

Proteomic analysis of secretomes from Bacillus sp. AR03: characterization of enzymatic cocktails active on complex carbohydrates for xylooligosaccharides production

Johan S. Hero, José H. Pisa, Enzo E. Raimondo & M. Alejandra Martínez

To cite this article: Johan S. Hero , José H. Pisa , Enzo E. Raimondo & M. Alejandra Martínez (2021): Proteomic analysis of secretomes from Bacillus sp. AR03: characterization of enzymatic cocktails active on complex carbohydrates for xylooligosaccharides production, Preparative **Biochemistry & Biotechnology**

To link to this article: https://doi.org/10.1080/10826068.2020.1870136

View supplementary material 🕝

Published online: 13 Jan 2021.

Submit your article to this journal

View related articles

View Crossmark data 🗹

Check for updates

Proteomic analysis of secretomes from *Bacillus* sp. AR03: characterization of enzymatic cocktails active on complex carbohydrates for xylooligosaccharides production

Johan S. Hero^a* (D), José H. Pisa^a*, Enzo E. Raimondo^{a,b}, and M. Alejandra Martínez^{a,c}

^aPlanta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Tucumán, Argentina; ^bFacultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina; ^cFacultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Tucumán, Argentina

ABSTRACT

Bacillus sp. AR03 have been described as an important producer of carbohydrate-active enzymes (CAZymes) when growing in a peptone-based medium supplemented with simple sugars and/or carboxymethyl cellulose (CMC) as carbon sources. This work aimed to identify the extracellular enzymatic cocktails through shotgun proteomics. The proteomic analysis showed that enzymes involved in cellulose and xylan degradation were among the most abundant proteins. These enzymes included an endo-glucanase GH5_2 and a glucuronoxylanase GH30_8, which were found in all conditions. In addition, several proteins were differentially expressed in the three evaluated culture media, indicating microbial metabolic changes due to the different supplied carbon sources, particularly, in the presence of CMC. Finally, the capability of the crude enzymatic cocktails from culture media to degrade birchwood xylan was assessed, which produced mostly xylooligo-saccharides containing among 3–5 xylose units. Consequently, this work shows the potential of the extracellular enzymes from *Bacillus* sp. AR03 for producing emergent prebiotics.

KEYWORDS

Bacillus sp. AR03; glucuronoxylanase; GH30_8; endoglucanase; proteomics; xylooligosaccharides

Introduction

In nature, lignocellulosic biomass constitutes the source of the most abundant renewable polysaccharides with a huge potential for their bioconversion into several value-added bioproducts. Consequently, carbohydrate-active enzymes (CAZymes) are key in a biorefinery context. Among them, cellulases and xylanases have prominent uses for the production of biofuels, food compounds with prebiotic properties, pulp paper blenching, etc.^[1] However, the exploration of novel producers of CAZymes and the large-scale production of these enzymes are still considerable targets to develop biocatalysts with application in bio-based processes.^[2]

The dominant role of *Firmicutes* in plant biomass deconstruction in different environments has been widely reported.^[3,4] Within this phylum, members of *Bacillus* genus are considered one of the most robust and versatile enzyme producers for microbial fermentations due to their high growth rates and capability to secrete large amounts of extracellular enzymes.^[5,6] Nevertheless, physiological data supporting the role that several strains play in polysaccharide decomposition are scarce.^[7] To overcome some of these limitations, shotgun proteomic studies have provided information about the protein composition of microorganisms.^[8] Unlike genomic analyses that only allow the theoretical identification

of genes encoding potential xylanases and cellulases in microbial genomes, proteomic techniques provide evidence of the actual production of these enzymes on lignocellulose presence.^[7] For example, Větrovský et al.^[9] found that only a few environmental actinobacteria isolates decomposed lignocellulose, despite the presence of cellulolytic genes in their genomes is common.^[4] Besides, proteomic analyses are adequate to evaluate the proteins expressed in a particular set of culture conditions (strain, growth medium, carbon source, temperature, growth phase, etc.) or to compare different sets of protein mixtures corresponding to different conditions.^[8] This experimental approach was previously employed for studying mixtures of cellulases and hemicellulases in order to determine the protein composition of these mixtures, corroborating with the specific activity of the individual enzymes.^[10] Due to the above, proteomic analyses are suitable to describe the potential of Bacillus strains in the decomposition of lignocellulosic organic matter. In this context, Tang et al.^[11] performed secretomic studies to explore the lignocellulosedegrading potential of Bacillus velezensis LC1 grown in an alkali-pretreated bamboo-based medium by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The secretome analysis demonstrated the presence of a considerable number of proteins involved in lignocellulose

*These authors contributed equally to this work.

CONTACT Johan S. Hero 😡 johan.hero@conicet.gov.ar 💿 Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pasaje Caseros, San Miguel de Tucumán, 4000, Tucumán, Argentina.

[🕒] Supplemental data for this article can be accessed online at http://dx.doi.org/10.1080/10826068.2020.1870136.

^{© 2020} Taylor & Francis Group, LLC

degradation, such as cellulases, hemicellulases, and other related proteins.

Our research group has previously reported the strain AR03 that belongs to the Bacillus subtilis group.^[12] This strain was isolated from pulp and paper feedstock obtained from a paper mill in Argentina and selected by its significant cellulase activity when growing in a peptone-based medium supplemented with carboxymethyl cellulose (CMC) or simple sugars under submerged fermentation conditions. Moreover, Manfredi et al.^[13] reported that the combination of a simple sugar and CMC in a culture medium enhanced cellulase production by this strain. Unlike substrates derived from agroindustrial residues, the use of soluble substrates for submerged fermentations favors both operative culture conditions and downstream process. Therefore, Bacillus sp. AR03 is a promising candidate for the production of CAZymes; however, the identification of these enzymes remains unknown. Knowing the hydrolytic arsenal produced by this strain allows to better define the technological potential of its enzymatic cocktail. In this context, we performed a gel-free proteomic analysis of enzymatic cocktails produced by Bacillus sp. AR03 in three different culture media to identify their extracellular enzymes.

Materials and methods

Growth conditions, enzyme production, and protein extract preparation for proteomic analysis

Bacillus sp. AR03 was grown in 125-mL flasks containing 20 mL of modified DTSB culture medium whose composition was described by Manfredi et al.^[13] This culture medium was supplemented with different carbohydrates: 10 g L^{-1} of glucose (condition 1); 10 g L^{-1} of CMC (condition 2); and 10 g L^{-1} of glucose + 10 g L^{-1} of CMC (condition 3). Each condition was performed by three independent biological replicas. Inoculated flasks were incubated at 30 °C for 72 hr with orbital agitation (200 rpm). Samples were taken every 24 hr and cell-free supernatants were recovered by centrifugation (4 °C, 8,000 \times g, 10 min) and subsequently used for protein and enzymatic activity determinations. Growth curves of Bacillus sp. AR03 in the different culture media were carried out using three independent biological replicas for each condition. Samples were taken every 1 h for the first 13 hr, and thereafter at 24, 48, and 72 hr. OD_{600nm} readings were measured on a microplate reader (Multiskan GO, Thermo Scientific, Waltham, MA).

Protein preparation for LC-MS/MS analysis was performed according to La Greca et al.^[14] with slight modifications. Briefly, 50 µg of protein from each condition were treated with 20 µL of reducing solution (200 mM DTT, 100 mM Tris, pH 7.8) and with alkylation solution (200 mM iodoacetamide, 100 mM Tris, pH 7.8) for 1 hr at room temperature. Then, proteins were precipitated with 10% TCA and centrifuged (4 °C, 16,000 × g, 30 min). Pellets were washed three times with pre-cooled acetone (-20 °C), resuspended in 50 mM ammonium bicarbonate (pH 8.0) at a concentration of 10 µg µL⁻¹, and digested with trypsin. Finally, the digested proteins were purified with a Zip-Tip C18 column, freeze-dried by Speed Vac, and preserved until their MS analysis.

LC-MS/MS analysis

The LC-MS/MS of the protein extracts were carried out by means of two independent biological replicates from each condition in CEQUIBIEM - University of Buenos Aires, Argentina, according to La Greca et al.^[14], with slight modifications. Briefly, samples were dissolved in 10 µL of 0.1% formic acid and analyzed by nano HPLC coupled to a mass spectrometer with Orbitrap technology. LC was performed by using a Thermo Scientific model EASY-nLC 1000 coupled to an Easy-Spray Column PepMap RSLC (C18, $2 \,\mu\text{m}$, 100 A, 50 μm \times 150 mm). Two solutions (Solution A: 0.1% (v/v) formic acid; Solution B: acetonitrile with 0.1% (v/ v) formic acid) were used for peptides elution, developing a gradient from 5% to 100% of solution B for 120 min at a flow rate of $0.300 \,\mu\text{L min}^{-1}$. Mass spectra were obtained by Q-Exactive Orbitrap instrument (Thermo Fisher а Scientific). The configuration of the equipment allowed the identification of peptides to be carried out at the same time that they were separated by chromatography, obtaining Full MS (resolution: 70,000) and MS/MS (resolution: 17,500). The 15 most intense peaks obtained for each MS spectrum were selected for fragmentation in MS/MS. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE^[15] partner repository with the dataset identifier PXD023035.

Data analysis and protein quantification

Peptides identification was performed through Thermo ScientificTM Proteome Discoverer version 2.1 software, Waltham, MA, USA, using the reference proteome of *B. subtilis* 168 (UP000001570) as database. The following parameters were considered as search criteria: parent ion tolerance, 10 ppm; fragment ion mass tolerance, 0.05 Da; Miscleavage, 2; Dynamic Modifications, methionine oxidation (M); static modifications, Carbamidomethylation (C). On these bases, the software qualified the detected peptides in three confidence levels: Low, Medium, and High. At least two peptides per protein were necessary to consider the presence of a protein in the sample. For area estimations of each identified protein, we only considered those peptides with a High confidence level.

The statistical analysis of data was carried out with Perseus software version 1.5.8.5, Martinsried, Germany (2016). Only those proteins identified in both replicates of each condition were considered for the analysis. Protein abundances in term of normalized area intensities (label-free quantification [LQF]) were transformed into their \log_2 to compare among two conditions. Besides, proteins were considered significantly regulated when: (i) they showed an average increase higher than 2 folds in their abundance and (ii) *t*-test showed a *p* value < 0.05. Fold-changes (FCs) for up-regulated proteins were calculated as the ratio between their normalized areas for the two compared conditions.

CAZy domain and COG category assignation

Protein sequences from *B. subtilis* 168, used as reference dataset to identify the *Bacillus* sp. AR03 proteomic sequences,^[16] were submitted to dbCAN2 meta server for CAZy domain assignment (http://bcb.unl.edu/dbCAN2)^[17] and to WebMGA Server for COG classification (http://weizhong-lab.ucsd.edu/webMGA).^[18] SignalP-4.1 Server on-line tool was used to predict the presence of signal peptides.^[19]

Enzymatic activity assays and hydrolysis profile for xylan-containing substrates

Protein concentration was determined according to Bradford,^[20] by using bovine serum albumin as standard.

Endoglucanase and xylanase activities were evaluated by using CMC and birchwood xylan as substrates, respectively. Reaction mixture consisted of $450 \,\mu$ L of 1% (w/v) suitable substrate in 100 mM sodium phosphate buffer (pH 6.0) and $50 \,\mu$ L of sample. After incubation for 30 min at 50 °C, the released reducing sugars were measured by dinitrosalicylic acid (DNS) method.^[21] One unit of enzyme activity was defined as the enzyme amount required to release 1 μ mol of reducing sugars (as xylose or glucose) per minute.^[12,22]

The Rezex RSO-Oligosaccharide Ag^+ 4% column, 200 × 10 mm (Phenomenex), was used to identify oligosaccharides released from enzymatic reactions, using D-(+)-xylose (X1), 1,4- β -D-xylobiose (X2), 1,4- β -D-xilotriose (X3), 1,4- β -D-xylotetraose (X4), and 1,4- β -D-xylopentose (X5) (*Megazyme*) as standards. Employed running conditions were based on those previously published.^[23] The Chromatopac Shimadzu C-R8A data processor was used to analyze the obtained data.

All the experiments were performed in triplicate and results were reported as the arithmetic means with their corresponding standard deviations. Data were analyzed using Minitab[®] version 17.1.0 statistical software (Minitab Inc., State College, PA) by means of analysis of variance (ANOVA). Differences were significant when p < 0.05. Associations between variables were assessed using Tukey's HSD test (p < 0.05).

Results and discussion

Production of endoglucanases and xylanases by Bacillus sp. AR03 in the three evaluated conditions

Bacillus sp. strain AR03 was characterized as a cellulase producer in a peptone-based medium.^[13] In this work, the bacterium was able to grow in the three assessed conditions, though OD values were higher when the culture medium was supplemented with glucose (condition 1) and with glucose + CMC (condition 3) (Supplementary Material 1).

Endoglucanase production in condition 1 (Glu) did not show significant differences between 48 and 72 hr $(1.30 \pm 0.08 \text{ and } 1.42 \pm 0.14 \text{ IU mL}^{-1}$, respectively) (p > 0.05); however, these values were significantly higher than that measured at 24 hr ($0.91 \pm 0.06 \text{ IU mL}^{-1}$) (p < 0.05). On the other hand, the enzymatic production obtained in

Figure 1. Endoglucanase (A) and xylanase (B) activities detected in the enzymatic cocktails from *Bacillus* sp. strain AR03 on the three evaluated conditions. Error bars represent the standard deviation calculated from three independent experiments. Different letters indicate significant differences among conditions (1, 2, and 3) for each incubation time (p < 0.05, Tukey test). (a, b, c), (a', b', c'), and (a'', b'', c'') were used for comparisons among conditions at 24, 48, and 72 hr, respectively. Different roman numerals indicate significant differences among incubation times (24, 48, and 72 hr) for each condition (p < 0.05, Tukey test). (I, II, III), (I', II'', III'), and (I'', II'', III'') were used for comparisons among incubation times for condition 1, 2, and 3, respectively (see also Supplementary Material 2). Condition 1: Glu (glucose); Condition 2: CMC (carboxymethyl cellulose); Condition 3: Glu + CMC (glucose + carboxymethyl cellulose).

conditions 2 (CMC) and 3 (Glu + CMC) at 72 hr (0.85 \pm 0.06 and 1.67 \pm 0.20 IU mL⁻¹, respectively) was significantly higher than those obtained at the other two incubation times (p < 0.05) (Fig. 1A, Supplementary Material 2).

Regarding the xylanolytic enzymes production, the activity values did not present significant differences between 48 and 72 hr (2.71 ± 0.24 and 2.61 ± 0.13 IU mL⁻¹, respectively) in condition 1 (p > 0.05), while no significant differences were observed in the activity values at all tested times in condition 2 (p > 0.05). However, condition 3 presented the maximum activity value at 72 hr (3.79 ± 0.21 IU mL⁻¹), with significant differences regarding the values obtained at 24 and 48 hr (2.47±0.07 and 2.94±0.02 IU mL⁻¹, respectively) (p < 0.05) (Fig. 1B, Supplementary Material 2).

Additionally, the xylanolytic activity observed for the cocktail produced in glucose + CMC condition

 $(3.79 \pm 0.21 \text{ IU mL}^{-1})$ was significantly higher than those observed for the cocktails produced in glucose condition $(2.61\pm0.13\,IU~mL^{-1})$ and CMC condition $(1.44\pm0.18\,IU$ mL⁻¹) at 72 hr of incubation (p < 0.05) (Fig. 1, Supplementary Material 2). Possibly, the presence of two carbon sources contributed to maintaining the metabolic state of the studied microorganism, especially by using partially degraded CMC (such as cellobiose obtained through the hydrolysis of the produced endoglucanases) in a late growth phase.^[24,25] In this sense, the medium from condition 3 contributed with more glucose or smaller oligosaccharides that supported the higher growth of Bacillus sp. AR03 and enzymatic production. Notably, these results are consistent with the growth studies of Bacillus AR03 in mono- and co-cultures previously reported,^[25] where a diauxie phenomenon was observed during the production of CAZymes. It is also remarkable the capability of this strain to produce CAZymes in absence of polymeric substrates. Similarly, other authors reported that the used carbon source significantly influenced the production of xylanases, getting the maximum values when a complex substrate^[26,27] and a monomer^[28] were added to the medium.

Considering the biotechnological potential, the production of this mixed cellulase/xylanase cocktail is useful due to the widely showed synergistic effect that these enzymes have on complex substrates.^[29]

Protein identification of enzymatic cocktails produced by Bacillus sp. AR03

Due to the maximum enzymatic activities were reached at 72 hr of incubation in many assessed conditions and in order to unify the times to carry out proteomic studies, the samples collected at 72 hr were used for subsequent studies.

The proteins present in the culture supernatants obtained from media supplemented with different carbon sources were scanned by shotgun proteomic analyses to describe the enzymes produced for polysaccharides utilization. Since *Bacillus* sp. AR03 was closely related to *B. subtilis* group^[13] and its genome has not yet been sequenced, the genome and protein sequences of *B. subtilis* 168 were used as an appropriate database to identify the proteins detected by the proteomic analysis.

Figure 2 shows the total number of proteins identified in each evaluated condition. Media supplemented with glucose and glucose + CMC showed similar amounts of identified proteins (172 and 167, respectively) and shared 147 proteins (85% and 88% of total proteins for glucose and glucose + CMC conditions, respectively). Furthermore, the Volcano plots denoted that some up-regulated proteins were found by comparing both media (Supplementary Material 3). Among them, only protein P02968 (flagellin) was upregulated on glucose condition, while the proteins C0SP82 (probable oxidoreductase), P09339 (aconitate hydratase), P96579 (ribosomal N-acetyltransferase), and P04957 (β -glucanase) were up-regulated on glucose + CMC condition. On the other hand, medium containing CMC as the only carbon source presented the lowest number of proteins (147), with

Figure 2. Venn diagram showing the total amount of proteins detected on each evaluated proteome: Glu: glucose (blue); CMC: carboxymethyl cellulose (red); Glu + CMC: glucose + carboxymethyl cellulose (green).

a higher number of unique and up-regulated proteins regarding the other two media (Fig. 2; Supplementary Material 3).

These observations are further explained by analyzing the differential proteomes obtained for each condition. A differential proteome includes proteins that are up-regulated and/ or only found in a specific condition.^[30,31] Proteins constituting differential proteomes of each condition were subjected into functional categories according to COG classification (Fig. 3).

Differential proteome from condition 1 revealed that proteins associated with cell motility (N) were up-regulated, particularly those related to flagellar assembly such as a flagellin (P02968) and two flagellar hook-associated proteins (P39810 and P96501) (Fig. 3, Supplementary Table 1). Thus, the presence of CMC in culture media would negatively affect the cell motility, probably due to the high viscosity of media containing this substrate.^[32] Several reports indicated that viscosity notably affected bacterial motility, reducing the speed of motility of flagellar microorganisms and causing cell immobilization at high viscosities.^[33,34]

Differential proteome from condition 2 presented unique proteins related to cell cycle control and mitosis (D) (P07788, a putative spore coat protein), lipid transport and metabolism (I) (O34421, a putative acyl-CoA dehydrogenase), replication, recombination, and repair of DNA (L) (P54521, exodeoxyribonuclease), and cell wall/membrane/ envelope biogenesis (M) (P23261 spore coat protein; Q06320 sporulation-specific N-acetylmuramoyl-L-alanine amidase) (Fig. 3, Supplementary Table 1). In addition, 13 proteins not classified into any COG category were detected in the differential proteome obtained from the medium with CMC (Supplementary Material 3). Those mainly encompass proteins associated with sporulation and protein degradation processes (Supplementary Table 1). The up-regulation of these proteins might be evidence of a stress state of Bacillus sp. AR03 in the medium with CMC at 72 hr of growth, and would be associated with the lower values of OD and enzymatic activities observed in this condition (Fig. 1). Previously, other researchers identified these sporulation proteins in Bacillus species through proteomic studies and described their importance as indicators of cellular stress

■C ■D ■E ■F ■G ■H ■I ■J ■K ■L ■M ■N ■O ■P ■Q ■R ■S ■T ■V ■Unclassified

Figure 3. Functional classification of identified proteins in each condition according to COG categories. Glu: differential proteome of glucose condition; CMC: differential proteome of CMC condition; Glu + CMC: differential proteome of glucose + CMC condition. Figure references: (C) Energy production and conversion; (D) Cell cycle control and mitosis; (E) Amino Acid metabolism and transport; (F) Nucleotide metabolism and transport; (G) Carbohydrate metabolism and transport; (H) Coenzyme metabolism; (I) Lipid transport and metabolism; (J) Translation; (K) Transcription; (L) Replication and repair; (M) Cell wall/membrane/envelope biogenesis; (N) Cell motility; (O) Post-translational modification, protein turnover, chaperone functions; (P) Inorganic ion transport and metabolism; (Q) Secondary metabolites biosynthesis, transport and catabolism; (R) General functional prediction only; (S) Function Unknown; (T) Signal Transduction; (V) Defense mechanisms.

status.^[35,36] Additionally, the role of the transcriptional regulation of the gene coding for N-acetylmuramoyl-L-alanine amidase in the mother cell lysis during sporulation of *B. thuringiensis* was reported by Yang et al.^[37]

The stress condition might be related to the rheological properties of the culture media containing CMC. Viscosity is a fundamental property of liquids and plays an important role in the processes of flow, molecular diffusion, and fluid transport.^[38,39] The flow of nutrients and oxygen changes in a very viscous culture medium, leading to the accumulation of metabolites and the formation of gradients, which in turn cause differences in bacterial physiology.^[40] The decrease in dissolved oxygen and the formation of these gradients generate metabolic stress conditions that produce an increase in sporulation.^[41]

Regarding the condition 3, a significant percentage of the identified proteins (53.13%) were related to energy production (C) (15.63%), amino acid transport and metabolism (E) (18.75%), and carbohydrate transport and metabolism (G) (18.75%) (Fig. 3). This result is in concordance with the higher growth and enzymatic activities observed in this condition regarding the conditions 1 and 2 (Fig. 1B).

