
macrophages fromdiabetic rabbits [40].Moreover, ROSandperoxynitrite
activate MMP-2 and MT1–MMP in cultured human coronary smooth
muscle cells [41]. Recently, under high glucose conditions in retinal
endothelial cells, the participation of mitochondrial superoxide scav-
enger on glucose-induced increased activity of MMP-2, its proenzyme
activator-MT1–MMP and the physiological inhibitor-TIMP-2 has been
observed [42]. When hyperglycemia impairs activation of the insulin
signal pathway resulting in deregulation of eNOS activity, an increased
expression andactivity ofMMP-2 andMMP-9 and reduced TIMP-3were
observed in coronary endothelial cells [43] and in atherosclerotic
plaques from subjects with type 2 diabetes [44]. Tarallo et al. studying
endothelial cells from umbilical cords in high ambient glucose observed
that mRNA expression of MMP-2 and MMP-9 is not affected but their
activity increased [45].

In an interesting study design, Sun et al. [46] showed that the effects
of hyperglycemia onMMP-2 activity were further enhanced in vascular
smooth muscle cells that were exposed to intermittent rather than
constant high glucose concentrations, resembling a more pathophysi-
ological model.

There are fewer studies carried out in humans. Derosa et al., evaluated
the effect of an oral glucose tolerance test (OGTT) on the level of MMP-2
and MMP-9 in normal and diabetic patients. They observed that both
MMPs significantly increased after an OGTT in overweight healthy
subjects belonging to the control groupand in thediabetic patients. In the
former, a peak of MMPs concentration after 2 h was observed, while in
the latter the levels continued rising after 3 h, starting from strongly
elevated baseline values [47]. In type 1 diabetic (T1D) subjects compared
with healthy controls, an increase in MMP-2 plasma activity and it
urinary excretion with no concurrent increase in TIMP-1 or TIMP-2
concentrations has been observed [48]. On the contrary, others reported
elevated concentrations of MMP-9 and TIMP-1 in plasma of T1D patients
[49].

Other controversies have been observed in premature coronary
artery disease patients. Nanni et al. observed that blood glucose
correlated negatively withMMP-2 activity and positively with TIMP-1
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[50], highlighting the importance of evaluating not only MMP activity
but also their inhibitors.

Given the controversies observed in human studies, further research
is necessary to evaluate the direct impact of glycemia in large vessels,
and the behavior of MMPs on apparently healthy subjects, with and
without metabolic disorders.

4.2. Hypertension

Blood pressure is one of the major determinants of vessel wall
structure and composition. Vascular remodeling is considered an
adaptive response to elevation of arterial pressure to normalize the
wall tension. This process involves degradation and reorganization of
the ECM, as well as hypertrophy and hyperplasia of the vascular
smooth muscle cells, contributing to a thickened vessel wall and an
augmented vascular stiffness. MMPs play an important role in
hypertensive vascular remodeling and dysfunction [51]. They may
be involved in the excessive degradation of ECM components,
vascular smooth muscle cells migration and proliferation, and intima
layer invasion by monocytes.

Increased MMP-2 and MMP-9 levels have been consistently
implicated in vascular remodeling associated with hypertension in
patients [52] and in animal models [53]. A key characteristic of
hypertensive conductance arteries is increased wall thickness
accompanied by enhanced rigidity. Nevertheless, using an ex vivo
model of carotid artery, Flamant et al. have shown that early vascular
remodeling in the hypertensive context is actually associated with
increased conductance vessel distensibility rather than rigidity.
Exposing arteries or vascular cells to stretch induces the release of
MMPs. So they hypothesize that increased distensibility may be an
early compensatory mechanism allowing vessels to expand in the
case of newly elevated pressure [54].

On the other hand, studies in humans show that MMP-9 levels are
higher in hypertensive patients than in normotensive controls [55,56].
Most of the related studies also revealed that MMP-9 levels
significantly decrease while TIMP-1 levels significantly increase after
antihypertensive treatment (e.g. Candesartan and Lisinopril), in
various body compartment. Moreover, it is known that angiotensin
II alone can activate MMPs, given that the expression of MMP-1,
MMP-3 and MMP-9 is increased in human vascular smooth muscle
cells exposed to angiotensin II [57]. Schieffer et al. studied the effect of
angiotensin II receptor blockers (ARBs) and angiotensin-converting
enzyme inhibitors on MMP-9 levels in patients with hypertension. In
both cases the MMP-9 activity was inhibited. In the case of ARBs, it is
suggested that they decrease MMP-9 level directly by their effect of
reducing hs-CRP and IL-6, which stimulate MMPs release [58]. On the
other hand, the effect of angiotensin-converting enzyme inhibitors
could be mediated by an increase in bradykinin level that leads to the
release of NO, which in turn experimentally decreases MMP-9 and
increases TIMPs levels [59]. NO is a potential regulator of MMP activity
in MMP–NO–TIMP complex; however, the contribution of the nitric
oxide synthase (NOS) isoforms eNOS and iNOS in the activation of
latent MMP is unclear. Gurjar et al. [59] in a smooth muscle cells
culture transfectedwith an eNOS gene observed that high levels of NO
was associated with an increase of TIMP-2 levels leading to inhibition
of MMP-2 and MMP-9.