Proteomic analysis of CAZymes involved in cellulose and xylan degradation

Concerning the carbohydrate actives enzymes, proteomes from the three conditions presented enzymes involved in the degradation of cellulose, xylan, starch, and pectin. Heat map from Fig. 4 indicates that cellulose and xylan degrading enzymes were the most abundant CAZymes. The expression of several CAZymes without an inducible substrate is not surprising because genes encoding these enzymes are generally organized in short cluster flanked by transcriptional regulators.^[7] In this sense, 47 gene clusters encompassing sequences encoding putative CAZymes were found by analyzing the genome of *B. subtillis* 168 with dbCAN2 meta server (Supplementary Table 2).

Two extracellular β -glucan degrading enzymes were found in all conditions: P10475 and P04957. According to CAZy database, P10475 contains a GH5_2 domain associated with CBM3 domain. Experimentally characterized GH5_2 presents endoglucanase activity (EC 3.2.1.4), while CBM3 usually binds to cellulose.^[42-44] This enzyme was upregulated in glucose condition (fold change value = 6.7) and glucose + CMC condition (fold change value = 6.1) regarding the CMC condition (Fig. 4). On the other hand, P04957 presented a GH16 domain. Enzymes from this family mainly present β -1,3(4)-glucanase activity (EC 3.2.1.6),^[45-47] but they also include β -glucosidase (EC 3.2.1.-), laminarinase (EC 3.2.1.39), and β -transglycosidase (EC 2.4.1.-) activities.^[43] P04957 was significantly up-regulated on the medium containing glucose + CMC, while no differences were found between conditions 1 and 2 (Fig. 4). Probably, these two enzymes would be the main responsible of CMCase activity observed in culture supernatants (Fig. 1A). The high abundance of these enzymes in the evaluated conditions might be related to the expression (or induction) of an entire series of enzymes involved in the degradation of cellulosic compounds present in plant biomass (including different types of endo-glucans), and promoted by the presence of a natural cellulose analog, such as CMC.^[48] In several studies, GH16 CAZymes have been expressed in presence of a great variety of cellulosic substrates, such as cellobiose, avicel, soforose, and sugarcane bagasse.^[49-51]

Notably, three putative CAZymes related to xylan degradation were also found in all conditions: a putative extracellular xylanase with a GH30_8 domain (Q45070) and two

Figure 4. Proteins with a CAZy domain found in analyzed proteomes. Fold-change (FC) for a protein between two conditions was calculated as the ratio of protein abundances in each condition. ND: no significant differences; Glu: only present on Glucose condition; CMC: only present on CMC condition; Glu + CMC: only present on Glucose + CMC condition. Blue: up-regulated on Glucose condition; Orange: up-regulated on CMC condition; Green: up-regulated on Glucose + CMC condition. Heat map was drawn according to average of enzyme abundances in each condition. Scale: green indicates low abundance; red indicates high abundance.

 α -arabinofuranosidases (EC 3.2.1.55) from GH43_4 (P42293) and GH51 (P94552) families. Of these enzymes, only GH51 was up-regulated in the CMC condition regarding the glucose condition, with a fold change value = 4.0 (Fig. 4). Many enzymes belonging to GH51 family were classified as α -arabinofuranosidase. However, other well-known activities of this family include endoglucanase, endo- β -1,4-xylanase (EC 3.2.1.8), and β -xylosidase (EC 3.2.1.37).^[43] It was reported that GH51 CAZymes showed endo- β -1,4-glucanase activity with CMC as substrate,^[52,53] which might explain the up-regulation of P94552 from *Bacillus* sp. AR03 in CMC condition (Fig. 4). However, additional studies are necessary to confirm the substrate specificity of this GH51 enzyme, or its ability to hydrolyze different bonds and polysaccharides.

The proteomic analysis was unable to detect any unique peptide belonging to GH11 xylanase (P18429) from *B. subtilis* 168. However, due to some peptide sequences detected through this analysis are shared by both GH11 and GH30 xylanases, the presence of a GH xylanase in enzymatic cocktails produced by *Bacillus* sp. AR03 might not be discounted.

Besides, it is important to note that genes encoding the endoglucanase GH5_2 (P10475) and the glucuronoxylanase GH30_8 (Q45070) were found to constitute a gene cluster in the genome of *B. subtilis* 168 (Supplementary Table 2). These enzymes were also detected with similar abundances in the proteomic analysis. Thus, this gene arrangement might be conserved in genome of *Bacillus* sp. AR03.

Xylan hydrolysis by enzymatic cocktails and product characterization

CAZymes from GH30_8 family were described as specific glucuronoxylan degrading enzymes (EC 3.2.1.136). These

Table 1. Xylooligosaccharides (XOS) yield obtained from birchwood xylan, treated with enzymatic cocktails produced by *Bacillus* sp. AR03 in different conditions: culture medium supplemented with glucose (Glu) (condition 1), carboxymethyl cellulose (CMC) (condition 2), and glucose and carboxymethyl cellulose (Glu + CMC) (condition 3).

		Hydrolys	sis product (m	ig mL ⁻¹)	
Condition	X5	X4	Х3	X2	Total
Glu	0.37 ± 0.05	0.34 ± 0.01	0.35 ± 0.03	ND	1.06 ± 0.09
CMC	0.44 ± 0.10	0.45 ± 0.08	0.50 ± 0.07	0.24 ± 0.01	1.63 ± 0.24
Glu + CMC	0.46 ± 0.07	0.50 ± 0.07	0.58 ± 0.16	0.36 ± 0.18	1.90 ± 0.49
ND: non det	tected				

ND: non detected.

enzymes show very low selectivity for unsubstituted xylan, arabinoxylan, and xylooligosaccharides (XOS), which is the main difference with respect to the xylanases of the GH10 and GH11 families.^[54,55] GH30_8 xylanases showed potential in the production of XOS with prebiotic properties,^[56,57] and were previously identified in different *Bacillus* spp. species.^[58,59] Thus, it was evaluated the capability of enzymatic cocktails produced by *Bacillus* sp. AR03 in the different culture media to degrade birchwood xylan, a substrate with D-methylglucoronic acid substitutions (MeGlcAc).

XOS with polymerization degree between 3 and 5 xylose units were the main products obtained from birchwood xylan hydrolysis (Table 1). Besides, other two unknown products, U1 and U2, were also detected. Notably, xylose (X1) was not produced (Fig. 5). In contrast to a typical XOS mixture produced by GH10 enzymes,^[56] the quantity of produced xylobiose (X2) was low (0.36 and 0.24 mg mL⁻¹) for the cocktails corresponding to glucose + CMC and CMC conditions, respectively, and not detectable for the cocktail from condition with glucose (Table 1). The total XOS production was maximum (1.90 mg mL⁻¹) with the cocktail

Figure 5. Products profile of birchwood xylan degradation by enzymatic cocktails produced by *Bacillus* sp. AR03 in different conditions: condition 1 (Glu, blue line); condition 2 (CMC, green line); and condition 3 (Glu + CMC, red line). Control was carried out by mixing the enzymatic cocktail produced in the CMC condition, previously inactivated by heat, and the substrate (birchwood xylan) (black line). Xylotriose (X3), xylotetraose (X4), xylobiose (X2), xylopentaose (X5), unknown products (U1 and U2).

obtained in the medium supplemented with glucose + CMC (Table 1). This result corroborates the higher xylanolytic activity determined for the enzyme mixture in this medium (Fig. 1B).

The profile of products might be explained by the action mode of GH30_8, which hydrolyzes the xylan backbone near a substitution with MGlucAc.^[60] In this work, this

enzyme generated XOS without substitutions and a substituted oligosaccharide, possibly U1 and U2 (Fig. 5). As previously reported, this enzyme continues hydrolyzing until X5, generating lower molecular weight oligosaccharides, such as X2 and X3.^[61] However, this enzyme does not show activity against X3, unlike other glycoside hydrolases, such as GH10.^[62] For this reason, the enzymatic cocktails produced by *Bacillus* sp. AR03 would not have generated xylose as a product. However, this absence of xylose between hydrolysis products is a desirable feature for prebiotic production.^[63]

Probably, the lack of activity with low molecular weight oligosaccharides is due to the presence of six highly conserved subsites for members of this family: +2, +1 (aglycone region), -1, -2a, -2b, and -3 (glycone region). The -2a and -2b designation refer to the specific subsites for xylose and MGlucAc, respectively. A high number of subsites, in addition to modifications in the residues compared to the conserved active site of GH10 xylanases, demonstrated that X4 with a group MGluAc at position -2 was the smallest oligosaccharide capable of generating a structure with catalytic capacity.^[64] Recently, it was reported a fungal GH30_8 capable of hydrolyzing X4, generating X2 as the main product, without presenting xylosidase activity.^[65]

Conclusion

The proteomic analyses performed in this work revealed that Bacillus sp. AR03 produced enzymes mainly involved in the degradation of cellulose, xylan, starch, and pectin when growing in media containing glucose, CMC, or glucose + CMC as carbon sources. An endoglucanase GH5_2, a β -1,3(4)-glucanase GH16, and a glucuronoxylanase GH30_8 were found among the most abundant proteins in all evaluated conditions. The proteomic studies presented correlation with the endoglucanase and xylanase activities measured in these cocktails. Additionally, the enzymatic cocktails were effective to hydrolyze birchwood xylan, obtaining XOS from 3 to 5 xylose units. Despite the obtained cocktails exhibited similar products profiles after the substrate bioconversion, the highest xylooligomer concentrations were detected with the cocktail from glucose + CMC condition. These results show the potential application of the enzyme mixtures produced by Bacillus sp. AR03 for the production of emerging prebiotics.

Disclosure statement

The authors declare that they have no conflict of interest.

Funding

This work was supported by the National Agency for the Scientific and Technological Promotion under Grant PICT-2017-2185, by the National University of Tucumán (Argentina) under Grant VT42-UNT11881, and by the Fondo para la Investigación Científica y Tecnológica.

ORCID

Johan S. Hero (D) http://orcid.org/0000-0002-3905-3666

References

 Linares-Pasten, J.; Andersson, M.; Karlsson, E. Thermostable Glycoside Hydrolases in Biorefinery Technologies. *Curr. Biotechnol.* 2014, *3*, 26–44. DOI: 10.2174/22115501113 026660041.

- [2] Madhavan, A.; Sindhu, R.; Binod, P.; Sukumaran, R. K.; Pandey, A. Strategies for Design of Improved Biocatalysts for Industrial Applications. *Bioresour. Technol.* 2017, 245, 1304–1313. DOI: 10.1016/j.biortech.2017.05.031.
- [3] Yang, J. K.; Zhang, J. J.; Yu, H. Y.; Cheng, J. W.; Miao, L. H. Community Composition and Cellulase Activity of Cellulolytic Bacteria from Forest Soils Planted with Broad-Leaved Deciduous and Evergreen Trees. *Appl. Microbiol. Biotechnol.* 2014, 98, 1449–1458. DOI: 10.1007/s00253-013-5130-4.
- [4] Berlemont, R.; Martiny, A. C. Genomic Potential for Polysaccharide Deconstruction in Bacteria. *Appl. Environ. Microbiol.* 2015, *81*, 1513–1519. DOI: 10.1128/AEM.03718-14.
- [5] Sharma, A.; Satyanarayana, T. Comparative Genomics of Bacillus Species and Its Relevance in Industrial Microbiology. Genom. Insights 2013, 6, GEI.S12732. DOI: 10.4137/GEI.S12732.
- [6] Cui, W.; Han, L.; Suo, F.; Liu, Z.; Zhou, L.; Zhou, Z. Exploitation of *Bacillus subtilis* as a Robust Workhorse for Production of Heterologous Proteins and Beyond. *World J. Microbiol. Biotechnol.* **2018**, *34*, 145. DOI: 10.1007/s11274-018-2531-7.
- [7] López-Mondéjar, R.; Zühlke, D.; Větrovský, T.; Becher, D.; Riedel, K.; Baldrian, P. Decoding the Complete Arsenal for Cellulose and Hemicellulose Deconstruction in the Highly Efficient Cellulose Decomposer *Paenibacillus* 0199. *Biotechnol. Biofuels* 2016, 9, 104. DOI: 10.1186/s13068-016-0518-x.
- [8] Chitlaru, T.; Shafferman, A. Proteomic Studies of *Bacillus anthracis*. *Future Microbiol.* 2009, 4, 983–998. DOI: 10.2217/ fmb.09.73.
- [9] Větrovský, T.; Steffen, K. T.; Baldrian, P. Potential of Cometabolic Transformation of Polysaccharides and Lignin in Lignocellulose by Soil Actinobacteria. *PLoS One.* 2014, 9, e89108. DOI: 10.1371/journal.pone.0089108.
- [10] Chundawat, S. P. S.; Lipton, M. S.; Purvine, S. O.; Uppugundla, N.; Gao, D.; Balan, V.; Dale, B. E. Proteomics-Based Compositional Analysis of Complex cellulase-hemicellulase mixtures. J. Proteome Res. 2011, 10, 4365–4372. DOI: 10.1021/ pr101234z.
- [11] Tang, H.; Li, Y.; Zheng, L.; Lei, L.; Yang, X.; Luo, C. Comparative Genomic and Secretomic Characterisation of Endophytic *Bacillus velezensis* LC1 Producing Bioethanol from Bamboo Lignocellulose. PREPRINT (Version 1) *Res. Square* 2019. DOI: 10.21203/rs.2.17974/v1
- [12] Manfredi, A. P.; Perotti, N. I.; Martínez, M. A. Cellulose Degrading Bacteria Isolated from Industrial Samples and the Gut of Native Insects from Northwest of Argentina. J. Basic Microbiol. 2015, 55, 1384–1393. DOI: 10.1002/jobm.201500269.
- [13] Manfredi, A. P.; Pisa, J. H.; Valdeón, D. H.; Perotti, N. I.; Martínez, M. A. Synergistic Effect of Simple Sugars and Carboxymethyl Cellulose on the Production of a Cellulolytic Cocktail from Bacillus Sp. AR03 and Enzyme Activity Characterization. *Appl. Biochem. Biotechnol.* **2016**, *179*, 16–32. DOI: 10.1007/s12010-015-1976-5.
- [14] La Greca, A.; Solari, C.; Furmento, V.; Lombardi, A.; Biani, M. C.; Aban, C.; Moro, L.; García, M.; Guberman, A. S.; Sevlever, G. E.; et al. Extracellular Vesicles from Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Acquire a Stromal Modulatory Proteomic Pattern during Differentiation. *Exp. Mol. Med.* 2018, 50, 119. DOI: 10.1038/s12276-018-0142-x.
- [15] Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D. J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE Database and Related Tools and Resources in 2019: Improving Support for Quantification Data. *Nucleic Acids Res.* 2019, 47, D442–D450. DOI: 10.1093/nar/gky1106.
- [16] Kunst, F.; Ogasawara, N.; Moszer, I.; Albertini, A. M.; Alloni, G.; Azevedo, V.; Bertero, M. G.; Bessières, P.; Bolotin, A.; Borchert, S.; et al. The Complete Genome Sequence of the Gram-Positive Bacterium *Bacillus subtilis. Nature* 1997, 390, 249–256. DOI: 10.1038/36786.

- [18] Wu, S.; Zhu, Z.; Fu, L.; Niu, B.; Li, W. WebMGA: A Customizable Web Server for Fast Metagenomic Sequence Analysis. BMC Genomics. 2011, 12, 444. DOI: 10.1186/1471-2164-12-444.
- Petersen, T. N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP
 4.0: Discriminating Signal Peptides from Transmembrane Regions. *Nat. Methods.* 2011, *8*, 785–786. DOI: 10.1038/nmeth.
 1701.
- [20] Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. *Anal. Biochem.* 1976, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.
- [21] Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. DOI: 10.1021/ac60147a030.
- [22] Pisa, J. H.; Manfredi, A. P.; Perotti, N. I.; Romero, H. G.; Breccia, J. D.; Martínez, M. A. Agrowastes as Feedstock for the Production of Endo-β-Xylanase from *Cohnella* sp. Strain AR92. *J. Mol. Microbiol. Biotechnol.* **2017**, *27*, 277–288. DOI: 10.1159/ 000480541.
- [23] Mazlan, N. A.; Samad, K. A.; Wan Yussof, H.; Saufi, S. M.; Jahim, J. Xylooligosaccharides from Potential Agricultural Waste: Characterization and Screening on the Enzymatic Hydrolysis Factors. *Ind. Crops Prod.* 2019, *129*, 575–584. DOI: 10.1016/j.indcrop.2018.12.042.
- [24] Solopova, A.; van Gestel, J.; Weissing, F. J.; Bachmann, H.; Teusink, B.; Kok, J.; Kuipers, O. P. Bet-Hedging during Bacterial Diauxic Shift. *Proc. Natl. Acad. Sci. USA.* 2014, 111, 7427–7432. DOI: 10.1073/pnas.1320063111.
- [25] Hero, J. S.; Pisa, J. H.; Perotti, N. I.; Romero, C. M.; Martínez, M. A. Endoglucanase and Xylanase Production by *Bacillus* sp. AR03 in Co-Culture. *Prep. Biochem. Biotechnol.* 2017, 47, 589–596. DOI: 10.1080/10826068.2017.1280826.
- [26] Akhavan Sepahy, A.; Ghazi, S.; Akhavan Sepahy, M. Cost-Effective Production and Optimization of Alkaline Xylanase by Indigenous *Bacillus mojavensis* AG137 Fermented on Agricultural Waste. *Enzyme Res.* 2011, 2011, 593624–593629. DOI: 10.4061/2011/593624.
- [27] Buthelezi, S. P.; Olaniran, A. O.; Pillay, B. Sawdust and Digestive Bran as Cheap Alternate Substrates for Xylanase Production. Afr. J. Microbiol. Res. 2011, 5, 742–752. 10.5897/ AJMR10.366.
- [28] Irfan, M.; Asghar, U.; Nadeem, M.; Nelofer, R.; Syed, Q. Optimization of Process Parameters for Xylanase Production by *Bacillus* sp. in Submerged Fermentation. J. Radiat. Res. Appl. Sci. 2016, 9, 139–147. DOI: 10.1016/j.jrras.2015.10.008.
- [29] Bajaj, P.; Mahajan, R. Cellulase and Xylanase Synergism in Industrial Biotechnology. *Appl. Microbiol. Biotechnol.* 2019, 103, 8711–8724. DOI: 10.1007/s00253-019-10146-0.
- [30] Minden, J. Comparative Proteomics and Difference Gel Electrophoresis. *Biotechniques* 2007, 43, 739–745. DOI: 10.2144/ 000112653.
- [31] Yang, Y. Y.; Yang, F. Q.; Gao, J. L. Differential Proteomics for Studying Action Mechanisms of Traditional Chinese Medicines. *Chin. Med.* 2019, 14, 1. DOI: 10.1186/s13020-018-0223-8.
- [32] Sun, E.; Liu, S.; Hancock, R. E. W. Surfing Motility: A Conserved yet Diverse Adaptation among Motile Bacteria. J. Bacteriol. 2018, 200, e00394–18. 10.1128/JB.00394-18.
- [33] Ferrero, R. L.; Lee, A. Motility of Campylobacter Jejuni in a Viscous Environment: Comparison with Conventional Rod-Shaped Bacteria. J. Gen. Microbiol. 1988, 134, 53–59. DOI: 10. 1099/00221287-134-1-53.
- [34] Swidsinski, A.; Sydora, B. C.; Doerffel, Y.; Loening-Baucke, V.; Vaneechoutte, M.; Lupicki, M.; Scholze, J.; Lochs, H.; Dieleman, L. A. Viscosity Gradient within the Mucus Layer Determines the Mucosal Barrier Function and the Spatial Organization of

the Intestinal Microbiota. *Inflamm. Bowel Dis.* **2007**, *13*, 963–970. DOI: 10.1002/ibd.20163.

- [35] Abhyankar, W.; Beek, A.; Ter; Dekker, H.; Kort, R.; Brul, S.; de Koster, C. G. Gel-Free Proteomic Identification of the *Bacillus subtilis* Insoluble Spore Coat Protein Fraction. *Proteomics.* 2011, 11, 4541–4550. DOI: 10.1002/pmic.201100003.
- [36] Abhyankar, W. R.; Kamphorst, K.; Swarge, B. N.; van Veen, H.; van der Wel, N. N.; Brul, S.; de Koster, C. G.; de Koning, L. J. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of *Bacillus subtilis* Spores. *Front. Microbiol.* 2016, 7, 1636–1610. DOI: 10.3389/fmicb.2016.01636.
- [37] Yang, J.; Peng, Q.; Chen, Z.; Deng, C.; Shu, C.; Zhang, J.; Huang, D.; Song, F. Transcriptional Regulation and Characteristics of a Novel N-Acetylmuramoyl-L-Alanine Amidase Gene Involved in *Bacillus thuringiensis* Mother Cell Lysis. J. Bacteriol. 2013, 195, 2887–2897. DOI: 10.1128/JB. 00112-13.
- [38] Kao, H. P.; Abney, J. R.; Verkman, A. S. Determinants of the Translational Mobility of a Small Solute in Cell Cytoplasm. J. Cell Biol. 1993, 120, 175–184. DOI: 10.1083/jcb.120.1.175.
- [39] Swaminathan, R.; Bicknese, S.; Periasamy, N.; Verkman, A. S. Cytoplasmic Viscosity near the Cell Plasma Membrane: Translational Diffusion of a Small Fluorescent Solute Measured by Total Internal Reflection-Fluorescence Photobleaching Recovery. *Biophys. J.* **1996**, *71*, 1140–1151. DOI: 10.1016/S0006-3495(96)79316-5.
- [40] Kim, S.; Li, H.; Oh, I.; Kee, C.; Kim, M. Effect of Viscosity-Inducing Factors on Oxygen Transfer in Production Culture of Bacterial Cellulose. *Korean J. Chem. Eng.* 2012, 29, 792–797. DOI: 10.1007/s11814-011-0245-8.
- [41] Posada-Uribe, L. F.; Romero-Tabarez, M.; Villegas-Escobar, V. Effect of Medium Components and Culture Conditions in *Bacillus subtilis* EA-CB0575 Spore Production. *Bioprocess Biosyst. Eng.* 2015, 38, 1879–1888. DOI: 10.1007/s00449-015-1428-1.
- [42] Aspeborg, H.; Coutinho, P. M.; Wang, Y.; Brumer, H.; Henrissat, B. Evolution, Substrate Specificity and Subfamily Classification of Glycoside Hydrolase Family 5 (GH5). BMC Evol. Biol. 2012, 12, 186. DOI: 10.1186/1471-2148-12-186.
- [43] Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P. M.; Henrissat, B. The Carbohydrate-Active Enzymes Database (CAZy) in 2013. *Nucleic Acids Res.* 2014, 42, D490–D495. DOI: 10.1093/nar/gkt1178.
- [44] Wu, B.; Zheng, S.; Pedroso, M. M.; Guddat, L. W.; Chang, S.; He, B.; Schenk, G. Processivity and Enzymatic Mechanism of a Multifunctional Family 5 Endoglucanase from *Bacillus subtilis* BS-5 with Potential Applications in the Saccharification of Cellulosic Substrates. *Biotechnol. Biofuels.* 2018, *11*, 20. DOI: 10.1186/s13068-018-1022-2.
- [45] Jaafar, N. R.; Khoiri, N. M.; Ismail, N. F.; Mahmood, N. A. N.; Abdul Murad, A. M.; Abu Bakar, F. D.; Mat Yajit, N. L.; Illias, R. M. Functional Characterisation and Product Specificity of Endo-β-1,3-Glucanase from Alkalophilic Bacterium, *Bacillus lehensis* G1. *Enzyme Microb. Technol.* 2020, 140, 109625. DOI: 10.1016/j.enzmictec.2020.109625.
- [46] Li, J.; Cao, C.; Jiang, Y.; Huang, Q.; Shen, Y.; Ni, J. A Novel Digestive GH16 β-1,3(4)-Glucanase from the Fungus-Growing Termite Macrotermes Barneyi. *Appl. Biochem. Biotechnol.* 2020, 192, 1284–1297. DOI: 10.1007/s12010-020-03368-w.
- [47] Furtado, G. P.; Ribeiro, L. F.; Santos, C. R.; Tonoli, C. C.; de Souza, A. R.; Oliveira, R. R.; Murakami, M. T.; Ward, R. J. Biochemical and Structural Characterization of a β -1,3–1,4-Glucanase from *Bacillus subtilis* 168. *Process Biochem.* **2011**, 46, 1202–1206. DOI: 10.1016/j.procbio.2011.01.037.
- [48] Jiménez, D. J.; de Lima Brossi, M. J.; Schückel, J.; Kračun, S. K.; Willats, W. G. T.; van Elsas, J. D. Characterization of Three Plant Biomass-Degrading Microbial Consortia by Metagenomics- and Metasecretomics-Based Approaches. *Appl. Microbiol. Biotechnol.* 2016, 100, 10463–10477. DOI: 10.1007/ s00253-016-7713-3.

- [49] Häkkinen, M.; Arvas, M.; Oja, M.; Aro, N.; Penttilä, M.; Saloheimo, M.; Pakula, T. M. Re-Annotation of the CAZy Genes of Trichoderma Reesei and Transcription in the Presence of Lignocellulosic Substrates. *Microb. Cell Fact.* **2012**, *11*, 134. DOI: 10.1186/1475-2859-11-134.
- [50] Ferreira Filho, J. A.; Horta, M. A. C.; Beloti, L. L.; dos Santos, C. A.; de Souza, A. P. Carbohydrate-Active Enzymes in Tric hoderma Harzianum: A Bioinformatic Analysis Bioprospecting for Key Enzymes for the Biofuels Industry. *BMC Genomics* 2017, 18, 779. DOI: 10.1186/s12864-017-4181-9.
- [51] Jiménez, D. J.; Chaib De Mares, M.; Salles, J. F. Temporal Expression Dynamics of Plant Biomass-Degrading Enzymes by a Synthetic Bacterial Consortium Growing on Sugarcane Bagasse. *Front. Microbiol.* **2018**, *9*, 299–213. DOI: 10.3389/ fmicb.2018.00299.
- [52] Boyce, A.; Walsh, G. Characterisation of a Novel Thermostable Endoglucanase from *Alicyclobacillus vulcanalis* of Potential Application in Bioethanol Production. *Appl. Microbiol. Biotechnol.* 2015, 99, 7515–7525. DOI: 10.1007/s00253-015-6474-8.
- [53] Bai, Y.; Wang, J.; Zhang, Z.; Shi, P.; Luo, H.; Huang, H.; Feng, Y.; Yao, B. Extremely Acidic beta-1,4-glucanase, CelA4, from thermoacidophilic Alicyclobacillus sp. A4 with high protease resistance and potential as a pig feed additive. *J. Agric. Food Chem.* 2010, 58, 1970–1975. DOI: 10.1021/jf9035595.
- [54] Hurlbert, J. C.; Preston, J. F. Functional Characterization of a Novel Xylanase from a Corn Strain of *Erwinia chrysanthemi*. J. Bacteriol. 2001, 183, 2093–2100. DOI: 10.1128/JB.183.6.2093-2100.2001.
- [55] Vršanská, M.; Kolenová, K.; Puchart, V.; Biely, P. Mode of Action of Glycoside Hydrolase Family 5 Glucuronoxylan Xylanohydrolase from *Erwinia chrysanthemi*. FEBS J. 2007, 274, 1666–1677. DOI: 10.1111/j.1742-4658.2007.05710.x.
- [56] Linares-Pasten, J. A.; Aronsson, A.; Karlsson, E. N. Structural Considerations on the Use of Endo-Xylanases for the Production of Prebiotic Xylooligosaccharides from Biomass. *Curr. Protein Pept. Sci.* 2018, 19, 48–67. DOI: 10.2174/ 1389203717666160923155209.
- [57] Nordberg Karlsson, E.; Schmitz, E.; Linares-Pastén, J. A.; Adlercreutz, P. Endo-Xylanases as Tools for Production of

Substituted Xylooligosaccharides with Prebiotic Properties. *Appl. Microbiol. Biotechnol.* **2018**, *102*, 9081–9088. DOI: 10. 1007/s00253-018-9343-4.

- [58] Wei, L.; Rhee, M. S.; Preston, J. F.; Chen, H. Production of Acidic Xylooligosaccharides from Methylglucu ronoarabinoxylans by *Bacillus subtilis* Strain MR44. J. Chem. Technol. Biotechnol. 2016, 91, 2056–2062. DOI: 10.1002/jctb.4800.
- [59] Guo, Y.; Gao, Z.; Xu, J.; Chang, S.; Wu, B.; He, B. A Family 30 Glucurono-Xylanase from *Bacillus subtilis* LC9: Expression, Characterization and Its Application in Chinese Bread Making. *Int. J. Biol. Macromol.* **2018**, *117*, 377–384. DOI: 10.1016/j.ijbiomac.2018.05.143.
- [60] St. John, F. J.; Rice, J. D.; Preston, J. F. Characterization of XynC from *Bacillus subtilis* Subsp. Subtilis Strain 168 and Analysis of Its Role in Depolymerization of Glucuronoxylan. *J. Bacteriol.* 2006, 188, 8617–8626. DOI: 10.1128/JB.01283-06.
- [61] St John, F. J.; Dietrich, D.; Crooks, C.; Pozharski, E.; González, J. M.; Bales, E.; Smith, K.; Hurlbert, J. C. A Novel Member of Glycoside Hydrolase Family 30 Subfamily 8 with Altered Substrate Specificity. *Acta Crystallogr. D Biol. Crystallogr.* 2014, 70, 2950–2958. DOI: 10.1107/S1399004714019531.
- [62] Rahmani, N.; Kahar, P.; Lisdiyanti, P.; Lee, J.; Yopi; Prasetya, B.; Ogino, C.; Kondo, A. GH-10 and GH-11 Endo-1,4β-Xylanase Enzymes from Kitasatospora Sp. Produce Xylose and Xylooligosaccharides from Sugarcane Bagasse with No Xylose Inhibition. *Bioresour. Technol.* **2019**, *272*, 315–325. DOI: 10.1016/j.biortech.2018.10.007.
- [63] Samanta, A. K.; Jayapal, N.; Jayaram, C.; Roy, S.; Kolte, A. P.; Senani, S.; Sridhar, M. Xylooligosaccharides as Prebiotics from Agricultural by-Products: Production and Applications. *Bioact. Carbohydr. Dietary Fibre* 2015, 5, 62–71. DOI: 10.1016/j.bcdf. 2014.12.003.
- [64] St John, F. J.; Hurlbert, J. C.; Rice, J. D.; Preston, J. F.; Pozharski, E. Ligand Bound Structures of a Glycosyl Hydrolase Family 30 Glucuronoxylan Xylanohydrolase. *J. Mol. Biol.* 2011, 407, 92–109. DOI: 10.1016/j.jmb.2011.01.010.
- [65] Katsimpouras, C.; Dedes, G.; Thomaidis, N. S.; Topakas, E. A Novel Fungal GH30 Xylanase with Xylobiohydrolase Auxiliary Activity. *Biotechnol. Biofuels.* 2019, *12*, 120. 10.1186/s13068-019-1455-2.

Supplementary Material 1. Growth curves of *Bacillus* sp. AR03 in the different growth media. Condition 1: 10 g L⁻¹ glucose (**Glu**), Condition 2: 10 g L⁻¹ of CMC (**CMC**), Condition 3: 10 g L⁻¹ of glucose + 10 g L⁻¹ of CMC (**Glu+CMC**). Error bars represent the standard deviation calculated from three independent experiments.

Supplementary Material 2. One-way ANOVA test for endoglucanase (A) and xylanase (B) activity values under conditions 1 (Glu), 2 (CMC) and 3 (Glu+CMC) at different times: 24 h, 48 h, 72 h (see also Fig. 1).

A

Endoglucanase activity

Factor: Time / Values: Glu; CMC; Glu+CMC

Source	DF	Adj SS	Adj MS	F-Value	P-Value	Source	DF	Adj SS	Adj MS	F-Value	P-Value	Source	DF	Adj SS	Adj MS	F-Value	P-Value
Time 24 h	2	0.6168	0.3084	65.12	0.000	Time 48 h	2	1.3514	0.6757	60.76	0.000	Time 72 h	2	1.051	0.5259	30.5	0.001
Error	6	0.0284	0.0047			Error	6	0.0667	0.0111			Error	6	0.103	0.0172		
Total	8	0.6452				Total	8	1.4181				Total	8	1.155			

Factor: Condition / Values: 24 h; 48 h; 72 h

Source	DF	Adj SS	Adj MS	F-Value	P-Value	Source	DF	Adj SS	Adj MS	F-Value	P-Value	Source	DF	Adj SS	Adj MS	F-Value	P-Value
Condition 1	2	0.4031	0.2015	25.18	0.001	Condition 2	2	0.4453	0.2226	96.82	0.000	Condition 3	2	0.980	0.4903	21.51	0.002
Error	6	0.0480	0.0080			Error	6	0.0138	0.0023			Error	6	0.136	0.0228		
Total	8	0.4511				Total	8	0.4591				Total	8	1.117			

Xylanase activity

Factor: Time / Values: Glu; CMC; Glu+CMC

Source	DF	Adj SS	Adj MS	F-Value	P-Value	Source	DF	Adj SS	Adj MS	F-Value	P-Value	Source	DF	Adj SS	Adj MS	F-Value	P-Value
Time 24 h	2	2.5281	1.2640	469.49	0.000	Time 48 h	2	3.7658	1.8829	68.41	0.000	Time 72 h	2	8.2872	4.1436	126.04	0.000
Error	6	0.0161	0.0026			Error	6	0.1651	0.0275			Error	6	0.1973	0.0328		
Total	8	2.5443				Total	8	3.9310				Total	8	8.4845			

Factor: Condition / Values: 24 h; 48 h; 72 h

Source	DF	Adj SS	Adj MS	F-Value	P-Value	Source	DF	Adj SS	Adj MS	F-Value	P-Value	Source	DF	Adj SS	Adj MS	F-Value	P-Value
Condition 1	2	2.3893	1.1946	47.45	0.000	Condition 2	2	0.1146	0.0572	2.81	0.138	Condition 3	2	2.6852	1.3426	76.55	0.000
Error	6	0.1511	0.0252			Error	6	0.1222	0.0203			Error	6	0.1052	0.0175		
Total	8	2.5404				Total	8	0.2368				Total	8	2.7905			

Supplementary Material 3. Volcano plots comparing the protein abundance between two conditions. Glucose vs. CMC (**A**); Glucose vs. Glucose+CMC (**B**); CMC vs. Glucose+CMC (**C**). Filled circles indicate proteins with CAZy domains. Blue circles: CAZymes related to the degradation of xylan of GH30_8 (Q45070), GH43_4 (P42293) and GH51 (P94552) families. Green circles: extracellular β -glucanases of GH5_2 (P10475) and GH16 (P04957) families. Red circles: other putative GHs, PLs and CEs.

Accession	Description	Signal P	Cazy Domain	COG Number
P37940	2-oxoisovalerate del	N		COG1071
P37941	2-oxoisovalerate del	N		COG0022
P54533	Dihydrolipoyl dehyd	N		COG1249
P13714	L-lactate dehydroger	N		COG0039
P42412	Methylmalonate sen	N		COG1012
P08065	Succinate dehydroge	N		COG1053
P09339	Aconitate hydratase	N		COG1048
P54572	Probable NAD-deper	N		COG0281
P37808	ATP synthase subuni	N		COG0056
P37809	ATP synthase subuni	N		COG0055
P37813	ATP synthase subuni	N		COG0356
P46912	Menaquinol-cytochr	N		COG1290
P46913	Menaquinol-cytochr	N		COG1290
P94424	FMN reductase [NAD	N		COG0778
O31404	Acetoin:2,6-dichloro	N		COG1071
032224	FMN-dependent NA	N		COG1182
034591	Acetoin:2,6-dichloro	N		COG0022
P24469	Cytochrome c-550 O	N		COG2010
COSP82	Probable oxidoreduc	N		COG0243
007529	FMN-dependent NA	N		COG0431
P42175	Nitrate reductase al	N		COG5013
P42176	Nitrate reductase be	N		COG1140
P07788	Spore coat protein A	N		COG2132
O31669	Acireductone dioxyg	N		COG1791
P10944	Histidine ammonia-l	N		COG2986
P18186	Ornithine carbamoy	N		COG0078
P19080	Chorismate mutase	N		COG4401
P25503	Urocanate hydratase	N		COG2987
P39138	Arginase OS=Bacillus	N		COG0010
P54420	Asparagine syntheta	N		COG0367
P54517	3-dehydroquinate de	N		COG0757
P54531	Leucine dehydrogen	N		COG0334
P04990	Threonine synthase	N		COG0498
P42318	Uncharacterized pro	N		COG0620
P94427	Probable 4-aminobu	N		COG0160
P12425	Glutamine synthetas	N		COG0174
P39148	Serine hydroxymeth	N		COG0112
005394	Cystathionine gamm	N		COG0626
P37887	Cysteine synthase O	N		COG0031
P24141	Oligopeptide-binding	Y		COG4166
032106	Probable cytosol am	N		COG0260
P54422	Gamma-glutamyltra	Υ		COG0405
P71035	Urease subunit beta	N		COG0832
P75030	Urease subunit gamı	Ν		COG0831
P77837	Urease subunit alpha	Ν		COG0804
P26902	D-aminopeptidase O	N		COG2362
P39762	Aminopeptidase Am	Ν		COG2309
P50848	Carboxypeptidase 1	Ν		COG2317
P54542	Uncharacterized pro	Ν		COG2195

P55179	Peptidase T OS=Baci	N		COG2195
007622	Putative Rieske 2Fe-	N		COG0665
P39790	Extracellular metallo	Y		COG3591
007603	Putative aminopepti	N		COG1363
034924	Putative aminopepti	N		COG1363
P94521	Putative aminopepti	N		COG1363
007597	D-alanine aminotran	N		COG0115
Q04789	Acetolactate synthas	N		COG0028
P80862	Phosphoserine amin	N		COG1932
Q04796	4-hydroxy-tetrahydr	N		COG0329
031776	L-threonine 3-dehyd	N		COG1063
034788	(R,R)-butanediol deh	N		COG1063
P54535	Arginine-binding ext	Y		COG0834
005269	GMP reductase OS=I	N		COG0516
P25995	Dihydroorotase OS=	N		COG0044
P46354	Purine nucleoside pl	N		COG0005
P21879	Inosine-5'-monopho	N		COG0516
P94526	Sugar-phosphatase A	N		COG0647
034313	Trifunctional nucleot	Y		COG0737
031801	Probable deoxyuridi	N		COG0756
031668	Methylthioribulose-:	N		COG0235
034364	Probable oligo-1,6-g	N GH1	13_31(28-376)	COG0366
034450	N-acetylglucosamine	N CE9	(8-384)	COG1820
034714	Oxalate decarboxyla	N		COG2140
P00691	Alpha-amylase OS=B	Y GH1	13_28(58-317)+CB	COG0366
P05656	Levanase OS=Bacillu	Y GH3	32(39-349)+CBM6	COG1621
P19669	Transaldolase OS=Ba	N		COG0176
P39841	Putative mannose-6-	N		COG1482
P50843	4-deoxy-L-threo-5-h	N		COG3717
P94523	L-arabinose isomera	N		COG2160
P94552	Intracellular exo-alpl	N GH5	51(3-492)	COG3534
P39116	Pectate lyase OS=Ba	Y PL1_	_6(134-346)	COG3866
034557	Ribulose-phosphate	N		COG0036
P39773	2,3-bisphosphoglyce	N		COG0696
P09124	Glyceraldehyde-3-pł	N		COG0057
P10475	Endoglucanase OS=E	Y GH5	5_2(52-296)+CBM	COG2730
P40406	Beta-hexosaminidas	Y GH3	3(112-348)	COG1472
P46353	Phosphopentomutas	N		COG1015
P36946	D-ribose pyranase O	N		COG1869
034819	Pectin lyase OS=Baci	Y PL1_	_8(83-275)	COG3866
P42293	Extracellular endo-al	Y GH4	43_4(35-360)	COG3507
P42418	Protein IolH OS=Baci	N		COG1082
P42981	N-acetyl-alpha-D-glu	N CE1	4(7-112)	COG2120
P04957	Beta-glucanase OS=E	Y GH1	16(35-239)	COG2273
Q795U4	UPF0173 metal-depe	N		COG2220
031676	6-carboxy-5,6,7,8-tet	N		COG0720
034457	Molybdenum cofact	N		COG0521
034899	Cob(I)yrinic acid a,c-	N		COG2096
035033	Probable coenzyme	Y		COG0452
P11998	6,7-dimethyl-8-ribity	N		COG0054
	, , ,			

D1C110			6060207
P16440	Riboflavin synthase (N		COG0307
P10010			COG0181
P19465			COG0302
P25052	Aminopyrimidine amin		COG0819
P28823	Dinydroneopterin al N		COG1539
P39666	Probable nicotinate- N		COG0157
031705	Molybdopterin syntr N		COG0314
P52999	Aspartate 1-decarbo N		COG0853
005243	UPF0047 protein YugN		COG0432
P49786	Biotin carboxyl carrieN		COG0511
006734	AB hydrolase superfi N		COG0596
P94584	3-hydroxyacyl-[acyl-(N		COG0764
Q06756	2-C-methyl-D-erythr N		COG0245
P37967	Para-nitrobenzyl est N		COG2272
034421	Probable acyl-CoA d		COG1960
034340	3-oxoacyl-[acyl-carri N		COG0304
P40397	Uncharacterized oxic		COG1028
031742	50S ribosomal prote N		COG0335
O32038	AspartatetRNA(Asp N		COG0173
O32053	Queuine tRNA-ribosy N		COG0343
P50849	Polyribonucleotide r N		COG1185
O31678	NADPH-dependent 7 N		COG0780
P94462	Peptide deformylase N		COG0242
Q45495	Peptide deformylase N		COG0242
007607	Probable metallo-hy N		COG1234
P96579	Putative ribosomal N		COG1670
031754	Regulator of sigma-\N		COG0750
P05653	DNA gyrase subunit N		COG0188
P37455	Single-stranded DNA N		COG0629
P54521	Exodeoxyribonuclea: N		COG1570
P14192	Bifunctional protein N		COG1207
P55180	UDP-glucose 4-epim N		COG1087
POCI73	Glutaminefructose N		COG0449
P10725	Alanine racemase 1 N		COG0787
P94494	Alanine racemase 2 N		COG0787
Q06320	Sporulation-specific N		COG0860
Q45070	Glucuronoxylanase XY	GH30 8(34-379)	COG5520
P23261	Spore coat protein F N	_ 、 ,	COG5577
P23446	Flagellar basal-body N		COG4786
P39810	Flagellar hook-assoc Y		COG1256
P96501	Flagellar hook-assoc N		COG1344
P02968	Flagellin OS=Bacillus N		COG1344
P04189	Subtilisin E OS=Bacill Y		COG1404
P11018	Major intracellular s N		COG1404
P16397	Bacillopentidase E O Y		COG4412
P29141	Minor extracellular rY		COG1404
P37476	ATP-dependent zinc N		COG0465
P54423	Cell wall-associated Y		COG1404
031657	Protease HtpX home N		COG0501
P25152	Aminopentidase Vw/V		COG0301
1 23132	Anniopeptidase Twei		0002234