4.3. Dyslipidemia

As it is well known, MS dyslipidemia is principally characterized by
increased plasma triglycerides, decreased HDL-cholesterol levels and a
higher proportion of small dense LDL (the subclass with more
atherogenic capacity) [16]. Several studies have investigated the
relationship between MMPs and MS dyslipidemia, and strong and
interesting associations were found with modified lipoproteins, being
oxidation the most frequent modification of lipoproteins. In experimen-
tal studies, oxidized LDL has been observed to induce the production of
MMP-1 [60] and MMP-9 as well as the decrease in TIMP-1 [61].
Moreover, oxidized LDL favors inflammatory process in the arterial wall,
and CRP – the prototypic marker of inflammation – has also been
reported to bind to oxidized LDL and promote its uptake by monocyte/
macrophage, as an early step of the atheroma development [62].
Recently, Singh U et al. have demonstrated, using an in vivo rat model,
that administration of CRP promotes both oxidized LDL uptake and
MMP-9 production by macrophages [63]. In addition, angiotensin-
converting enzyme inhibitors, like imidaprilat, reduce oxidized LDL
triggered foamcell formation inmacrophages, viamodulation ofMMP-9
activity through anti-inflammatory mechanisms [64].

Thus, based on the evidences relating LDL oxidation and MMP in
the arterial wall, oxidized LDL would also be involved in macrophage-
mediated matrix breakdown in the atherosclerotic plaques, thereby
predisposing them to vascular remodeling and/or plaque disruption.

In our laboratory, we studied patients with coronary artery disease
and observed that plasma activity of MMP-2 and MMP-9 were
consistently higher in patients than in controls, and both MMPs
activities were significant and positively associated with apoprotein B
concentration, while MMP-2 also correlated directly with hs-CRP and
correlated inversely with HDL-cholesterol [65]. Other authors have
found positive correlations between both MMP-1 and MMP-9 with
hs-CRP and triglycerides levels in coronary artery disease patients but
not negative ones with HDL-cholesterol levels [66]. In one of the most
important prospective studies developed to evaluate the predictor
value of MMP-9 of cardiovascular disease in coronary artery disease
patients, Blankenberg et al. observed a positive correlation between
MMP-9 and hs-CRP, but a weak inverse correlation with HDL-
cholesterol [6]. In another of our studies, we evaluated non-diabetic
women with and without MS, and observed that women with MS
presented higher plasma activity of MMP-2 than controls and that
MMP-2 positively correlated with hs-CRP as well as with apoprotein
B, dense LDL, triglycerides/HDL-cholesterol index and correlated
negatively with HDL-cholesterol. This finding is important since
women with MS fit in with an early stage of cardiovascular disease;
then, measurement of MMP soluble molecules activity may improve
risk assessment, early diagnosis, and probable prognosis of cardio-
vascular disease [67].

In a study carried out on subjects affected by acquired mixed
dyslipidemia, Derosa et al. observed that the serum levels of MMP-2,
MMP-9 and their tissue inhibitors were higher than in controls, and
correlated with total-cholesterol, LDL-cholesterol and hs-CRP [68].

Given the observed association between lipoproteins – and specif-
ically oxidized LDL – and MMPs, further studies would be necessary to
investigate the relationship with other modified lipoproteins, like
remnant triglycerides lipoproteins or glycated LDL, which are very
common in MS patients and have shown to present high atherogenic
properties.

4.4. Obesity/abdominal obesity

Abdominal obesity is one of the main components of MS. As was
previously stated,MS is associatedwithdysfunctional adipose tissue, as a
consequence of the enlargement of the adipocytes and the infiltration of
macrophages into the tissue that leads to an inflammatory chronic state
in the adipose tissue. Expansion of fat cell size would require a pliant
extracellular matrix, and recent studies suggested that the absence of
such pliant matrix could lead to adipose tissue inflammation, which
characterizes the adipose tissue of subjects with insulin resistance [69].