P39070	ATP-dependent prot N	
032218	Disulfide bond forma	
034357	Thioredoxin-like pro N	
O34789	Uncharacterized pro N	
P26901	Vegetative catalase (N	
P42234	Catalase-2 OS=Bacill N	
032167	Methionine-binding Y	
O34385	Manganese-binding Y	
P46338	Phosphate-binding pY	
P54375	Superoxide dismutas N	
P39645	Putative heme-depe N	
Q45538	Protein CotJC OS=Ba N	
P37960	Metalloregulation D N	
P94388	Cephalosporin-C dea N	CE7(3-312)
032210	Glyoxal reductase O!N	
P39586	Uncharacterized pro N	
P45743	Isochorismatase OS= N	
O31455	Putative hydrolase Y Y	
031535	Uncharacterized pro N	
034374	Putative cytochrome N	
P54501	Probable metallo-hy N	
005408	Uncharacterized oxicN	
031737	Uncharacterized pro Y	
O34355	Putative amidohydro N	
O34696	Uncharacterized trai N	
P37502	Probable metallo-hy N	
P42972	Uncharacterized oxicN	
P94533	Uncharacterized pro N	
Q04805	Uncharacterized zin(N	
P37538	Uncharacterized pro N	
P40407	Uncharacterized pro Y	
O34667	S-ribosylhomocystei N	
O31796	RNA-binding protein N	
O34483	HPr kinase/phospho N	
O34384	Uncharacterized pro N	
P80875	General stress prote N	
034973	Putative hydrolase Y N	
P81100	Stress response prot N	
P80242	Organic hydroperoxi N	
P10943	Hut operon positive N	
P19466	Transcription attenu N	
P54507	Spore coat-associate Y	
P70960	Uncharacterized pro Y	
P39620	Spore coat protein G N	
Q45536	Protein CotJA OS=Ba N	
Q45537	Protein CotJB OS=Ba N	
007629	Uncharacterized pro Y	
O31436	Uncharacterized pro Y	
O31451	Uncharacterized pro N	
O31649	Uncharacterized pro N	

COG1651	
COG0526	
COG4260	
COG0753	
COG0753	
COG1464	
COG0803	
COG0226	
COG0605	
COG3253	
COG3546	
COG0783	
COG3458	
COG0656	
COG0346	
COG1535	
COG2312	
COG0346	
COG2124	
COG0491	
COG0667	
COG5266	
COG1574	
COG0663	
COG0491	
COG4989	
COG2764	
COG0612	
COG3870	
COG3876	
COG1854	
COG1923	
COG1493	
COG2310	
COG2310	
COG1073	
COG2310	
COG1764	

COG5405

O31803	Uncharacterized pro
O31858	Uncharacterized pro
032211	Stress response prot
032245	Uncharacterized pro
O34310	Pectate lyase C OS=E
O34365	Uncharacterized pro
O34882	Probable tautomera
P37495	Uncharacterized pro
P39797	Phage-like element I
P39804	Intracellular proteina
P42091	Protein CgeC OS=Bac
P54327	Phage-like element I
P54331	Phage-like element I
P54332	Phage-like element I
P94409	Uncharacterized pro
P94576	Uncharacterized pro
Q04385	Uncharacterized pro
Q08311	Spore coat protein Y
Q08312	Spore coat protein Z

PL3_1(30-202)

PL9_2(31-395)

COG Class Sy	COG Class	Coverage	# PSMs	# Unique Peptides
С	Energy production	82.1	58	8
С	Energy production	22.4	28	4
С	Energy production	30.5	76	3
С	Energy production	29.4	82	5
С	Energy production	31.9	14	9
С	Energy production	11.8	21	6
С	Energy production	12.2	3	3
С	Energy production	25.9	11	2
С	Energy production	45.8	584	26
С	Energy production	10.6	4	4
С	Energy production	8.2	7	4
C	Energy production	30.6	16	3
	Energy production	47.2	256	12
	Energy production	17.6	7	2
2	Energy production	22.4	8	6
2	Energy production	41.3	263	14
	Energy production	3.1	5	2
 	Energy production	45.5	113	13
	Energy production	21.6	8	5
-	Energy production	45.7	122	10
Դ. р	Energy production	45.7	57	3
", і `• р	Energy production	12.3	16	3
,, ι)· Μ· Ρ	Cell cycle control	12.5	5	3
, wi, i	Amino acid transpo	1/1 5	18	2
	Amino acid transpo	14.J	10	Δ
	Amino acid transpo	16.2	152	12
	Amino acid transpo	26.7	20	15
	Amino acid transpo	12 0	16	2
	Amino acid transpo	226	201	5 C
	Amino acid transpo	24.4	109	0
	Amino acid transpo	. 34.4	108	o 2
-	Amino acid transpo	0.9	4	2
· · · · · · · · · · · · · · · · · · ·	Amino acid transpo	40.0	212	4
:	Amino acid transpo	7.0	243	4 2
	Amino acid transpo	15.0	2	2
	Amino acid transpo	13.0	12	ວ ວ
-		.51.2	170	С 12
	Amino acid transpo	40.0	1/0	15
		10.3	22	0
	Amino acid transpo	10.1	22	0
-	Amino acia transpo	0.UC	125	19
-	Amino acid transpo	35.2	125	14
-	Amino acid transpo	34.0	29	/
-	Amino acid transpo	20.3	10	2
-	Amino acid transpo	22.7	12	5
-	Amino acid transpo	15.8	21	4
=	Amino acid transpo	40.2	36	/
	Amino acid transpo	36.5	78	6
	Amino acid transpo	9.9	2	2
Ē	Amino acid transpo	37.2	64	7

-			
E	Amino acid transp(24.2	83	4
E	Amino acid transpc42.5	82	3
E C	Amino acid transpo 16.4	2	2
E; G	Amino acid transp(66.9	//4	23
E; G	Amino acid transp(43.1	646	21
E; G	Amino acid transp(9.0	10	2
E; H	Amino acid transpc 19.7	24	8
Е; Н	Amino acid transpc 11.5	12	3
E; H	Amino acid transpc 38.0	29	4
E; M	Amino acid transpc 33.2	63	5
E; R	Amino acid transpc 60.7	211	14
E; R	Amino acid transpc 30.0	34	7
Е; Т	Amino acid transpc 39.8	50	5
F	Nucleotide transpc 25.4	131	7
F	Nucleotide transpc 6.1	2	2
F	Nucleotide transpc 31.8	31	7
F	Nucleotide transpc 27.3	394	7
F	Nucleotide transpc 18.7	20	9
F; V	Nucleotide transpc 17.5	4	3
F; V	Nucleotide transpc 21.7	10	8
G	Carbohydrate tran: 25.9	9	4
G	Carbohydrate tran: 23.4	20	5
G	Carbohydrate tran: 43.5	478	17
G	Carbohydrate tran: 24.8	106	23
G	Carbohydrate tran: 9.7	13	2
G	Carbohydrate tran: 26.2	171	4
G	Carbohydrate tran: 63.4	212	11
G	Carbohydrate tran: 54.9	73	9
G	Carbohydrate tran: 38.0	280	5
G	Carbohydrate tran: 73.9	247	6
G	Carbohydrate tran: 22.9	19	6
G	Carbohydrate tran: 34.3	151	5
G	Carbohydrate tran: 4.7	3	3
G	Carbohydrate tran: 44.4	87	14
G	Carbohydrate tran: 6.7	2	2
G	Carbohydrate tran: 16.2	22	4
G	Carbohydrate tran: 14.8	12	5
G	Carbohydrate tran: 63.3	813	15
G	Carbohydrate tran: 72.3	424	12
G	Carbohydrate tran: 14.9	15	4
G	Carbohydrate tran: 19.4	57	5
G	Carbohydrate tran: 44.9	238	12
G	Carbohydrate tran: 16.8	6	2
G	Carbohydrate tran: 27.8	11	3
G	Carbohydrate tran: 84.1	1737	10
Н	Coenzyme transpo 32.4	25	3
Н	Coenzyme transpo 53.1	170	12
Н	Coenzyme transpo 65.7	3161	18
Н	Coenzyme transpo 26.1	248	14
Н	Coenzyme transpo 51.5	36	5

	1	1	1	
Н	Coenzyme transpo	41.9	116	6
Н	Coenzyme transpo	36.3	260	8
Н	Coenzyme transpo	30.0	10	4
Н	Coenzyme transpo	37.8	108	11
Н	Coenzyme transpo	54.9	80	7
Н	Coenzyme transpo	19.8	34	8
Н	Coenzyme transpo	39.0	80	9
Н	Coenzyme transpo	60.1	79	7
Н	Coenzyme transpo	32.0	26	5
Н; І	Coenzyme transpo	59.2	188	9
H; R	Coenzyme transpo	30.9	24	9
1	Lipid transport and	38.0	232	9
1	Lipid transport and	62.0	1556	13
1	Lipid transport and	11.4	37	3
1	Lipid transport and	15.1	6	3
l; Q	Lipid transport and	21.2	82	8
I; Q; R	Lipid transport and	16.7	3	2
J	Translation, riboso	69.7	195	14
J	Translation, riboso	60.8	545	18
J	Translation, riboso	26.6	39	7
J	Translation, riboso	14.4	130	3
J	Translation, riboso	41.1	268	15
J	Translation, riboso	24.8	24	2
J	Translation, riboso	17.0	6	4
J	Translation, riboso	22.3	28	4
J; O	Translation, riboso	42.3	137	14
К; О	Transcription; Post	6.1	3	2
L	Replication, recom	40.2	242	16
L	Replication, recom	35.2	128	9
L	Replication, recom	12.6	8	3
Μ	Cell wall/membran	12.8	30	3
Μ	Cell wall/membran	44.6	28	7
Μ	Cell wall/membran	40.2	252	19
Μ	Cell wall/membran	13.8	2	2
Μ	Cell wall/membran	8.0	13	2
Μ	Cell wall/membran	6.5	13	3
Μ	Cell wall/membran	32.1	4	3
Μ	Cell wall/membran	47.2	118	6
Ν	Cell motility	30.1	48	4
Ν	Cell motility	4.0	3	2
Ν	Cell motility	55.9	108	10
Ν	Cell motility	90.1	550	13
0	Posttranslational m	13.3	4	3
0	Posttranslational m	28.8	47	3
0	Posttranslational m	83.8	1320	8
0	Posttranslational m	7.2	3	2
0	Posttranslational m	14.4	225	12
0	Posttranslational m	35.6	15	4
0	Posttranslational m	24.7	20	7
0	Posttranslational m	8.6	3	2

		1		1
0	Posttranslational m	56.0	1857	19
0	Posttranslational m	32.3	46	13
0	Posttranslational m	67.5	2028	22
0	Posttranslational m	26.3	9	3
Р	Inorganic ion trans	15.8	49	3
Р	Inorganic ion trans	65.9	310	10
Р	Inorganic ion trans	16.9	18	7
Р	Inorganic ion trans	6.6	12	2
Р	Inorganic ion trans	30.1	79	10
Р	Inorganic ion trans	18.9	55	3
Р	Inorganic ion trans	75.6	629	20
Р	Inorganic ion trans	27.0	3	2
P; V	Inorganic ion trans	18.8	14	8
Q	Secondary metabo	50.0	378	6
Q	Secondary metabo	42.7	18	8
Q	Secondary metabo	45.6	45	10
Q	Secondary metabo	25.4	43	6
Q	Secondary metabo	9.9	2	2
Q	Secondary metabo	49.5	317	16
Q; V	Secondary metabo	12.9	9	3
R	General function p	15.1	21	5
R	General function p	27.8	9	3
R	General function p	26.8	51	11
R	General function p	81.0	61	5
R	General function p	29.6	45	9
R	General function p	41.4	46	9
R	General function p	35.0	87	5
R	General function p	21.8	31	5
R	General function p	10.4	2	2
S	Function unknown	74.7	295	6
S	Function unknown	26.7	5	3
Т	Signal transduction	9.4	16	2
Т	Signal transduction	25.0	21	4
Т	Signal transduction	22.0	22	8
Т	Signal transduction	13.1	8	3
Т	Signal transduction	44.6	49	11
Т	Signal transduction	27.5	32	2
Т	Signal transduction	54.9	253	12
V	Defense mechanis	24.8	6	3
		17.0	40	2
		7.6	4	2
		27.6	13	4
		17.2	9	3
		63.9	568	19
		17.1	33	4
		23.5	12	2
		15.8	12	5
		28.1	45	7
		46.6	300	9
		39.2	151	4

39.6	48	9
48.4	162	6
25.9	108	15
52.8	405	12
22.8	55	5
35.9	100	12
64.2	308	19
20.9	5	2
21.6	20	4
4.9	4	2
11.7	10	2
53.7	50	3
64.4	74	3
74.1	338	9
40.0	58	6
28.7	15	2
4.1	3	2
8.5	14	2
16.3	20	2

# AAs	MW [kDa]	calc. pl	Area Glu Prom	Area CMC Prom
145	16.6	4.7	285375157.5	-
183	21	5.9	463758562.0	-
131	15.2	8.8	4388794428.4	13011882815.8
170	18.4	5.4	8242041223.4	-
342	36.8	4.7	1017892729.4	-
705	77.4	5.2	-	280793693.4
441	49.4	9.0	134611054.0	346813720.4
116	13	7.6	1438063331.2	3778641105.9
806	85.6	6.2	138623811.7	-
396	43.6	5.0	183147469.2	-
637	70.9	6.3	-	372780835.2
160	17.8	5.1	-	392324724.3
422	47.3	8.9	656228576.1	603602392.8
262	30.1	6.4	878653246.7	-
330	36.3	5.1	-	-
499	55.3	8.5	3811744438.2	15787228086.7
649	73.8	8.7	-	-
389	43.2	8.4	2057756103.4	9728278994.8
379	40.9	5.5	195476782.6	-
352	37.4	5.5	172465813.7	-
136	14.6	5.1	506834211.2	65626105.3
333	36	5.2	181385695.1	-
664	76.1	5.2	-	3040340801.9
124	13.6	9.3	507639656.7	-
141	15.7	6.3	-	-
190	21.2	6.8	-	343832018.0
236	27.4	5.2	1717112383.8	284947466.0
312	35.1	4.8	-	993191807.7
181	19.5	6.6	3177434881.1	19390074354.3
326	36.6	6.9	155360471.8	219782863.4
257	28	9.6	3383162294.8	4653091311.3
120	13.6	4.8	235656379.5	-
73	8.5	8.5	2768226259.7	701507670.6
366	39.4	6.3	3622641467.0	1004581300.5
220	25.3	6.0	850943429.1	2002911555.1
157	17.8	5.0	15242963271.6	-
410	45.8	5.3	321708693.4	474217431.0
157	17.7	5.5	-	182999590.8
894	96.4	9.2	-	2259755421.0
500	53.6	4.8	16534327442.1	-
659	72.3	6.2	8904800727.1	22883183420.6
268	30.5	7.3	12090440375.9	418139086.7
80	9.3	7.2	582359604.4	-
396	45	5.7	912558206.5	-
380	40.9	6.2	1944089693.6	443235252.3
326	35.8	6.5	462318893.2	980811100.1
255	27.1	6.4	3323554156.7	-
181	21	4.4	6968964294.0	3330774783.0
250	26.6	0.6		200550400.0

161	17.6	5.2	9548111146.6	-
127	14.5	5.9	-	328041454.4
152	17.7	4.3	-	849920386.6
444	50.2	5.2	5141245966.4	4260482273.8
545	61.5	5.8	4549734754.6	3695906163.9
279	30.3	5.7	10399401142.1	10297713875.5
508	55.6	5.5	347481347.4	932294971.0
373	40.9	5.8	643602128.4	-
171	18.8	7.1	954520790.8	731037501.4
199	21.8	5.7	3216778837.8	6918488056.4
318	35.8	5.8	643574225.8	283568294.3
487	55.4	5.4	536725916.0	-
161	17.7	8.5	-	-
347	37	6.5	337830451.4	-
377	40.6	7.2	183753346.4	-
236	26.2	6.7	10411840740.1	522440234.7
289	31.4	5.5	69900442347.2	15332940635.9
657	73.7	5.5	-	-
212	23	6.2	2607721922.0	5578256671.5
561	65.8	5.6	1286952732.5	1663988078.4
290	32.4	5.1	574893158.7	-
316	35.4	5.3	105681780.0	-
474	50.4	5.3	548583924.9	-
1228	139	6.5	8824650905.3	26174043508.4
300	31.7	5.2	733472232.1	1410849850.1
172	18.7	5.2	-	-
254	29.5	5.3	-	218907329.6
264	27.4	5.2	115491935.6	-
192	20.9	4.8	-	-
119	14.1	4.9	-	-
414	46	7.6	744212253.4	2995546365.3
274	30.1	5.4	2895217069.1	-
622	69	7.4	1163214129.3	1536138518.1
446	51.8	7.1	47146898593.0	12682193264.8
448	51	9.1	185332896.4	-
413	44	5.1	5373037920.9	802540746.9
507	54.3	4.7	938135222.7	4448855800.5
289	33.5	5.3	110294677.8	-
271	29.1	5.2	1068776447.0	2245163899.3
255	28.1	7.4	2699169008.3	3518637134.7
310	34.7	5.2	201333811.7	1452678523.5
345	38.1	9.2	3305769586.3	17113315132.9
184	20.2	6.6	684249640.2	-
115	13.4	10.8	2820642632.4	4861717023.0
227	24.8	5.4	32318799453.1	57825014245.2
105	11.4	5.2	1491290951.9	1493628780.0
439	45.9	5.2	945063070.4	1546720447.2
306	33.4	6.6	649178211.0	437138512.9
686	77.4	6.3	1377939292.8	784194595.7
165	19.4	5.2	34238211631.9	51782621680.5
	1			

215	23.5	6.3	2527765134.8	1549966274.2
314	34.8	5.4	4837264698.4	769299306.8
120	13.5	5.5	3484575065.8	8267798480.3
436	47.2	5.6	237270418.9	737561388.5
144	16.4	5.4	-	-
521	56.5	7.7	13202265708.0	2027410847.9
359	40.1	5.9	167736179.5	-
193	20.7	4.7	4635654680.3	1830927425.7
178	20.8	4.7	325266851.0	1941684130.0
184	20.6	5.8	-	3268184587.5
463	51	5.0	-	998564228.8
300	34.1	5.6	2211857690.0	1746247271.7
361	39.2	6.0	1674822902.9	1811664046.8
298	32.8	9.8	389481092.8	-
299	31.7	8.0	-	551563124.4
420	45.5	8.3	195838076.0	236550781.6
150	16.2	6.1	-	1125246459.2
290	31	5.2	199931317.6	-
385	43.5	5.4	1886071415.0	4604142040.3
346	37.3	5.1	2160313066.8	-
181	20.3	7.2	-	600164387.0
569	61.1	5.4	-	-
109	12	6.5	178923177.1	212224344.9
294	34.4	6.3	3031794000.5	11902777885.6
319	34.6	5.3	1693310335.6	1314479356.1
466	50.2	4.8	365181466.1	-
378	39.7	5.4	106287897.9	-
592	65.9	5.0	360425415.4	1395539750.1
381	43.7	6.6	644417930.0	1888447823.0
285	31.5	8.6	-	411236224.1
406	44	6.5	508002557.0	307747962.1
222	24 9	5.4	209134261 3	-
642	70 5	9.4	682700197 7	-
130	14.2	5.0	312714037.6	1822000169 7
313	33.8	8.9	-	425888073 9
584	62.8	5.6	_	3427474975 0
106	12.0	1 7	7713772277 3	36/1909981 /
100	12.4	5.9	-	11790/11/63 5
2/9	27.9	5.5	2879/98875 /	245034269 9
A22	27.5 46.7	5.4	188909673 7	-
211	34.6	5.5	158707683 1	
202	24.0 22 5	5.5	118017022027 1	5267282268 2
202	22.5	5.4	24020215200 0	10011005500.2
235	20.3 16 E	J.4 C 1	24020213300.8	10211002222.1
15/	16.2	0.1	-	- 0620207040 2
134	2.01 10 0	5.5	11604705667 5	002020/043.2
440	48.3	5.4 F F	11014400 C	12322/19843.4
021	92 19.0	5.5 7.0	1/1914498.0	130/03320.2
1/4	18.9	7.0	180221095.7	243080358.1
364	40	5.3	-	212/99/484.0
394	43.6	9.3	23082323515.6	34688779381.1

455	49 4	7 1	1975360342 5	1310320872 0
600	65.3	5.1	-	-
511	56.3	5.6	788503321.4	428436591.5
224	25.5	7.7	465337086.0	335200529.7
158	17.1	5.8	37386273321.2	57844692108.0
211	23.3	5.4	2444895871.9	2208908457.1
586	65.1	6.2	2225970605.6	6160310072.2
211	23.2	5.2	72618007911.6	114342550002.2
469	52.6	7.6	134505396.4	1582681776.2
132	15	6.1	24779777220.7	40561297926.2
410	45.5	4.8	2346879394.5	-
148	16.5	5 5	165486793 2	11559342656.8
670	77	5.9	1898339621 2	-
242	27 3	6.9	1537570197 2	1918923410 0
335	35.8	5.4	135137998 4	266250057 7
261	28.3	5.8	548723587 4	-
489	54	5.1	-	1025676594.9
363	40.3	5.2	374523293 4	-
378	43.1	5 3	1838522218 1	2100482667 3
394	44	5 3	225132352.4	-
509	57.1	6.1	245267988 5	
194	21 5	6.1	613598626 7	1319748639 2
570	62	5 5	703600120.3	1091329669 7
126	14.4	4.7	964632708.2	1861340147.5
415	45.5	59	340286671 9	-
319	33.8	4.8	67411860.8	-
120	12.8	5.6	3473299018.4	3292249719.4
285	30.8	7.5	3108587154.4	-
202	22.3	5.6	66321585.2	1317125317.6
75	8.3	7.6	1077112473.6	-
187	20.6	4.6	114405631.7	-
244	27	9.1	5345717668.2	1499223553.3
276	31.6	5.4	8773598252.5	23197648501.7
496	56.1	5.6	402671783.5	2876663992.3
275	31.1	5.5	11927940967.3	-
323	36.1	5.3	437245313.9	-
131	14.2	5.3	225641909.0	1988311055.9
357	39.2	6.1	2098471215.6	-
125	13.8	5.6	1210407933.6	-
159	17.2	4.6	-	213628852.4
353	39.6	5.6	5995728402.0	12166896193.1
203	22.4	4.5	367740752.2	1726831501.5
221	24.3	8.8	595125821.9	-
371	39.6	5.0	5620993843.4	22453724267.9
409	46	5.6	308420743.3	12071683941.5
162	17.9	5.2	-	1871035829.7
552	60.6	6.1	192255376.6	337825628.1
327	35.8	5.1	127130158.2	-
296	32.1	5.3	156693661.5	349983701.8
148	16.4	5.4	-	4489722364.8

396	42.6	5.6	625246183.1	431850894.1
217	23.3	6.1	398870544.9	252046877.0
909	99.3	5.2	1740989058.3	1247587969.4
320	34.8	5.8	4024636277.7	5947225887.5
456	49.6	6.3	-	108128709.0
487	53.4	5.4	-	684354627.2
274	30.3	8.3	227015639.5	815930665.7
148	16.2	6.4	-	547048120.9
227	24.5	8.8	339358215.3	-
224	24	5.0	794703832.7	7165594919.7
298	32.7	4.8	-	944998556.4
82	9.7	9.0	929848161.5	373615914.8
87	10.2	6.3	1845143777.9	1028874485.4
189	21.7	5.2	1325391979.3	1102995887.4
160	18.7	7.6	-	514451772.4
101	11.4	5.1	-	-
687	77	6.0	-	184517408.9
272	29.3	5.7	-	1267686103.1
80	8.8	4.6	-	206738536.6

Area Glu+CMC Prom	Log₂ Glu Norm 1	Log ₂ Glu Norm 2
-	27.7	28.4
237773762.4	28.5	29.1
5254857220.4	32.2	31.8
19440007648.1	33.6	31.5
672271085.4	30.3	29.4
-	#VALUE!	#VALUE!
770187009.9	27.4	26.5
919143905.0	30.0	30.7
-	27.0	27.1
106319558.7	26.3	28.1
93317199.3	#VALUE!	#VALUE!
-	#VALUE!	#VALUE!
660406739.6	29.5	29.1
634627759.3	29.4	29.9
141853895.2	#VALUE!	#VALUE!
4821645297.7	31.3	32.2
113304624.3	#VALUE!	#VALUE!
3807104671.1	31.8	28.4
437803008.5	27.6	27.5
247365634.8	27.6	27.1
1146257245.5	29.5	27.9
602465393.8	28.3	24.8
-	#VALUE!	#VALUE!
490639429.2	29.8	26.1
490625087.7	#VALUE!	#VALUE!
631846048.1	#VALUE!	#VALUE!
2359163253.7	30.9	30.3
-	#VALUE!	#VALUE!
4016367575.3	32.1	30.7
158108042.8	27.0	27.4
2554701714.5	31.1	32.1
180602045.6	27.8	27.9
3179795809.1	31.6	31.0
3186221036.7	32.0	31.5
757479961.9	29.7	29.6
15897824999.1	33.9	33.7
255534337.0	27.3	28.8
-	#VALUE!	#VALUE!
-	#VALUE!	#VALUE!
27584800425.1	34.2	33.6
8789793640.4	32.8	33.2
21822249356.2	33.9	32.9
800739296.5	26.2	30.0
883953653.2	29.6	29.9
1886603633.9	30.9	30.8
810303164.2	28.4	29.1
4112231957.0	32.5	28.7
8117942081.5	32.6	32.8
10102070917.8	33.6	31.9

17312515702.6	33.9	31.6
-	#VALUE!	#VALUE!
245652638.4	#VALUE!	#VALUE!
2944409595.7	31.1	32.9
4429427781.6	32.1	32.1
11017418430.4	33.2	33.3
175046801.8	28.3	28.4
408655187.7	28.9	29.5
818346316.1	28.7	30.4
1206031459.0	30.7	32.1
1726497556.0	29.7	28.6
631525545.3	29.5	28.2
35657282.4	#VALUE!	#VALUE!
442557778.8	28.2	28.4
-	27.6	27.3
5787410913.0	32.4	33.8
68649067153.8	36.2	35.9
293748340.6	#VALUE!	#VALUE!
3195030871.6	31.4	31.2
869792110.1	30.8	29.3
797249120.9	29.5	28.6
224196397.6	26.7	26.6
738345124.9	29.9	25.9
6287803250.5	32.4	33.5
2021141277.0	30.0	28.5
121176123.2	#VALUE!	#VALUE!
-	#VALUE!	#VALUE!
-	27.0	26.6
127652219.8	#VALUE!	#VALUE!
383960833.0	#VALUE!	#VALUE!
1931699318.6	29.8	29.1
4380816312.7	31.8	30.9
1739888968.4	30.2	30.0
30724955251.9	35.2	35.6
164850499.2	28.2	25.8
4930353223.5	32.1	32.5
1311346932.7	30.0	29.6
75963152.9	26.5	26.9
1799998449.2	30.5	29.2
2632697756.4	30.6	31.8
875934544.3	28.2	26.5
5969130150.8	32.4	30.1
1064416728.8	29.2	29.5
11924887327.7	31.5	31.2
34614824578.4	34.7	35.1
3458586917.2	29.7	31.0
1267886511.2	29.8	29.8
440109940.6	29.1	29.4
-	29.2	31.0
55478881531.5	35.1	34.9

3237359403.1	31.1	31.4
3805851663.3	32.4	31.9
3145821411.5	31.7	31.7
-	27.0	28.3
718130109.2	#VALUE!	#VALUE!
16096044747.9	33.2	33.9
251690050.1	23.0	28.3
3864440459.2	31.3	32.6
422611572.0	29.0	26.5
1370082459.6	#VALUE!	#VALUE!
-	#VALUE!	#VALUE!
725015515.8	30.6	31.4
1845433772.1	30.3	30.9
1001143434 8	29.1	27.6
-	#VALUE!	#VALUE!
154810590.1	27.1	27.9
206842497.8	#VALUE!	#VALUE!
-	27.7	27.5
2008487968.1	30.4	31.1
1407218200.9	30.6	31.3
-	#VALUET	#VALUE!
1361622417 3	#VALUE!	#VALUE!
96059005 0	27.0	27.7
2673565872.1	31.4	31.6
1856733772 1	30.8	30.5
1434495547 2	28.8	27.9
-	24.4	27.5
1038198283 2	28.4	28.4
-	26.9	30.1
-	#VALUE!	#VALUE!
591586717.0	28.3	29.4
306474487.9	27.6	27.7
301488549.8	29.6	29.1
201049212.3	25.2	29.1
-	#VALUE!	#VALUE!
_	#VALUE!	#VALUE!
11784945687.9	32.6	33.0
-	#VALUE!	#VALUE!
_	30.7	31.9
-	27.4	27.6
-	27.6	26.7
7579616913.8	36.6	36.9
39080476360.1	34.7	34.3
1143362889.8	#VALUE!	#VALUE!
7747164942.9	33.6	33.3
10041834090.5	33.5	33.3
-	27.6	27.0
-	27.0	27.8
-	#VALUE!	#VALUE!
31180924626.0	34.5	34.3
1695272031.3	30.3	31.3
---------------	---------	---------
496908676.6	#VALUE!	#VALUE!
590051315.7	29.2	29.8
139023708.9	27.9	29.3
46558979230.9	35.5	34.6
1683769762.4	30.4	31.7
2834314047.4	30.9	31.2
87061238033.9	35.9	36.2
151523315.5	27.1	26.9
27291036186.6	34.4	34.7
3916030257.8	31.7	30.0
-	28.2	24.7
5315301733.3	31.5	29.3
1567183526.5	30.7	30.3
155868655.2	27.2	26.8
288974771.4	29.2	28.8
282188509.6	#VALUE!	#VALUE!
656990904.1	29.0	27.6
2467952286.5	31.0	30.6
-	28.6	25.7
145038127.8	28.3	27.3
927537438.9	29.3	29.1
960991039.0	28.8	29.8
1093345665.5	29.8	29.9
59173884.4	27.5	28.9
88727548.7	24.9	26.6
2888700179.9	31.6	31.8
2801381255.7	31.9	31.0
-	26.2	25.8
-	29.4	30.4
105755286.6	27.2	26.2
4867461734.7	31.8	32.7
5427818237.7	32.7	33.3
-	28.3	28.8
12652591636.8	33.1	33.8
-	29.5	26.8
594030934.6	28.1	27.3
-	30.3	31.4
1509930330.8	30.5	29.7
-	#VALUE!	#VALUE!
5631536129.6	32.5	32.4
-	27.7	29.0
1001290477.7	28.3	29.7
1883519253.7	32.8	31.7
-	28.7	27.5
-	#VALUE!	#VALUE!
111678900.9	27.4	27.6
162965889.3	25.0	27.7
565681818.7	26.4	27.7
-	#VALUE!	#VALUE!

870366864.1	29.3	29.2
-	27.9	29.0
2846890002.0	30.7	30.7
3989019439.8	31.6	32.2
123405195.3	#VALUE!	#VALUE!
-	#VALUE!	#VALUE!
-	27.4	28.0
-	#VALUE!	#VALUE!
362681182.3	28.4	28.3
2883244639.6	30.1	28.7
-	#VALUE!	#VALUE!
552074032.5	29.6	30.0
1556363467.0	30.8	30.8
799101018.5	29.9	30.6
-	#VALUE!	#VALUE!
355579689.8	#VALUE!	#VALUE!
-	#VALUE!	#VALUE!
-	#VALUE!	#VALUE!
-	#VALUE!	#VALUE!

Log ₂ CMC Norm 1	Log ₂ CMC Norm 2	Log₂ Glu+CMC Norm 1
#VALUE!	#VALUE!	#VALUE!
#VALUE!	#VALUE!	27.2
33.8	33.4	32.5
#VALUE!	#VALUE!	33.7
#VALUE!	#VALUE!	29.6
28.3	27.7	#VALUE!
27.9	28.7	29.8
32.4	30.8	30.6
#VALUE!	#VALUE!	#VALUE!
#VALUE!	#VALUE!	27.5
27.6	29.0	25.0
28.2	28.8	#VALUE!
28.7	29.5	30.2
#VALUE!	#VALUE!	29.8
#VALUE!	#VALUE!	26.2
33.6	34.1	32.4
#VALUE!	#VALUE!	25.8
33.9	31.5	32.6
#VALUE!	#VALUE!	28.9
#VALUE!	#VALUE!	27.9
25.6	26.3	30.5
#VALUE!	#VALUE!	29.8
31.7	31.3	#VALUE!
#VALUE!	#VALUE!	28.5
#VALUE!	#VALUE!	29.6
28.2	28.5	28.9
28.5	27.4	31.5
29.9	29.9	#VALUE!
34.4	33.9	32.4
28.2	26.9	27.4
32.0	32.2	31.6
#VALUE!	#VALUE!	26.7
29.8	28.7	32.0
30.1	29.7	32.0
30.9	30.9	29.7
#VALUE!	#VALUE!	32.2
28.6	29.0	28.2
28.0	26.6	#VALUE!
31.6	30.4	#VALUE!
#VALUE!	#VALUE!	34.3
34.5	34.3	33.4
27.3	29.3	34.3
#VALUE!	#VALUE!	29.6
#VALUE!	#VALUE!	30.3
28.3	29.1	31.1
29.0	30.4	29.7
#VALUE!	#VALUE!	32.5
20.4	31.7	33.3
23.4	20.5	JJ.Z

#VALUE!	#VALUE!	34.0
28.5	28.0	#VALUE!
29.7	29.7	27.9
31.9	32.1	31.8
31.9	31.6	32.1
33.4	33.0	33.0
29.2	30.2	27.2
#VALUE!	#VALUE!	28.2
29.2	29.7	28.7
33.1	32.0	30.9
28.1	28.0	30.7
#VALUE!	#VALUE!	30.0
#VALUE!	#VALUE!	24.6
#VALUE!	#VALUE!	28.7
#VALUE!	#VALUE!	#VALUE!
29.5	28.1	32.4
33.7	34.0	35.5
#VALUE!	#VALUE!	28.0
32.6	32.1	31.7
30.1	31.0	29.9
#VALUE!	#VALUE!	29.6
#VALUE!	#VALUE!	27.4
#VALUE!	#VALUE!	29.6
34.1	35.0	32.3
30.0	30.7	30.9
#VALUE!	#VALUE!	27.0
28.4	26.5	#VALUE!
#VALUE!	#VALUE!	#VALUE!
#VALUE!	#VALUE!	26.8
#VALUE!	#VALUE!	28.1
31.4	31.6	31.3
#VALUE!	#VALUE!	31.6
30.6	30.4	31.1
33.5	33.6	35.0
#VALUE!	#VALUE!	27.4
29.1	29.9	32.2
32.2	31.9	31.0
#VALUE!	#VALUE!	26.7
31.1	31.0	31.2
29.7	32.5	31.3
30.5	30.4	29.2
34.0	34.0	32.5
#VALUE!	#VALUE!	29.9
32.0	32.4	33.7
36.0	35.5	35.1
29.9	30.9	31.7
30.6	30.5	29.9
29.0	28.4	29.3
29.9	29.1	#VALUE!
35.2	35.9	35.9

30.3	30.7	31.4
30.0	28.8	32.2
32.9	33.0	31.9
30.0	28.7	#VALUE!
#VALUE!	#VALUE!	29.0
31.1	30.7	33.9
#VALUE!	#VALUE!	28.6
30.5	31.0	32.3
31.6	29.1	29.4
32.4	29.3	30.9
30.5	28.7	#VALUE!
28.6	31.5	30.4
30.5	31.0	30.8
#VALUE!	#VALUE!	30.5
29.1	29.0	#VALUE!
28.4	26.8	27.0
30.3	29.8	28.3
#VALUE!	#VALUE!	#VALUE!
32.6	31.4	30.9
#VALUE!	#VALUE!	30.7
29.6	28.6	#VALUE!
#VALUE!	#VALUE!	29.9
27.7	27.7	27.3
33.5	33.4	31.3
31.0	28.8	31.1
#VALUE!	#VALUE!	30.4
#VALUE!	#VALUE!	#VALUE!
30.6	30.1	30.5
31.4	29.7	#VALUE!
29.0	28.0	#VALUE!
27.3	28.7	29.2
#VALUE!	#VALUE!	28.2
#VALUE!	#VALUE!	26.8
31.0	30.5	28.2
29.1	28.1	#VALUE!
31.6	31.8	#VALUE!
30.3	32.5	33.5
30.8	28.9	#VALUE!
28.1	27.6	#VALUE!
#VALUE!	#VALUE!	#VALUE!
#VALUE!	#VALUE!	#VALUE!
32.3	32.2	33.1
33.4	34.6	34.8
#VALUE!	#VALUE!	26.3
32.6	33.3	32.1
33.4	33.7	33.9
28.3	25.8	#VALUE!
27.8	27.9	#VALUE!
31.0	31.0	#VALUE!
34.6	35.4	35.3

29.6	30.8	31.0
#VALUE!	#VALUE!	25.6
29.3	27.6	29.7
28.9	27.4	27.1
36.4	34.4	35.1
31.8	29.4	31.0
32.7	32.3	31.4
36.4	37.0	36.2
30.3	30.8	27.6
35.4	35.1	35.1
#VALUE!	#VALUE!	32.3
34.0	32.3	#VALUE!
#VALUE!	#VALUE!	30.4
30.8	30.9	30.8
27.5	28.3	27.3
#VALUE!	#VALUE!	28.7
29.8	30.1	28.2
#VALUE!	#VALUE!	29.1
31.0	30.9	30.8
#VALUE!	#VALUE!	#VALUE!
#VALUE!	#VALUE!	27.0
30.1	30.5	29.5
30.0	30.1	29.3
30.7	30.9	29.7
#VALUE!	#VALUE!	26.6
#VALUE!	#VALUE!	26.0
30.9	32.1	31.3
#VALUE!	#VALUE!	30.8
30.6	30.0	#VALUE!
#VALUE!	#VALUE!	#VALUE!
#VALUE!	#VALUE!	26.5
30.8	30.0	32.2
34.0	34.8	32.7
31.6	31.2	#VALUE!
#VALUE!	#VALUE!	33.5
#VALUE!	#VALUE!	#VALUE!
31.1	30.7	29.1
#VALUE!	#VALUE!	#VALUE!
#VALUE!	#VALUE!	30.7
28.6	24.3	#VALUE!
32.8	34.0	32.2
30.2	31.0	#VALUE!
#VALUE!	#VALUE!	29.9
34.1	34.6	31.6
33.7	33.3	#VALUE!
30.7	30.9	#VALUE!
29.1	26.8	27.5
#VALUE!	#VALUE!	27.0
28.5	28.2	28.7
31.8	32.3	#VALUE!

28.4	28.9	29.5
27.7	28.1	#VALUE!
30.1	30.3	31.8
32.5	32.4	32.5
26.5	26.9	27.0
29.1	29.6	#VALUE!
29.4	29.8	#VALUE!
29.5	28.3	#VALUE!
#VALUE!	#VALUE!	28.3
33.0	32.5	31.6
29.6	30.0	#VALUE!
28.9	27.9	29.0
29.9	29.9	30.3
30.2	29.8	30.0
28.2	29.4	#VALUE!
#VALUE!	#VALUE!	28.6
27.4	27.5	#VALUE!
30.4	30.0	#VALUE!
27.4	27.8	#VALUE!