MMPs are involved in two important events of this process, the
control of proteolysis and adipogenesis during obesity-mediated fat
mass development [70]. To gain further insight into the involvement
of the MMPs in the development of adipose tissue, Maquoi et al.
monitored the expression of MMPs and TIMPs in adipose tissue from
lean and obese mice [71]. This study revealed an upregulation of
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mRNA levels of someMMPs (MMP-3, MMP-11, MMP-12, MMP-13, and
MMP-14) and downregulation of others (MMP-7, MMP-9, MMP-16,
MMP-24 and TIMP-4) in obesity. These modulations differed according
to the origin of the adipose tissue (gonadal vs subcutaneous), supporting
the concept that the different localization of fat deposits present
different metabolic behavior [72]. Other studies in obese mice [73] and
in obese humans [74] revealed that the main cells that modulate the
expression of several MMPs and TIMPs in adipose tissue would be
preadipocytes and stromal/vascular compartment cells.

Unal et al. [75] recently studied the expression and activity ofMMP-9
in adipose tissue of non-diabetic men, and observed that MMP-9
expression correlated positively with body mass index (BMI) and
negativelywith insulin sensitivitymeasuredby insulin-modifiedglucose
tolerance test. Moreover, treatment of the patients with pioglitazone
resulted in adecrease inMMP-9expression in adipose tissue through the
PPAR-γ mediated inhibition of PKCα. Other evidence supporting the
ability of adipose tissue to produce and secrete different MMPs is that
weight loss is associatedwith a pronounced decrease in plasma levels of
MMP-9 [76]. Thesedata show thatMMP-9 expression in adipose tissue is
increased with obesity and insulin resistance.

In an attempt to elucidate the molecular mechanism involved in the
production of MMPs, Boden et al. [77] observed in rat aorta that FFA
released from the adipocytes and insulin promote the activation of
mitogen activated protein kinases (MAPK) activities which are known
to stimulate the production of pro-inflammatory cytokines, which in
turn promote the activation of MMP-2, MMP-9 and MT1–MMP. Hence,
the effects of FFA and insulin onMMPs are likely to be indirect,mediated
through cytokines. However, in the liver, hyperinsulinemia has different
effects on MMPs, promoting a decrease in the bioactive isoforms of
MMP-2, MMP-9 and MT1–MMP [78] suggesting that insulin does not
affect MMPs in the same way in different organs. Even though
circulating MMPs (especially MMP-9) have emerged as promising
biomarkers for human cardiovascular disease, the question is whether
the expanded adipose tissue mass in obesity contributes significantly to the
circulating levels ofMMP-9, since thementioned studieswere performed
in cell culture or isolated tissues. Recently, Gummersson et al. [79]
studied plasma concentration and activity of MMP-9 in men. Although
they found that circulating levels of insulin, glucose and hs-CRP as well
as blood pressure were related to total and active MMP-9 plasma
concentrations, these concentrations were not associated with BMI or
with waist circumference. In parallel they also studied the gene
expression of MMP-9 in adipose tissue in men with and without MS
treated with a weight-reducing diet. There was a lack of association
between adipose tissue mRNA and plasma levels of MMP-9, suggesting
that this tissue is not amajor contributor to circulatingMMP-9. Changes
in plasmaMMP-9duringdietwerepositively associatedwith changes in
fasting glucose and insulin levels, but not with changes in BMI, waist
circumference or adipose tissue MMP-9 mRNA levels [79].

Further studies are necessary to elucidate these controversies and
precisely define sites and type of MMPs release in adipose tissue
during obesity development.
5. Effects of cytokines and inflammation on MMPs

It is well established that MS is associated with a pro-inflammatory
state. This is evidenced by the presence of elevated concentration of
inflammatory molecules including CRP and different cytokines, and a
decrease in anti-inflammatory molecules. MMPs are also co-expressed
or co-repressed in response to inflammatory cytokines and growth
factors. MMP promoters are downstream targets within signaling
pathways of early response genes; they are induced shortly after cellular
stimulation and in the absence of new protein synthesis. These
intermediates belong to signaling pathways that are activated by a
large varietyof ligands, suchas IL-1β andTNF-α, and include the nuclear
factor kappa B (NF-κB) and the MAPK, among others [80].
5.1. Adiponectin