Log ₂ Glu+CMC Norm 2	-Log Student's T-	Student's T-tes	FC Glu_CMC
#VALUE!	0.0		#VALUE!
28.3	0.0		#VALUE!
32.1	1.6	-1.6	3.0
34.5	0.0		#VALUE!
29.0	0.0		#VALUE!
#VALUE!	0.0		#VALUE!
29.2	0.8	-1.4	2.6
27.7	0.5	-1.2	2.6
#VALUE!	0.0		#VALUE!
24.5	0.0		#VALUE!
27.2	0.0		#VALUE!
#VALUE!	0.0		#VALUE!
26.9	0.1	0.2	1.1
28.2	0.0		#VALUE!
27.6	0.0	0.0	#VALUE!
31.9	1.3	-2.1	4.1
27.3	0.0	0.0	#VALUE!
30.2	0.5	-2.6	4 7
28.4	0.0	2.0	#VALUE!
27.8	0.0		#\/ALLIF!
29.4	1.0	2.8	77
28.0	0.0	2.0	#\/Δ[[]F]
#\/ALLIE	0.0		#VALUE!
20.2	0.0		#VALUE!
23.2	0.0	0.0	
20.5	0.0	0.0	#VALUE!
20.7	1.2	27	#VALUE:
50.7 #\/ALLET	1.5	2.1	0.0 #\/ALLET
21 1	1 1	२ ०	#VALUL!
27.1	1.1	-2.8	1.4
27.1	0.2	-0.4	1.4
27.0	0.4	-0.5	1.4 #\/ALLIEL
27.9	0.0	2.1	
20.0	1.1	2.1	5.9 2.6
30.9	1.5	1.0	3.0
29.2	5.I	-1.2	2.4 #\/ALLIEL
34.7	0.0	0.7	#VALUE!
	0.4	-0.7	
	0.0		#VALUE!
#VALUE!	0.0		#VALUE!
35.0	0.0	4.4	#VALUE!
32.5	1./	-1.4	2.6
34.4 20 F	1.4	5.1	20.9
29.5	0.0		#VALUE!
20.7	0.0	2.2	#VALUE!
30.5	1.5	2.2	4.4
29.5	0.5	-1.0	2.1
31.1	0.0		#VALUE!
32.4	2.4	1.1	2.1
33.3	1.0	4.8	21.9

#VALUE!0.0#VALUE!27.90.00.01.231.00.00.01.233.60.00.01.233.60.00.01.233.60.00.01.233.60.00.01.233.60.00.01.233.60.00.01.233.60.10.21.338.80.51.22.230.70.71.12.327.70.0#VALUE!27.70.0#VALUE!28.80.00.0#VALUE!28.80.00.0#VALUE!28.80.00.0#VALUE!28.40.00.0#VALUE!31.51.3-1.12.129.40.2-0.51.329.50.0#VALUE!28.00.0#VALUE!29.30.0#VALUE!29.40.2-0.51.329.50.0#VALUE!28.00.0#VALUE!29.10.0#VALUE!29.30.0#VALUE!29.40.0#VALUE!20.51.11.91.926.70.00.0#VALUE!27.40.00.028.80.00.029.40.020.51.1 <td< th=""><th>34.0</th><th>0.0</th><th></th><th>#VALUE!</th></td<>	34.0	0.0		#VALUE!
27.90.0#VALUE!31.00.00.01.232.00.70.31.233.60.00.01.027.50.91.32.728.90.01.22.230.70.10.21.328.80.51.22.230.70.71.12.327.70.71.12.327.70.0	#VALUE!	0.0		#VALUE!
31.00.00.01.232.00.70.31.233.60.00.01.037.50.91.32.728.90.0#VALUE!30.20.10.21.328.80.51.22.230.70.71.12.327.70.0#VALUE!28.80.0#VALUE!28.80.0#VALUE!28.80.0#VALUE!28.80.0#VALUE!28.80.0#VALUE!32.41.34.31.96.32.00.0#VALUE!31.41.3-1.12.129.50.0#VALUE!31.51.3-1.12.129.40.0#VALUE!29.50.0#VALUE!31.60.0#VALUE!32.70.0#VALUE!33.31.5-2.04.032.31.5-2.04.032.31.5-2.04.032.31.5-2.04.033.31.5-2.04.033.31.5-2.04.033.31.1-0.81.734.60.0#VALUE!33.31.1-0.81.734.90.9-2.34.735.30.0#VALUE!31.31.1-0.81.731.3	27.9	0.0		#VALUE!
32.00.70.31.233.60.00.01.027.50.9-1.32.728.90.0-1.32.730.20.10.21.338.80.5-1.22.230.70.71.12.327.70.0	31.0	0.0	0.0	1.2
33.60.00.01.027.50.9-1.32.728.90.0-1.22.230.70.71.12.328.80.5-1.22.230.70.71.12.327.70.0	32.0	0.7	0.3	1.2
27.50.9-1.32.728.90.00.21.330.20.10.21.338.80.51.22.230.70.71.12.327.70.00.0#VALUE!25.50.00.0#VALUE!28.80.0	33.6	0.0	0.0	1.0
28.90.0#VALUE!30.20.10.21.328.80.71.12.327.70.0#VALUE!25.50.00.0#VALUE!28.80.00.0#VALUE!32.41.34.319.936.32.02.24.628.20.00.0#VALUE!31.51.3-1.12.129.40.2-0.51.329.50.0#VALUE!28.00.0#VALUE!29.40.2-0.51.329.51.3-1.12.129.40.2-0.51.329.50.0#VALUE!20.00.0#VALUE!28.00.0#VALUE!28.70.0#VALUE!29.40.0#VALUE!20.70.00.0#VALUE!21.70.00.0#VALUE!23.31.5-2.04.023.31.5-2.04.023.31.1-0.41.334.61.91.93.727.20.0-#VALUE!30.11.2-1.31.334.61.91.93.727.20.0-#VALUE!33.31.1-0.41.334.61.7-1.231.30.0-1.10.831.4 <td< td=""><td>27.5</td><td>0.9</td><td>-1.3</td><td>2.7</td></td<>	27.5	0.9	-1.3	2.7
30.20.10.21.328.80.5-1.22.230.70.71.12.330.70.0#VALUE!25.50.00.0#VALUE!28.80.0	28.9	0.0		#VALUE!
28.80.5-1.22.230.70.71.12.327.70.0WALUE!25.50.00.0WALUE!25.50.00.0WALUE!28.80.0WALUE!32.41.34.319.936.32.02.24.628.20.00.0WALUE!31.51.3-1.12.129.40.2-0.51.329.50.0WALUE!29.30.0WALUE!29.30.0WALUE!20.40.5-1.11.926.70.8-1.63.031.00.5-1.11.926.70.0WALUE!27.10.0WALUE!27.10.0WALUE!27.10.0WALUE!20.21.5-2.04.721.31.5-2.04.722.41.62.86.723.30.0WALUE!30.01.1-0.41.334.61.91.93.727.20.0WALUE!30.00.10.10.831.30.00.10.131.30.00.10.831.30.00.10.831.40.9-2.85.230.00.0-1.11.033.31.1	30.2	0.1	0.2	1.3
30.7 1.1 2.3 27.7 0.0 #VALUE! 25.5 0.0 0.0 #VALUE! 28.8 0.0 #VALUE! WALUE! 0.0 #VALUE! 32.4 1.3 4.3 19.9 36.3 2.0 2.2 4.6 28.2 0.0 0.0 #VALUE! 31.5 1.3 -1.1 2.1 29.4 0.2 -0.5 1.3 29.5 0.0 #VALUE! #VALUE! 29.4 0.2 -0.5 1.3 29.5 0.0 #VALUE! #VALUE! 28.0 0.0 #VALUE! #VALUE! 31.0 0.5 -1.1 1.9 26.7 0.0 0.0 #VALUE! YALUE! 0.0 0.0 #VALUE! 12.7.1 0.0 0.0 #VALUE! 30.3 1.5 -2.0 4.0 32.3 0.0 .0 #VALUE! 30.0 1.1 -0.4 1.3 34.	28.8	0.5	-1.2	2.2
27.70.0WALUE!25.50.00.0WALUE!28.80.0WALUE!WALUE!0.0WALUE!32.41.34.319.936.32.02.24.628.20.00.0WALUE!31.51.3-1.12.129.40.2-0.51.329.50.0WALUE!29.30.0WALUE!20.70.8-1.63.031.00.5-1.11.926.70.00.0WALUE!27.10.00.0WALUE!27.10.00.0WALUE!28.80.00.0WALUE!28.80.00.0WALUE!30.31.5-2.04.032.31.5-2.04.032.31.1-0.41.334.61.91.93.727.21.62.86.728.72.0-2.34.732.30.01.10.430.01.1-0.41.334.61.92.11.330.00.7-1.22.131.30.00.10.830.11.2-3.17.232.50.9-2.85.230.00.9-0.81.831.1-0.81.734.90.9-0.81.831.70.0-0.11.033.31.1<	30.7	0.7	1.1	2.3
25.50.00.0#VALUE!28.80.0#VALUE!#VALUE!0.0#VALUE!32.41.34.319.936.32.02.24.628.20.00.0#VALUE!31.51.3-1.12.129.40.2-0.51.329.50.0#VALUE!28.00.0#VALUE!29.30.0#VALUE!32.70.8-1.63.031.00.5-1.11.926.70.00.0#VALUE!WALUE!0.0.0#VALUE!27.10.00.0#VALUE!28.80.00.0#VALUE!30.31.5-2.04.032.30.0.0#VALUE!30.31.5-2.04.032.41.91.93.732.50.0.1-0.41.334.61.91.93.727.21.62.86.733.31.1-0.41.330.00.7-1.23.130.00.7-1.23.130.11.2-3.17.232.50.9-2.85.230.00.0-0.11.033.31.1-0.81.831.70.9-0.81.831.70.9-0.81.831.70.9-0.81.8 <trr>31.70.0-0.1<td< td=""><td>27.7</td><td>0.0</td><td></td><td>#VALUE!</td></td<></trr>	27.7	0.0		#VALUE!
28.8 0.0 #VALUE! #VALUE! 0.0 #VALUE! 32.4 1.3 4.3 19.9 36.3 2.0 2.2 4.6 28.2 0.0 0.0 #VALUE! 31.5 1.3 -1.1 2.1 29.4 0.2 -0.5 1.3 29.5 0.0 #VALUE! #VALUE! 29.3 0.0 #VALUE! #VALUE! 29.3 0.0 #VALUE! #VALUE! 20.7 0.8 -1.6 3.0 31.0 0.5 -1.1 1.9 26.7 0.0 0.0 #VALUE! #VALUE! 0.0 #VALUE! #VALUE! #VALUE! 0.0 #VALUE! #VALUE! 30.3 1.5 -2.0 4.0 32.3 0.0 #VALUE! 3.7 30.4 1.9 1.9 3.7 27.2 0.0 #VALUE! 3.7 30.0 1.1 -0.4 1.3 34.6 1.9 1.9	25.5	0.0	0.0	#VALUE!
#VALUE! 0.0 #VALUE! 32.4 1.3 4.3 19.9 36.3 2.0 2.2 4.6 28.2 0.0 0.0 #VALUE! 31.5 1.3 -1.1 2.1 29.4 0.2 -0.5 1.3 29.5 0.0 #VALUE! 28.0 0.0 #VALUE! 29.3 0.0 #VALUE! 20.7 0.8 -1.6 3.0 31.0 0.5 -1.1 1.9 26.7 0.0 0.0 #VALUE! 7 0.0 0.0 #VALUE! 27.1 0.0 0.0 #VALUE! 31.0 0.0 0.0 #VALUE! 26.7 0.0 0.0 #VALUE! 31.1 0.0 0.0 #VALUE! 32.3 0.0 .0 #VALUE! 30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 1.6 2.8 6.7 28.7 2.	28.8	0.0		#VALUE!
32.4 1.3 4.3 19.9 36.3 2.0 2.2 4.6 28.2 0.0 0.0 #VALUE! 31.5 1.3 -1.1 2.1 29.4 0.2 -0.5 1.3 29.5 0.0 #VALUE! #VALUE! 28.0 0.0 #VALUE! #VALUE! 32.7 0.8 -1.6 3.0 31.0 0.5 -1.1 1.9 26.7 0.0 0.0 #VALUE! #VALUE! 0.0 #VALUE! #VALUE! #VALUE! 0.0 .0 #VALUE! 30.3 1.5 -2.0 4.0 32.3 0.0 .1 #VALUE! 30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 0.0 #VALUE! 3.7 30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 0.0 #VALUE! 3.0 30.0 0.7	#VALUE!	0.0		#VALUE!
36.3 2.0 2.2 4.6 28.2 0.0 0.0 #VALUE! 31.5 1.3 -1.1 2.1 29.4 0.2 -0.5 1.3 29.5 0.0 #VALUE! #VALUE! 28.0 0.0 #VALUE! #VALUE! 29.3 0.0 #VALUE! 3.0 31.0 0.5 -1.1 1.9 26.7 0.0 0.0 #VALUE! WALUE! 0.0 0.0 #VALUE! 1.0 0.0 0.0 #VALUE! 27.1 0.0 0.0 #VALUE! 30.3 1.5 -2.0 4.0 32.3 0.0 #VALUE! 3.7 31.4 0.0 0.0 #VALUE! 30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 0.0 - #VALUE! 30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 0.0 <td< th=""><th>32.4</th><th>1.3</th><th>4.3</th><th>19.9</th></td<>	32.4	1.3	4.3	19.9
28.20.00.0#VALUE!31.51.3-1.12.129.40.2-0.51.329.50.0#VALUE!28.00.0#VALUE!29.30.0#VALUE!32.70.8-1.63.031.00.5-1.11.926.70.00.0#VALUE!#VALUE!0.0.0#VALUE!#VALUE!0.0.0#VALUE!27.10.00.0#VALUE!28.80.00.0#VALUE!30.31.5-2.04.032.30.0#VALUE!30.01.1-0.41.334.61.91.93.727.20.0-#VALUE!30.01.1-0.41.334.61.91.93.727.20.0-#VALUE!32.21.62.86.728.72.0-2.34.725.30.0-#VALUE!30.00.71.22.131.30.00.10.830.11.2-3.17.233.31.1-0.81.734.90.9-0.81.831.70.0-0.11.030.52.5-0.71.627.70.70.61.5#VALUE!0.20.61.5	36.3	2.0	2.2	4.6
31.5 1.3 -1.1 2.1 29.4 0.2 -0.5 1.3 29.5 0.0 #VALUE! 28.0 0.0 #VALUE! 29.3 0.0 #VALUE! 29.3 0.0 #VALUE! 32.7 0.8 -1.6 3.0 31.0 0.5 -1.1 1.9 26.7 0.0 0.0 #VALUE! 26.7 0.0 0.0 #VALUE! 26.7 0.0 0.0 #VALUE! 26.7 0.0 0.0 #VALUE! 26.7 0.0 .0 #VALUE! 30.0 .0 #VALUE! .0 26.7 0.0 .0 #VALUE! 30.3 1.5 -2.0 4.0 32.3 0.0 .1 1.3 34.6 1.9 1.9 3.7 27.2 0.0 #VALUE! 3.7 32.2 1.6 2.8 6.7 28.7 2.0 -2.3 4.7 25.3 0.0 <td>28.2</td> <td>0.0</td> <td>0.0</td> <td>#VALUE!</td>	28.2	0.0	0.0	#VALUE!
29.4 0.2 -0.5 1.3 29.5 0.0 #VALUE! 28.0 0.0 #VALUE! 29.3 0.0 #VALUE! 32.7 0.8 -1.6 3.0 31.0 0.5 -1.1 1.9 26.7 0.0 0.0 #VALUE! WALUE! 0.0 0.0 #VALUE! 27.1 0.0 0.0 #VALUE! 27.1 0.0 0.0 #VALUE! 30.3 1.5 -2.0 4.0 32.3 0.0 0.0 #VALUE! 30.3 1.5 -2.0 4.0 32.3 0.0 #VALUE! 3.7 30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 0.0 #VALUE! 3.7 30.0 1.1 -0.4 1.3 34.6 1.9 .7 4.0 32.2 1.6 2.8 6.7 28.7 2.0 0.0 1.0 0.8	31.5	1.3	-1.1	2.1
29.5 0.0	29.4	0.2	-0.5	1.3
28.0 0.0 #VALUE! 29.3 0.0 #VALUE! 32.7 0.8 -1.6 3.0 31.0 0.5 -1.1 1.9 26.7 0.0 0.0 #VALUE! #VALUE! 0.0	29.5	0.0		#VALUF!
29.3 0.0 #VALUE! 32.7 0.8 -1.6 3.0 31.0 0.5 -1.1 1.9 26.7 0.0 0.0 #VALUE! #VALUE! 0.0 .00 #VALUE! #VALUE! 0.0 .00 #VALUE! #VALUE! 0.0 .00 #VALUE! 27.1 0.0 0.0 #VALUE! 30.3 1.5 -2.0 4.0 32.3 0.0 .0 #VALUE! 30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 1.6 2.8 6.7 30.0 .7 -1.2 2.1 31.3 0.0 .1 0.8 30.1 1.2 -3.1 7.2 31.3 0.0 .1 0.8 30.1 1.2 -3.1 7.2 31.3 1.1 -0.8 1.7 34.49 0.9 -0.8 1.8 31.7 2.5 0.0 .1	28.0	0.0		#VALUE!
32.7 0.8 -1.6 3.0 31.0 0.5 -1.1 1.9 26.7 0.0 0.0 #VALUE! #VALUE! 0.0	29.3	0.0		#VALUE!
31.0 0.5 -1.1 1.9 26.7 0.0 0.0 #VALUE! #VALUE! 0.0 #VALUE! #VALUE! 0.0 0.0 #VALUE! 27.1 0.0 0.0 #VALUE! 27.1 0.0 0.0 #VALUE! 28.8 0.0 0.0 #VALUE! 30.3 1.5 -2.0 4.0 32.3 0.0 .4.0 #VALUE! 30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 0.0 .4.0 #VALUE! 30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 0.0 .4.7 #VALUE! 30.0 1.1 -0.4 1.3 31.3 0.0 .1 0.8 30.1 1.2 -2.3 4.7 32.5 0.9 -2.8 5.2 30.0 0.1 0.8 1.7 33.3 1.1 -0.8 1.7<	32.7	0.8	-1.6	3.0
26.7 0.0 0.0 #VALUE! #VALUE! 0.0 #VALUE! #VALUE! 0.0 0.0 #VALUE! 27.1 0.0 0.0 #VALUE! 28.8 0.0 0.0 #VALUE! 30.3 1.5 -2.0 4.0 32.3 0.0 #VALUE! 4.0 30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 0.0 #VALUE! 4.0 32.2 1.6 2.8 6.7 28.7 2.0 -2.3 4.7 25.3 0.0 #VALUE! 3.1 30.0 0.7 -1.2 2.1 31.3 0.0 0.1 0.8 30.1 1.2 -3.11 7.2 32.5 0.9 -2.8 5.2 30.0 0.0 #VALUE! 3.3 31.1 -0.8 1.7 33.3 1.1 -0.8 1.8 31.7 0.0 0.1 1.0 <	31.0	0.5	-1.1	1.9
#VALUE! 0.0 #VALUE! #VALUE! 0.0 0.0 #VALUE! 0.0 0.0 27.1 0.0 0.0 28.8 0.0 0.0 30.3 1.5 -2.0 30.3 1.5 -2.0 30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 0.0	26.7	0.0	0.0	#VALUF!
#VALUE! 0.0 #VALUE! 27.1 0.0 0.0 #VALUE! 28.8 0.0 0.0 #VALUE! 30.3 1.5 -2.0 4.0 32.3 0.0 #VALUE! 30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 0.0 - #VALUE! 32.2 1.6 2.8 6.7 28.7 2.0 -2.3 4.7 25.3 0.0 - #VALUE! 30.0 0.7 -1.2 2.1 31.3 0.0 0.1 0.8 30.1 1.2 -3.1 7.2 32.5 0.9 -2.8 5.2 30.0 0.0 - #VALUE! 33.3 1.1 -0.8 1.7 34.9 0.9 -0.8 1.8 31.7 0.0 -0.1 1.0 30.5 2.5 -0.7 1.6 27.7 0.7 0.6 1.5 #V	#VALUE!	0.0		#VALUE!
27.1 0.0 0.0 #VALUE! 28.8 0.0 0.0 #VALUE! 30.3 1.5 -2.0 4.0 32.3 0.0 #VALUE! 30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 0.0 #VALUE! 32.2 1.6 2.8 6.7 28.7 2.0 -2.3 4.7 25.3 0.0 #VALUE! 30.0 .12 30.0 0.7 -1.2 2.1 30.1 1.2 -3.1 7.2 30.0 0.9 -2.8 5.2 30.0 0.0 - #VALUE! 33.3 1.1 -0.8 1.7 34.9 0.9 -0.8 1.8 31.7 0.0 -0.1 1.0 30.5 2.5 -0.7 1.6 27.7 0.7 0.6 1.5 #VALUE! 0.2 0.6 1.8	#VALUE!	0.0		#VALUE!
28.8 0.0 0.0 #VALUE! 30.3 1.5 -2.0 4.0 32.3 0.0 #VALUE! 30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 0.0 #VALUE! 32.2 1.6 2.8 6.7 28.7 2.0 -2.3 4.7 25.3 0.0 #VALUE! 30.0 6.7 30.0 0.7 -1.2 2.1 30.0 0.7 -1.2 2.1 30.1 1.2 -3.1 7.2 32.5 0.9 -2.8 5.2 30.0 0.0 .1 0.8 1.7 33.3 1.1 -0.8 1.7 34.9 0.9 -0.8 1.8 31.7 0.0 -0.1 1.0 30.5 2.5 -0.7 1.6 27.7 0.7 0.6 1.5 #VALUE! 0.2 0.6 1.8	27.1	0.0	0.0	#VALUE!
30.3 1.5 -2.0 4.0 32.3 0.0 #VALUE! 30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 0.0 #VALUE! 32.2 1.6 2.8 6.7 28.7 2.0 -2.3 4.7 25.3 0.0 #VALUE! 30.0 -#VALUE! 30.0 0.7 -1.2 2.1 31.3 0.0 0.1 0.8 30.1 1.2 -3.1 7.2 32.5 0.9 -2.8 5.2 30.0 0.0 #VALUE! 33.3 1.1 -0.8 1.7 34.9 0.9 -0.8 1.8 1.7 34.9 0.9 -0.8 1.8 1.7 34.9 0.9 -0.8 1.8 1.7 30.5 2.5 -0.7 1.6 2.7.7 1.6 27.7 0.7 0.6 1.5 4.7 1.5	28.8	0.0	0.0	#VALUE!
32.3 0.0 #VALUE! 30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 0.0 #VALUE! 32.2 1.6 2.8 6.7 28.7 2.0 -2.3 4.7 25.3 0.0 #VALUE! 3.0 30.0 0.7 -1.2 2.1 31.3 0.0 0.1 0.8 30.1 1.2 -3.1 7.2 32.5 0.9 -2.8 5.2 30.0 0.0 1.7 4.4 31.3 0.0 0.1 0.8 30.1 1.2 -3.1 7.2 32.5 0.9 -2.8 5.2 30.0 0.0 1.7 4.4 33.3 1.1 -0.8 1.7 34.9 0.9 -0.8 1.8 31.7 0.0 -0.1 1.0 30.5 2.5 -0.7 1.6 27.7 0.7 0.6 1.5 #VALUE!	30.3	1.5	-2.0	4.0
30.0 1.1 -0.4 1.3 34.6 1.9 1.9 3.7 27.2 0.0 #VALUE! 32.2 1.6 2.8 6.7 28.7 2.0 -2.3 4.7 25.3 0.0 #VALUE! 3.0 30.0 0.7 -1.2 2.1 31.3 0.0 0.1 0.8 30.1 1.2 -3.1 7.2 32.5 0.9 -2.8 5.2 30.0 0.0 -1.7 7.2 32.5 0.9 -2.8 5.2 30.0 0.0 -3.1 7.2 33.3 1.1 -0.8 1.7 34.9 0.9 -0.8 1.8 31.7 0.0 -0.1 1.0 30.5 2.5 -0.7 1.6 27.7 0.7 0.6 1.5 #VALUE! 0.2 0.6 1.8 35.5 0.6 -0.6 1.5	32.3	0.0		#VALUE!
34.6 1.9 1.9 3.7 27.2 0.0 #VALUE! 32.2 1.6 2.8 6.7 28.7 2.0 -2.3 4.7 25.3 0.0 #VALUE! 3.0 30.0 0.7 -1.2 2.1 31.3 0.0 0.1 0.8 30.1 1.2 -3.1 7.2 32.5 0.9 -2.8 5.2 30.0 0.0 #VALUE! 3.3 31.1 -0.8 1.7 34.9 0.9 -0.8 1.8 31.7 0.0 -0.1 1.0 30.5 2.5 -0.7 1.6 27.7 0.7 0.6 1.5 #VALUE! 0.2 0.6 1.8	30.0	1.1	-0.4	1.3
27.2 0.0 #VALUE! 32.2 1.6 2.8 6.7 28.7 2.0 -2.3 4.7 25.3 0.0 #VALUE! 30.0 0.7 -1.2 2.1 31.3 0.0 0.1 0.8 30.1 1.2 -3.1 7.2 32.5 0.9 -2.8 5.2 30.0 0.0 -1.2 1.7 33.3 1.1 -0.8 1.7 34.9 0.9 -0.8 1.8 31.7 0.0 -0.1 1.0 30.5 2.5 -0.7 1.6 27.7 0.7 0.6 1.5 #VALUE! 0.2 0.6 1.8 35.5 0.6 -0.6 1.5	34.6	1.9	1.9	3.7
32.2 1.6 2.8 6.7 28.7 2.0 -2.3 4.7 25.3 0.0 #VALUE! 30.0 0.7 -1.2 2.1 31.3 0.0 0.1 0.8 30.1 1.2 -3.1 7.2 32.5 0.9 -2.8 5.2 30.0 0.0 #VALUE! 33.3 1.1 -0.8 1.7 34.9 0.9 -0.8 1.8 31.7 0.0 -0.1 1.0 30.5 2.5 -0.7 1.6 27.7 0.7 0.6 1.5 #VALUE! 0.2 0.6 1.8 35.5 0.6 -0.6 1.5	27.2	0.0		#VALUE!
28.7 2.0 -2.3 4.7 25.3 0.0 #VALUE! 30.0 0.7 -1.2 2.1 31.3 0.0 0.1 0.8 30.1 1.2 -3.1 7.2 32.5 0.9 -2.8 5.2 30.0 0.0 #VALUE! 33.3 1.1 -0.8 1.7 34.9 0.9 -0.8 1.8 31.7 0.0 -0.1 1.0 30.5 2.5 -0.7 1.6 27.7 0.7 0.6 1.5 #VALUE! 0.2 0.6 1.8 35.5 0.6 -0.6 1.5	32.2	1.6	2.8	6.7
25.3 0.0 #VALUE! 30.0 0.7 -1.2 2.1 31.3 0.0 0.1 0.8 30.1 1.2 -3.1 7.2 32.5 0.9 -2.8 5.2 30.0 0.0 #VALUE! 33.3 3.1 1.1 -0.8 1.7 34.9 0.9 -0.8 1.8 31.7 0.0 -0.1 1.0 30.5 2.5 -0.7 1.6 27.7 0.7 0.6 1.5 #VALUE! 0.2 0.6 1.8 35.5 0.6 -0.6 1.5	28.7	2.0	-2.3	4.7
30.00.7-1.22.131.30.00.10.830.11.2-3.17.232.50.9-2.85.230.00.0#VALUE!33.31.1-0.81.734.90.9-0.81.831.70.0-0.11.030.52.5-0.71.627.70.70.61.5#VALUE!0.20.61.835.50.6-0.61.5	25.3	0.0		#VALUE!
31.3 0.0 0.1 0.8 30.1 1.2 -3.1 7.2 32.5 0.9 -2.8 5.2 30.0 0.0 #VALUE! 33.3 1.1 -0.8 1.7 34.9 0.9 -0.8 1.8 31.7 0.0 -0.1 1.0 30.5 2.5 -0.7 1.6 27.7 0.7 0.6 1.5 #VALUE! 0.2 0.6 1.8	30.0	0.7	-1.2	2.1
30.11.2-3.17.232.50.9-2.85.230.00.0#VALUE!33.31.1-0.81.734.90.9-0.81.831.70.0-0.11.030.52.5-0.71.627.70.70.61.5#VALUE!0.20.61.835.50.6-0.61.5	31.3	0.0	0.1	0.8
32.50.9-2.85.230.00.0#VALUE!33.31.1-0.81.734.90.9-0.81.831.70.0-0.11.030.52.5-0.71.627.70.70.61.5#VALUE!0.20.61.835.50.6-0.61.5	30.1	1.2	-3.1	7.2
30.0#VALUE!33.31.1-0.81.734.90.9-0.81.831.70.0-0.11.030.52.5-0.71.627.70.70.61.5#VALUE!0.20.61.835.50.6-0.61.5	32.5	0.9	-2.8	5.2
33.3 1.1 -0.8 1.7 34.9 0.9 -0.8 1.8 31.7 0.0 -0.1 1.0 30.5 2.5 -0.7 1.6 27.7 0.7 0.6 1.5 #VALUE! 0.2 0.6 1.8 35.5 0.6 -0.5 1.5	30.0	0.0		#VALUE!
34.9 0.9 -0.8 1.8 31.7 0.0 -0.1 1.0 30.5 2.5 -0.7 1.6 27.7 0.7 0.6 1.5 #VALUE! 0.2 0.6 1.8 35.5 0.6 -0.6 1.5	33.3	1.1	-0.8	1.7
31.7 0.0 -0.1 1.0 30.5 2.5 -0.7 1.6 27.7 0.7 0.6 1.5 #VALUE! 0.2 0.6 1.8 35.5 0.6 -0.6 1.5	34.9	0.9	-0.8	1.8
30.5 2.5 -0.7 1.6 27.7 0.7 0.6 1.5 #VALUE! 0.2 0.6 1.8 35.5 0.6 -0.6 1.5	31.7	0.0	-0.1	1.0
27.7 0.7 0.6 1.5 #VALUE! 0.2 0.6 1.8 35.5 0.6 -0.6 1.5	30.5	2.5	-0.7	1.6
#VALUE! 0.2 0.6 1.8 35.5 0.6 -0.6 1.5	27.7	0.7	0.6	1.5
35.5 0.6 -0.6 1.5	#VALUE!	0.2	0.6	1.8
	35.5	0.6	-0.6	1.5

31.8	0.9	0.7	1.6
31.3	1.3	2.7	6.3
31.0	2.4	-1.2	2.4
#VALUE!	0.7	-1.7	3.1
29.7	0.0	0.0	#VALUE!
33.9	1.6	2.7	6.5
26.5	0.0		#VALUE!
31.2	0.6	1.2	2.5
27.2	0.6	-2.6	6.0
29.5	0.0		#VALUE!
#VALUE!	0.0		#VALUE!
25.2	0.2	0.9	1.3
30.8	0.1	-0.1	1.1
29.0	0.0		#VALUE!
#VALUE!	0.0		#VALUE!
27.3	0.0	-0.1	1.2
26.3	0.0		#VALUE!
#VALUE!	0.0		#VALUE!
31.0	0.7	-1 2	24
29.9	0.0	1.2	#VALUET
#\/ALLIE	0.0		#\/ALLIF!
30.7	0.0	0.0	#VALUE!
24.7	0.3	-0.3	1 2
21.7	2 9	-2.0	2.0
20.4	0.2	0.7	1.2
20.4	0.2	0.7	1.5 #\/ALLEL
50.4	0.0		#VALUE!
#VALUE!	1.7	1.0	#VALUE!
29.0 #\/ALLIEL	1.7	-1.9	3.9
#VALUE!	0.4	2.1	2.0
	0.4	-2.1	2.9
#VALUE!	0.4 0.0	-2.1	2.9 #VALUE!
#VALUE! 29.1	0.4 0.0 0.3	-2.1 0.8	2.9 #VALUE! 1.7
#VALUE! 29.1 28.2	0.4 0.0 0.3 0.0	-2.1 0.8	2.9 #VALUE! 1.7 #VALUE!
#VALUE! 29.1 28.2 28.9	0.4 0.0 0.3 0.0 0.0	-2.1 0.8	2.9 #VALUE! 1.7 #VALUE! #VALUE!
#VALUE! 29.1 28.2 28.9 26.4	0.4 0.0 0.3 0.0 0.0 0.7	-2.1 0.8 -3.6	2.9 #VALUE! 1.7 #VALUE! #VALUE! 5.8
#VALUE! 29.1 28.2 28.9 26.4 #VALUE!	0.4 0.0 0.3 0.0 0.0 0.7 0.0	-2.1 0.8 -3.6	2.9 #VALUE! 1.7 #VALUE! #VALUE! 5.8 #VALUE!
#VALUE! 29.1 28.2 28.9 26.4 #VALUE! #VALUE!	0.4 0.0 0.3 0.0 0.0 0.7 0.0 0.0	-2.1 0.8 -3.6	2.9 #VALUE! 1.7 #VALUE! #VALUE! 5.8 #VALUE! #VALUE!
#VALUE! 29.1 28.2 28.9 26.4 #VALUE! #VALUE! 33.4	0.4 0.0 0.3 0.0 0.0 0.7 0.0 0.0 0.0 0.5	-2.1 0.8 -3.6 1.5	2.9 #VALUE! 1.7 #VALUE! #VALUE! 5.8 #VALUE! #VALUE! 2.1
#VALUE! 29.1 28.2 28.9 26.4 #VALUE! #VALUE! 33.4 #VALUE!	0.4 0.0 0.3 0.0 0.0 0.7 0.0 0.0 0.0 0.5 0.0	-2.1 0.8 -3.6 1.5	2.9 #VALUE! 1.7 #VALUE! #VALUE! 5.8 #VALUE! #VALUE! 2.1 #VALUE!
#VALUE! 29.1 28.2 28.9 26.4 #VALUE! #VALUE! 33.4 #VALUE! #VALUE!	0.4 0.0 0.3 0.0 0.0 0.7 0.0 0.0 0.5 0.0 1.5	-2.1 0.8 -3.6 1.5 3.5	2.9 #VALUE! 1.7 #VALUE! #VALUE! 5.8 #VALUE! 2.1 #VALUE! 11.8
#VALUE! 29.1 28.2 28.9 26.4 #VALUE! #VALUE! 33.4 #VALUE! #VALUE! #VALUE! #VALUE!	0.4 0.0 0.3 0.0 0.0 0.7 0.0 0.0 0.5 0.0 1.5 0.0	-2.1 0.8 -3.6 1.5 3.5	2.9 #VALUE! 1.7 #VALUE! #VALUE! 5.8 #VALUE! #VALUE! 2.1 #VALUE! 11.8 #VALUE!
#VALUE! 29.1 28.2 28.9 26.4 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	0.4 0.0 0.3 0.0 0.0 0.7 0.0 0.0 0.5 0.0 1.5 0.0 0.0 0.0	-2.1 0.8 -3.6 1.5 3.5	2.9 #VALUE! 1.7 #VALUE! #VALUE! 5.8 #VALUE! #VALUE! 2.1 #VALUE! 11.8 #VALUE!
#VALUE! 29.1 28.2 28.9 26.4 #VALUE!	0.4 0.0 0.3 0.0 0.0 0.7 0.0 0.0 0.5 0.0 1.5 0.0 0.0 2.9	 -2.1 0.8 -3.6 1.5 3.5 4.5 	2.9 #VALUE! 1.7 #VALUE! #VALUE! 5.8 #VALUE! #VALUE! 2.1 #VALUE! 11.8 #VALUE! #VALUE! 22.6
#VALUE! 29.1 28.2 28.9 26.4 #VALUE! #VALUE! 33.4 #VALUE!	0.4 0.0 0.3 0.0 0.0 0.7 0.0 0.0 0.5 0.0 1.5 0.0 0.0 2.9 0.3	 -2.1 0.8 -3.6 1.5 3.5 4.5 0.5 	2.9 #VALUE! 1.7 #VALUE! #VALUE! 5.8 #VALUE! #VALUE! 2.1 #VALUE! 11.8 #VALUE! #VALUE! 22.6 1.3
#VALUE! 29.1 28.2 28.9 26.4 #VALUE! 32.4 35.5 31.0	0.4 0.0 0.3 0.0 0.0 0.7 0.0 0.5 0.0 1.5 0.0 2.9 0.3 0.0	-2.1 0.8 -3.6 1.5 3.5 4.5 0.5 0.0	2.9 #VALUE! 1.7 #VALUE! #VALUE! 5.8 #VALUE! 2.1 #VALUE! 11.8 #VALUE! #VALUE! 22.6 1.3 #VALUE!
#VALUE! 29.1 28.2 28.9 26.4 #VALUE! 32.4 35.5 31.0 33.4	0.4 0.0 0.3 0.0 0.0 0.7 0.0 0.0 0.5 0.0 1.5 0.0 2.9 0.3 0.0 0.5 0.0 0.5 0.0 0.0 0.5 0.0 0.0	-2.1 0.8 -3.6 1.5 3.5 4.5 0.5 0.0 0.5 0.5	2.9 #VALUE! 1.7 #VALUE! #VALUE! 5.8 #VALUE! #VALUE! 2.1 #VALUE! 11.8 #VALUE! 22.6 1.3 #VALUE! 1.4
#VALUE! 29.1 28.2 28.9 26.4 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 32.4 35.5 31.0 33.4 31.8	0.4 0.0 0.3 0.0 0.0 0.7 0.0 0.0 0.5 0.0 1.5 0.0 0.0 2.9 0.3 0.0 0.5 0.3 0.3	-2.1 0.8 -3.6 1.5 3.5 4.5 0.5 0.0 0.5 -0.1	2.9 #VALUE! 1.7 #VALUE! #VALUE! 5.8 #VALUE! #VALUE! 11.8 #VALUE! 22.6 1.3 #VALUE! 1.4 1.1
#VALUE! 29.1 28.2 28.9 26.4 #VALUE! 32.4 35.5 31.0 33.4 31.8 #VALUE!	0.4 0.0 0.3 0.0 0.0 0.7 0.0 0.5 0.0 1.5 0.0 2.9 0.3 0.0 0.5 0.3 0.1	-2.1 0.8 -3.6 1.5 3.5 4.5 0.5 0.0 0.5 -0.1 0.3	2.9 #VALUE! 1.7 #VALUE! 5.8 #VALUE! #VALUE! 2.1 #VALUE! 11.8 #VALUE! 22.6 1.3 #VALUE! 1.4 1.1 0.9
#VALUE! 29.1 28.2 28.9 26.4 #VALUE! #VALUE! #VALUE! 33.4 #VALUE! #VALUE!	0.4 0.0 0.3 0.0 0.0 0.7 0.0 0.5 0.0 1.5 0.0 2.9 0.3 0.0 0.5 0.3 0.1 0.5	-2.1 0.8 -3.6 1.5 3.5 4.5 0.5 0.0 0.5 -0.1 0.3 -0.5	2.9 #VALUE! 1.7 #VALUE! #VALUE! 5.8 #VALUE! #VALUE! 11.8 #VALUE! 22.6 1.3 #VALUE! 1.4 1.1 0.9 1.4
#VALUE! 29.1 28.2 28.9 26.4 #VALUE! 32.4 35.5 31.0 33.4 31.8 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	0.4 0.0 0.3 0.0 0.0 0.7 0.0 0.5 0.0 1.5 0.0 2.9 0.3 0.0 0.5 0.3 0.1 0.5 0.0	-2.1 0.8 -3.6 1.5 3.5 4.5 0.5 0.0 0.5 -0.1 0.3 -0.5	2.9 #VALUE! 1.7 #VALUE! #VALUE! 5.8 #VALUE! 2.1 #VALUE! 11.8 #VALUE! 22.6 1.3 #VALUE! 1.4 1.1 0.9 1.4 #VALUE!

30.2	0.3	0.6	1.5
29.8	0.0	0.0	#VALUE!
28.2	0.4	1.1	1.8
27.0	0.2	0.5	1.4
35.7	0.1	-0.4	1.5
30.2	0.1	0.5	1.1
31.4	1.6	-1.5	2.8
36.4	0.8	-0.6	1.6
26.6	2.4	-3.5	11.8
34.0	1.2	-0.7	1.6
31.3	0.0		#VALUE!
#VALUE!	1.1	-6.7	69.9
33.1	0.0		#VALUE!
30.3	0.7	-0.3	1.2
27.1	0.8	-0.9	2.0
27.2	0.0		#VALUF!
27.9	0.0		#VALUE
29.4	0.0		#VALUE!
31 5	0.4	-0.2	1 1
#\/ALLIF	0.0	0.2	±.τ #\/Δ[[]F]
27.2	0.0		#VALUE!
30.0	1.4	-1 1	2.2
20.2	0.5	0.7	1.6
20.2	1.0	-0.7	1.0
22.0	1.0	-0.9	1.3 #\/ALLIEL
25.9	0.0		
20.7	0.0	0.2	#VALUE!
31.5	0.1	0.2	
31.8	0.0	4.2	#VALUE!
#VALUE!	2.2	-4.3	19.9
#VALUE!	0.0		#VALUE!
20.8	0.0	1.0	#VALUE!
32.2	1.1	1.8	3.6
31.8	0.9	-1.4	2.6
#VALUE!	1.9	-2.8	/.1
33.6	0.0		#VALUE!
#VALUE!	0.0		#VALUE!
29.2	1.7	-3.2	8.8
#VALUE!			
	0.0		#VALUE!
30.3	0.0 0.0		#VALUE! #VALUE!
30.3 #VALUE!	0.0 0.0 0.0		#VALUE! #VALUE! #VALUE!
30.3 #VALUE! 32.6	0.0 0.0 0.0 0.6	-0.9	#VALUE! #VALUE! #VALUE! 2.0
30.3 #VALUE! 32.6 #VALUE!	0.0 0.0 0.0 0.6 1.0	-0.9 -2.3	#VALUE! #VALUE! #VALUE! 2.0 4.7
30.3 #VALUE! 32.6 #VALUE! 29.9	0.0 0.0 0.6 1.0 0.0	-0.9 -2.3	#VALUE! #VALUE! #VALUE! 2.0 4.7 #VALUE!
30.3 #VALUE! 32.6 #VALUE! 29.9 28.9	0.0 0.0 0.6 1.0 0.0 1.1	-0.9 -2.3 -2.1	#VALUE! #VALUE! 2.0 4.7 #VALUE! 4.0
30.3 #VALUE! 32.6 #VALUE! 29.9 28.9 #VALUE!	0.0 0.0 0.6 1.0 0.0 1.1 1.9	-0.9 -2.3 -2.1 -5.4	#VALUE! #VALUE! 2.0 4.7 #VALUE! 4.0 39.1
30.3 #VALUE! 32.6 #VALUE! 29.9 28.9 #VALUE! #VALUE!	0.0 0.0 0.6 1.0 0.0 1.1 1.9 0.0	-0.9 -2.3 -2.1 -5.4	#VALUE! #VALUE! 2.0 4.7 #VALUE! 4.0 39.1 #VALUE!
30.3 #VALUE! 32.6 #VALUE! 29.9 28.9 #VALUE! #VALUE! 24.9	0.0 0.0 0.6 1.0 0.0 1.1 1.9 0.0 0.1	-0.9 -2.3 -2.1 -5.4 -0.4	#VALUE! #VALUE! 2.0 4.7 #VALUE! 4.0 39.1 #VALUE! 1.8
30.3 #VALUE! 32.6 #VALUE! 29.9 28.9 #VALUE! #VALUE! 24.9 27.5	0.0 0.0 0.6 1.0 0.0 1.1 1.9 0.0 0.1 0.0	-0.9 -2.3 -2.1 -5.4 -0.4	<pre>#VALUE! #VALUE! 2.0 4.7 #VALUE! 4.0 39.1 #VALUE! 1.8 #VALUE!</pre>
30.3 #VALUE! 32.6 #VALUE! 29.9 28.9 #VALUE! #VALUE! 24.9 27.5 29.4	0.0 0.0 0.6 1.0 0.0 1.1 1.9 0.0 0.1 0.0 0.1 0.7	-0.9 -2.3 -2.1 -5.4 -0.4 -1.3	<pre>#VALUE! #VALUE! 2.0 4.7 #VALUE! 4.0 39.1 #VALUE! 1.8 #VALUE! 2.2</pre>

29.8	0.8	0.6	1.4
#VALUE!	0.4	0.6	1.6
30.9	1.4	0.5	1.4
30.7	0.7	-0.6	1.5
26.8	0.0		#VALUE!
#VALUE!	0.0		#VALUE!
#VALUE!	1.4	-1.9	3.6
#VALUE!	0.0		#VALUE!
28.5	0.0		#VALUE!
31.2	1.3	-3.3	9.0
#VALUE!	0.0		#VALUE!
29.1	0.9	1.4	2.5
30.7	4.3	0.8	1.8
29.1	0.2	0.2	1.2
#VALUE!	0.0		#VALUE!
28.2	0.0	0.0	#VALUE!
#VALUE!	0.0		#VALUE!
#VALUE!	0.0		#VALUE!
#VALUE!	0.0		#VALUE!