In reference to adipocytokines, human studies show contradictory
results. Adiponectin belongs to the cytokines secreted by adipose tissue
and it is inversely associatedwithobesity and inflammation.Recentdata
suggest a direct role of adiponectin in atherosclerotic plaque stability
through interactions with MMPs and their inhibitors. Adiponectin
selectively increased TIMP-1 expression in human monocyte-derived
macrophages through the induction of the anti-inflammatory IL-10 [81].
In human studies, Derosa et al. found that adiponectin predicted
decreased levels of MMP-2 and MMP-9 plasma levels in patients with
combined hyperlipidemia [68]. Moreover, a negative relationship
between adiponectin and MMP-9/TIMP-1 ratio has been recently
described in patients with acute coronary syndrome; this ratio is
considered an independent predictor of the stability of atherosclerotic
plaque and the severity of coronary atherosclerosis [82]. These results
have been reinforced with the use of VH-IVUS in acute coronary
syndrome patients; when investigating the relationship between
adiponectin and coronary plaque components, negative correlations
between adiponectin levels and percentage of necrotic core were
observed [83,84]. However, no correlations have been observed
between adiponectin and plasma levels of MMP-1 in coronary patients
[85]. As has been mentioned previously, not all types of MMPs might
present the same behavior.

5.2. Leptin

Leptin was the first adipose hormone identified; its potential effects
on the pathophysiology of cardiovascular complications of obesity
remain diverse. Proatherogenic effects of leptin have been described in
vitro; these effects include, in part, endothelial cells and smooth muscle
cell activation, migration, and proliferation [86,87]. Some studies have
also shown that leptin plays a role in matrix remodeling by regulating
the expression of MMPs and TIMPs. Park et al. [86] reported that leptin
induces elevation of MMP-2, MMP-9 and TIMP-1 expression in human
umbilical vein endothelial cells and in human coronary artery smooth
muscle cells. This effect would be mediated through the generation of
intracellular ROS, andwould bedecreasedbymetformin treatment [88].
Thesefindings suggest that leptin, a hormonewith pluralistic properties
including a mitogenic activity on vascular endothelial cells, plays a role
in matrix remodeling by regulating the expression of MMPs and TIMPs.
The overexpression of leptin has a role in the growth of atheromatous
plaques through its effect on neovascularization and would act as a
functional link between adipocytes and the vasculature.

5.3. Other cytokines

In vitro and animal studies have identified the ability of cytokines to
regulate the transcription and synthesis of variousMMPs. Inmice, over-
expression of TNF-α leads to increased levels ofMMP-2 andMMP-9 and
TIMP-1, the latter increase probably as a compensatory effect [89].
Beyond its pro-inflammatory and fibrogenic properties, IL-1 also
promotes extracellular matrix remodeling by enhancing cardiac
fibroblast MMP expression in vitro [90,91] while it downregulates
TIMP-2 and TIMP-4 expression levels [91]. NF-κB is required for
cytokine upregulation of MMP-1, MMP-3 and MMP-9 in human and
rabbit vascular smooth muscle cells and NF-κB inhibition may promote
plaque stabilization [92].

However, there are some reports showing that the anti-inflammatory
cytokine IL-10 suppressed MMP-2 [89].

Since cytokines augment theproduction ofMMPswith a lower effect
on the synthesis of TIMPs, locally secreted cytokines may regulate the
regional balance of MMP activity in favor of ECM degradation [92].

Pro and anti-inflammatory cytokines, secreted by adipose tissue or
locally in the artery plaque, modulate MMPs and TIMPs synthesis,
conditioning the stability of the atherosclerotic plaque.
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6. Circulating levels of MMPS in patients with metabolic syndrome

As it is well known and has been previously discussed, patients with
MS are twice as likely to develop CVD over the next 5 to 10 years as
individuals without the syndrome, and have a 5-fold increased risk for
type 2 diabetes mellitus [7]. This cluster of some risk factors and their
shared responsiveness to lifestyle modifications suggests that they are
not independent one of the other and that they share underlying causes,
mechanisms and features [7,10]. Besides considering the recognized
components of the MS, the study of further new risk factors associated
with this entitywill clarify themechanisms to decrease risk and improve
therapeutic conducts. In the last years different researchers have studied
the behavior of MMPs in MS and in other associated pathologies. Cicero
et al. [93] carried out a study on subjects affected by familial combined
hyperlipidemia and/or MS and healthy subjects. They observed that
MMP-9, TIMP-1 and TIMP-2 were significantly higher in patients with
familial combined hyperlipidemia and MS patients when compared to
healthy controls, and in MS patients when compared to patients with
familial combined hyperlipidemia. Moreover, TIMP-1 and TIMP-2 were
also significantly higher in subjects with MS associated to familial
combined hyperlipidemia than in patients with only MS. Gummensson
et al. studied circulating levels of MMP-9 in patients with and without
MS. They found that patients with MS presented slightly higher
circulating MMP-9 levels when using the IDF classification of MS, but
notwith theWHOor NCEP classification [7]. This last observationmay be
explainedby the fact that only the IDFdefinitionhas abdominal obesity as
anobligatory criterion forMS, and ithasbeenshownthat themacrophage
content is much higher in visceral than in subcutaneous fat in men [94].

In our laboratory, we found higher plasma activity of MMP-2 in
women with MS [67], which correlates with other soluble molecules
involved in the plaque development like sVCAM (data still not
published). However, others reported contradictory results, with no
differences inMMP-2 activity and higher levels inMMP-9 activity inMS
patients (male and female) in comparison to controls [95], or increase in
otherMMPs, likeMMP-8 [95,96]. There is no clear explanation for these
controversies. It is possible that gender differences or methodological
differences between studies have affected the conclusions; also the fact
that our patients were womenwithMS but without clinical evidence of
unstable plaques. The increasedMMP-2activitywouldbe associatedwith
the first steps of the atherogenic process mainly related to the vascular
smoothmuscle cell migration and intimal thickening. The higherMMP-2
activity might be responsible for a greater matrix degradation of type IV
collagenwithin the basementmembrane, and alsomight activate several
growth factors and cytokines, underlying atherosclerotic process in the
arterial vessel wall. The lack of MMP-9 detection could be attributed to
the fact that this MMP is reported to be associatedmainly to the plaque
rupture in advanced lesions.

Besides, comparing pre and postmenopausal womenwith andwith-
outMS, Chu et al. [97] observed no differences inMMP-9 among groups,
even after the use of estrogen therapy. However, it had been previously
reported that oral estrogen therapy in health postmenopausal women
produces significant increases in MMP-2 and MMP-9 [98], and others
observed decreases in MMP-9 [99]. In view of the controversy, further
studies are necessary to understand the behavior of MMPs in reference
to changes in female hormones.

Regarding sex hormones, other pathology intimately linked toMS is
the polycystic ovarian syndrome (PCOS) which is the most common
endocrinopathy of women of reproductive age and exhibits a broad
spectrum of metabolic abnormalities, predisposing them to increased
cardiovascular risk such as insulin resistance, dyslipidemia, fibrinolytic
aberrations, subclinical inflammation, and raised levels of markers of
oxidative stress. It has been described that obese women with PCOS
have elevated serum concentrations of MMP-2 and MMP-9 [100].

Again, the effect of alteration in sex hormones related to MS should
be further investigated in reference to MMP concentration and activity,
to understand possiblemechanisms associatedwith cardiovascular risk.
7. Concluding remarks and future perspectives

Aswehave summarized in this review, several experimental, clinical
and epidemiological studies support the effect of MS on synthesis and
activity of differentMMPs. Over the last years, through the development
of animal models of gain or loss-of-function for MMPs, it has been
possible to identify of some novel and unexpected functions of MMPs
and there has been a substantial increase in the knowledge of the
function and characteristics of these enzymes. Nevertheless, further
studies in animals and humans are still necessary to elucidate the
function of the novel MMPs identified, as well as the role of the already
known enzymes in different steps of metabolic diseases.

On the other hand, the presentation of MS as a cluster of risk factors
makes the study of each of its components in humans difficult, and the
synergistic effect of these risks factors on MMPs synthesis and activity
cannot be discarded. Our knowledge of the crosstalk and interactions
between them is limited. Multiple factors can modulate atherosclerotic
lesions, and little is known about the effects of lifestyle modification on
the novel mediators of the atherosclerotic process. Therefore, additional
clinical and epidemiological research is needed to unequivocally
determine the effect of MS on MMPs synthesized in arterial wall, and
their effect on atherosclerosis and vulnerable plaque. Moreover, a
rational study of lifestyle modifications as well as pharmacological
therapies that would influence MMPs are necessary to generate the
information that physicianswill probably need to improve the treatment
of patients with MS. Understanding the mechanisms of MS impact on
MMPs and vice versa is an interesting area of research thatwill positively
impact our understanding of the complexity of MS and atherosclerosis.
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