-Log Student's	Student's T-tes	FC Glu_Glu+Cl	I-Log Student's	Student's T-tes
0.0		#VALUE!	0.0	0.0
0.6	1.0	2.0	0.0	
0.3	-0.3	1.2	1.4	1.3
0.5	-1.5	2.4	0.0	
0.4	0.6	1.5	0.0	
0.0	0.0	#VALUE!	0.0	
1.4	-2.6	5.7	0.9	-1.2
0.3	1.2	1.6	0.6	2.4
0.0		#VALUE!	0.0	0.0
0.2	1.2	1.7	0.0	
0.0		#VALUE!	0.6	2.2
0.0	0.0	#VALUE!	0.0	
0.2	0.7	10	0.1	0.6
0.3	0.7	1 4	0.0	0.0
0.0	0.7	± #\/Δ F	0.0	
0.0	-0.4	1 3	1 5	17
0.0	-0.4	±.5 #\/Δ[]]E]	0.0	1.7
0.0	_1 2	1 0	0.0	1 /
1 /	-1.5	2.2	0.0	1.4
0.7	-1.1	2.2 1 <i>1</i>	0.0	
0.7	1.2	1.4	1.6	11
0.5	-1.5	2.5	1.0	-4.1
0.5	-2.4		0.0	
0.0	0.0	#VALUE!	0.0	
0.2	-0.9		0.0	
0.0		#VALUE!	0.0	
0.0	0.4	#VALUE!	0.8	-0.9
0.3	-0.4	1.4	1.4	-3.1
0.0	0.0	#VALUE!	0.0	
0.1	-0.4	1.3	1.1	2.4
0.0	0.0	1.0	0.2	0.3
0.2	0.4	1.3	0.8	0.9
0.3	0.5	1.3	0.0	
0.1	-0.1	1.1	0.9	-2.2
0.1	0.3	1.1	0.9	-1.6
0.3	0.2	1.1	1.5	1.4
0.1	0.4	1.0	0.0	
0.1	0.2	1.3	0.9	0.9
0.0	0.0	#VALUE!	0.0	
0.0	0.0	#VALUE!	0.0	
0.6	-0.7	1.7	0.0	
0.1	0.1	1.0	1.0	1.5
0.7	-0.9	1.8	1.6	-6.0
0.3	-1.5	1.4	0.0	
0.1	0.2	1.0	0.0	
0.1	0.1	1.0	1.3	-2.1
0.9	-0.8	1.8	0.1	0.1
0.2	-1.2	1.2	0.0	
0.1	-0.2	1.2	0.9	-1.2
0.2	-0.5	1.2	1.2	-5.3

04	-1 3	18	0.0	
0.0	0.0	#\/ALLIF!	0.0	
0.0	0.0	#\/ALLIEL	4.0	1 8
0.0	0.6	1 7	0.5	0.6
0.2	0.0	1.0	0.5	-0.3
0.2	-0.1	1 1	0.0	-0.5
17	1.0	2.0	1 2	2 2
0.5	0.7	2.0	1.5	2.5
0.5	0.7	1.0	0.0	0.0
0.0	1.6	1.2	0.0	0.0
0.5	1.0	2.7	0.8	2.7
0.9	-1.5	2.7	3.2	-2.0
0.0	0.0		0.0	
0.0		#VALUE!	0.0	
1.0	-0.4	1.3	0.0	
0.0		#VALUE!	0.0	0.0
0.4	0.7	1.8	1.5	-3.6
0.1	0.1	1.0	1.4	-2.1
0.0		#VALUE!	0.0	
0.7	-0.3	1.2	1.1	0.8
0.2	0.4	1.5	0.6	0.9
0.4	-0.5	1.4	0.0	
1.2	-1.1	2.1	0.0	
0.3	-1.5	1.3	0.0	
0.3	0.4	1.4	1.3	2.0
0.8	-1.6	2.8	0.6	-0.6
0.0		#VALUE!	0.0	
0.0	0.0	#VALUE!	0.0	
0.0		#VALUE!	0.0	0.0
0.0		#VALUE!	0.0	
0.0		#VALUE!	0.0	
0.8	-1.3	2.6	0.5	0.7
0.4	-0.6	1.5	0.0	
0.3	-0.5	1.5	0.0	-0.1
0.8	0.6	1.5	1.5	-1.3
0.1	-0.3	0.9	0.0	
0.2	0.1	1.1	1.6	-2.7
0.0	-0.1	1.4	0.7	2.2
0.3	0.7	1.5	0.0	
03	-0.8	17	03	04
0.0	-0.1	10	0.0	-0.2
0.9	-2.3	4 4	0.7	0.8
0.4	-1 3	1.4	3.6	15
1 1	-0.6	1.6	0.0	1.5
1.2	-2.1	1.0	1 /	-1 3
0.2	-0.1	1 1	1.4	0.7
0.2	-1 3	2.2	1.0	_1 3
0.0	-0.4	2.J 1 3	0.5	0.3
0.0	-0. 4 ∩ ♀	1.J	0.4	0.3
0.5	0.0	1.J #\/AIIIEI	0.1	0.2
1.0	0.7	TVALUE!	0.0	0.1
1.0	-0.7	1.0	0.1	-0.1

0.5	-0.4	1.3	1.2	-1.1
0.3	0.4	1.3	1.0	-2.3
0.2	0.2	1.1	1.0	1.5
0.0		#VALUE!	0.0	
0.0		#VALUE!	0.0	
0.3	-0.3	1.2	2.2	-3.0
0.2	-1.9	1.5	0.0	
0.1	0.2	1.2	0.7	-1.0
0.1	-0.5	1.3	0.5	2.1
0.0		#VALUE!	0.1	0.7
0.0	0.0	#VALUE!	0.0	
0.5	3.2	3.1	0.3	2.2
0.2	-0.2	1.1	0.1	0.0
0.5	-1.4	2.6	0.0	
0.0	0.0	#VALUE!	0.0	
0.3	0.3	1.3	0.2	0.4
0.0		#VALUE!	0.9	2.7
0.0		#VALUE!	0.0	0.0
0.1	-0.1	1.1	0.7	1.1
0.5	0.6	1.5	0.0	
0.0	0.0	#VALUE!	0.0	
0.0		#VALUE!	0.0	
0.4	1.4	1.9	0.5	1.7
0.9	0.2	1.1	3.7	2.2
0.1	-0.1	1.1	0.3	-0.9
1.3	-2.0	3.9	0.0	
0.0		#VALUE!	0.0	0.0
0.7	-1.4	2.9	0.3	0.6
0.0		#VALUE!	0.0	
0.0	0.0	#VALUE!	0.0	
0.2	-0.3	1.2	0.6	-1.1
1.7	-0.6	1.5	0.0	
0.5	1.5	2.3	0.0	
0.0	-0.2	0.6	1.2	3.4
0.0	0.0	#VALUE!	0.0	
0.0	0.0	#VALUE!	0.0	
1.0	-0.6	1.5	0.7	-2.1
0.0	0.0	#VALUE!	0.0	
0.0		#VALUE!	0.0	
0.0		#VALUE!	0.0	0.0
0.0		#VALUE!	0.0	0.0
2.0	4.0	15.7	0.5	-0.5
0.6	-0.7	1.6	0.6	-1.1
0.0		#VALUE!	0.0	
0.4	0.7	1.5	0.1	0.3
0.2	0.6	1.2	0.2	0.7
0.0	-	#VALUE!	0.0	
0.0		#VALUE!	0.0	
0.0	0.0	#VALUE!	0.0	
0.3	-0.4	1.4	0.1	0.2

0.1	0.2	1.2	0.2	-0.4
0.0		#VALUE!	0.0	
0.3	0.6	1.3	0.2	-0.5
0.8	1.6	3.3	0.6	1.1
0.2	-0.4	1.2	0.0	0.0
0.2	0.5	1.5	0.0	0.0
0.9	-0.4	1.3	1.5	1.1
0.6	-0.3	1.2	0.5	0.4
0.1	-0.1	1.1	1.6	3.5
0.0	0.0	1.1	0.5	0.7
0.3	-0.9	1.7	0.0	
0.0		#VALUE!	0.0	
0.3	-1.3	2.8	0.0	
0.0	0.0	10	0.5	03
0.4	-0.2	12	0.6	0.7
0.5	1 1	19	0.0	0.7
0.0	1.1	±.5 #\/Δ[[]F]	1.8	19
0.5	-1.0	1 2	0.0	1.5
0.5	-1.0	1.0	0.0	0.2
0.5	-0.4		0.2	-0.2
0.0	0.7	#VALUE!	0.0	0.0
0.5	0.7	1./	0.0	0.5
0.7	-0.6	1.5	0.6	0.5
0.2	-0.5	1.4	0.2	0.3
0.2	-0.2	1.1	1.0	0.8
0.7	2.9	5.8	0.0	
0.2	-0.6	1.3	0.0	
0.7	0.3	1.2	0.0	0.1
0.1	0.2	1.1	0.0	
0.0		#VALUE!	0.0	
0.0		#VALUE!	0.0	0.0
0.0	0.1	1.1	0.0	
0.1	0.1	1.1	1.3	-1.8
0.5	0.7	1.6	1.1	2.1
0.0		#VALUE!	0.0	
0.1	-0.1	1.1	0.0	
0.0		#VALUE!	0.0	0.0
1.1	-1.5	2.6	2.0	1.7
0.0		#VALUE!	0.0	0.0
0.3	-0.4	1.2	0.0	
0.0	0.0	#VALUE!	0.0	
0.2	0.1	1.1	0.6	1.0
0.0		#VALUE!	0.0	
0.5	-0.9	17	0.0	
0.5	2.0	3.0	1.0	4 1
0.0	2.0	3.0 #\/Δ[]]F]	0.0	7.1
0.0	0.0	#\/Δ F	0.0	
0.0	1.3	1 7	0.0	17
0.7	_0.9	12	0.4	1.7
1.0	-2.0	1.5	0.0	-0.7
1.0	-2.0	3.0 #\/ALLET	0.7	-0.7
0.0	0.0	#VALUL!	0.0	

1.0	-0.5	1.4	1.2	-1.0
0.0		#VALUE!	0.0	
0.5	-0.6	1.6	0.8	-1.1
0.1	0.3	1.0	0.3	0.9
0.0		#VALUE!	0.3	-0.2
0.0	0.0	#VALUE!	0.0	
0.0		#VALUE!	0.0	
0.0	0.0	#VALUE!	0.0	
0.3	-0.1	1.1	0.0	
0.9	-2.0	3.6	1.3	1.3
0.0	0.0	#VALUE!	0.0	
1.2	0.7	1.7	0.5	-0.6
0.5	0.3	1.2	1.0	-0.6
0.5	0.8	1.7	0.4	0.5
0.0	0.0	#VALUE!	0.0	
0.0		#VALUE!	0.0	
0.0	0.0	#VALUE!	0.0	
0.0	0.0	#VALUE!	0.0	
0.0	0.0	#VALUE!	0.0	

FC CMC	Glu+CMC
#VALUE!	
#VALUE!	
2.5	
#VALUE!	
#VALUE!	
#VALUE!	
2.2	
4.1	
#VALUE!	
#VALUE!	
4.0	
#VALUF!	
0.9	
#VALUET	
#VALUE!	
2 2	
±\/Δ[[[F]	
26	
2.0 #\/ALLE	
#VALUE!	
#VALUL:	
17.5 #\/ALLE	
#VALUE!	
#VALUE!	
#VALUE!	
1.0	
8.3	
#VALUE!	
4.8	
1.4	
1.8	
#VALUE!	
4.5	
3.2	
2.6	
#VALUE!	
1.9	
#VALUE!	
#VALUE!	
#VALUE!	
2.6	
52.2	
#VALUE!	
#VALUE!	
4.3	
1.2	
#VALUE!	
2.4	
25.9	

#VALUE!
#VALUE!
3.5
1.4
1.2
1.1
53
#\/ALLIF!
1 1
5.7
5.7 6.1
U.1
#VALUE!
#VALUE!
#VALUE!
11.1
4.5
#VALUE!
1.7
1.9
#VALUE!
#VALUE!
#VALUE!
4.2
1.4
#VALUE!
1.6
#VALUE!
1.1
2.4
#VALUE!
6.1
3.4
#VALUE!
1.2
0.7
1.7
2.9
#\/ALLIF!
2 5
17
<u>,</u>) 2
2.J 1 2
1.0
1.U #\/AIIIEI
#VALUE!
1.1

2.1 4.9 2.6 #VALUE! #VALUE! 7.9 #VALUE! 2.1 4.6 2.4 #VALUE! 2.4 1.0 #VALUE! #VALUE! 1.5 5.4 #VALUE! 2.3 #VALUE! #VALUE! #VALUE! 2.2 4.5 1.4 #VALUE! #VALUE! 1.3 #VALUE! #VALUE! 1.9 #VALUE! #VALUE! 9.1 #VALUE! #VALUE! 3.2 #VALUE! #VALUE! #VALUE! #VALUE! 1.4 2.1 #VALUE! 1.1 1.2 #VALUE! #VALUE! #VALUE! 1.1

1.3
#VALUE!
1.4
2.4
1.2
0.8
2.2
1.3
10.4
1.5
#VALUE!
#VALUE!
#VALUE!
1.2
1.7
#VALUE!
3.6
#VALUE!
1.2
#VALUE!
#VALUE!
1.4
1.1
1.7
#VALUE!
#VALUE!
1.1
#VALUE!
#VALUE!
#VALUE!
#VALUE!
3.2
4.3
#VALUE!
#VALUE!
#VALUE!
3.3
#VALUE!
#VALUE!
#VALUE!
2.2
#VALUE!
#VALUE!
11.9
#VALUE!
#VALUE!
3.0
#VALUE!
1.6
#VALUE!

2.0 #VALUE! 2.3 1.5 1.1 #VALUE! #VALUE! #VALUE! #VALUE! 2.5 #VALUE! 1.5 1.5 1.4 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

Cluster	Gene ID	Gene Type	Gene Start	Gene Stop	Direction
CGC01	NP 387896.1	TC	23146	23769	-
CGC01	NP 387897.1	CAZyme	23868	25151	-
CGC02	NP_388035.1	TC	157421	158479	+
CGC02	NP 388036.1	-	158515	159072	-
CGC02		-	159182	159778	+
CGC02		CAZyme	159779	160543	-
CGC02		TC	177083	178519	+
CGC02		TC	178665	179585	+
CGC02		-	179595	180347	-
CGC02		TC	180344	181354	-
CGC02		TC	181347	182351	-
CGC02	NP 388044.1	TC	182370	183323	-
CGC02		TF	183414	185003	-
CGC02	NP 388046.1	-	185194	186438	-
CGC02	NP 388047.1	CAZvme	186452	188380	-
CGC03	NP 388174.1	TC	314025	314798	+
CGC03	NP 388175.1	-	314883	316496	+
CGC03	NP_388176.1	-	316512	317603	+
CGC03	NP_388177.1	TC	317725	318927	+
	NP 388178 1	TC	319180	320352	_
	NP 388179 1	-	320421	320332	-
	NP 388180 2	тс	321013	322269	+
	NP 388181 1	тс	322013	323119	+
	NP 388182.1	тс	323119	324000	+
	NP 388183 2	-	324038	325189	_
	NP 388184 2	тс	325339	326772	+
	NP 388185 2	-	326888	327469	+
	NP 388186 2	CA7vme	327618	329597	+
	NP 388187.2	-	329774	330739	+
	NP 388188 2	тс	320774	337396	+
	NF_388188.2	тс	330771	333979	-
	NI 288207 1	тс	176558	478741	<u>т</u>
	NP 388308 1	CA7vme	470550	480032	+
	NF_388308.1	CAZyIIIe	478944	480052	+
	NF_388309.1		480013	480804	+
	NI 288211 1	тс	480875	482830	· -
	NF_388312.1	-	482577	485859	+
	NP 388313 1	тс	485045	483355	+
	NF_300313.1	тс	604726	400233	т
	NF_388442.1	тс	606699	608075	
	NF_500445.1		609246	608764	-
	NP_300444.1 ND 388445 1	-	608033	600301	-
CGC05	NF_300443.1	- TC	600333	612045	+
	ND 200440.1		612101	012040 612020	+
	ND 200440 1	-	612026	612220	-
	INF_308448.1	- TC	012830	01333U	-
	INF_368449.1		013041	014849	+
	INP_388450.2	-	014885	015022	-
	INP_388451.1	-	6158/1	010545	+
CGC05	NP_388452.2	CAZyme	616672	61/934	+

CGC05	NP_388453.2	CAZyme	618095	619282	+
CGC06	NP_388575.1	тс	758093	758722	+
CGC06	NP_388576.1	тс	758719	760452	+
CGC06	NP_388577.1	TF	760452	761558	+
CGC06	NP_388578.2	-	761662	762945	+
CGC06	NP 388579.1	тс	762942	763871	+
CGC06	NP 388580.1	тс	763875	764765	+
CGC06	NP 388581.1	CAZyme	764781	765815	+
CGC06		-	765838	768123	+
CGC06		CAZyme	768137	768835	+
CGC06		-	768828	769490	+
CGC06		тс	769487	770113	+
CGC06	NP 388586.1	CAZvme	770234	772096	+
CGC06	NP_388587.1	CAZyme	772142	773980	+
CGC06	NP 388588.1	CAZyme	774138	774791	+
CGC06	NP_388589.1	CAZyme	774799	776790	+
CGC06	NP_388590.2	CAZyme	776834	779407	+
CGC06	NP 388591 1	TC	779529	781037	+
0000	NP 388592 1	тс	781092	782048	+
CGC06	NP 388593 1	тс	782062	782949	+
	NP 388594 1	CA7vme	782958	7842945	+
	NP 388610 1	CAZyme	800232	8011/3	+
	ND 288611 1	CAZyme	800232	802250	_
	NF_300011.1 ND_300612.1	CAZyme	801172	802330	т _
	NF_300012.1	TC	802331	003200 004E46	т
	NP_300013.1		804657	004040	-
	NP_300014.1	- TC	804057	805304	-
CGC07	NP_388615.1	IC I	805456	806841	-
CGC07	NP_388616.1	-	807091	808548	+
CGC07	NP_388617.1	-	808562	809422	+
CGC07	NP_388618.1	IC IC	809557	811446	+
CGC07	NP_388619.1	-	811569	812015	+
CGC07	NP_388620.1	TF	812140	812562	+
CGC07	NP_388621.1	TC	812628	813818	+
CGC07	NP_388622.1	-	814109	814264	+
CGC07	NP_388623.2	TC	814384	815940	-
CGC07	NP_388624.1	TC	816113	817243	+
CGC08	NP_388630.1	TC	822903	823703	-
CGC08	NP_388631.1	TC	823716	824717	-
CGC08	NP_388632.1	TC	824714	825715	-
CGC08	NP_388633.1	TC	825787	826734	-
CGC08	NP_388634.1	-	826843	827211	-
CGC08	NP_388636.1	-	827455	827802	+
CGC08	NP_388637.1	CAZyme	827993	829255	+
CGC08	NP_388638.1	тс	829382	830818	+
CGC09	NP_388671.1	тс	862836	863663	+
CGC09	NP_388672.1	ТС	863862	865037	-
CGC09	NP_388673.1	ТС	865205	866260	+
CGC09	NP_388674.1	-	866331	867125	+
CGC09	NP_388675.1	TC	867164	868006	-
CGC09	NP_388677.2	-	868007	869128	-

CGC09	NP_388678.1	-	869273	869458	+
CGC09	NP_388679.1	CAZyme	869559	870350	+
CGC09	NP_388680.2	-	870388	871248	-
CGC09	NP_388681.1	TC	871347	872306	-
CGC10	NP_388699.1	CAZyme	890022	891371	+
CGC10	NP_388700.1	-	891436	892200	+
CGC10	NP_388701.1	TC	892215	893798	+
CGC10	NP_388702.1	TC	893904	895625	+
CGC10	NP_388703.1	TC	895619	897433	+
CGC11	NP_388834.1	TC	1030265	1031260	+
CGC11	NP 388835.1	-	1031395	1031994	+
CGC11	NP 388836.1	TC	1032063	1033397	-
CGC11	NP 388837.1	-	1033458	1033889	-
CGC11	NP 388838.1	-	1034046	1035227	+
CGC11	NP 388840.1	TC	1035554	1036939	+
CGC11		-	1036953	1037309	-
CGC11	NP 388842.1	TC	1037306	1037701	-
CGC11		-	1037688	1038419	-
CGC11		-	1038653	1038760	+
CGC11	NP 388845.1	TC	1038909	1040024	+
CGC11		-	1040094	1040837	+
CGC11	NP 388847.1	CAZvme	1040861	1041709	-
CGC11	NP 388848.1		1041994	1042842	+
CGC11	NP 388849.1	TC	1042885	1044246	-
CGC11	NP 388850.2	_	1044373	1044873	_
CGC11	NP 388851.1	-	1045037	1045198	+
CGC11	NP 388852.1	TC	1045318	1047075	+
CGC11	NP 388853.1	TC	1047072	1049093	+
CGC12	NP 388882.2	TC	1074646	1075164	-
CGC12	NP 388883.1	_	1075289	1076368	-
CGC12	NP 388884.1	-	1076515	1076952	-
CGC12		TC	1077440	1078183	+
CGC12	NP 388886.1	TC	1078176	1079402	+
CGC12		TC	1079422	1080132	+
CGC12	NP 388888.2	_	1080150	1081340	_
CGC12	NP 388889.1	TC	1081413	1082804	-
CGC12	NP 388890.1	_	1082870	1083184	_
CGC12	NP 388891.1	-	1083229	1083729	-
CGC12	NP 388892.2	CAZvme	1083851	1085995	+
CGC13	NP 389104.1	CAZvme	1292557	1293735	+
CGC13	YP 003097710.1		1293776	1293964	_
CGC13	NP 389105.1	-	1294138	1294950	+
CGC13	NP_389106.1	TC	1294996	1295748	-
CGC13	NP 389107 1	TC	1295748	1296500	-
CGC14	NP_389163.1	TC	1347013	1347276	+
CGC14	NP 389164 1	CAZyme	1347289	1348182	+
CGC14	YP 009513952 1	-	1348219	1348356	_
CGC14	NP_389165_1	-	1348442	1348612	-
CGC14	NP 389166 1	TC	1348612	1349358	-
CGC14	NP 389167.2	TC	1349468	1350469	-
	···• · ·-				

CGC14	NP_389168.1	-	1350482	1351099	-
CGC14	NP_389169.1	тс	1351375	1352691	-
CGC14	NP_389170.1	-	1353080	1354030	+
CGC14	YP_009513953.1	-	1354131	1354277	+
CGC14	NP 389171.2	тс	1354285	1356435	+
CGC14	NP_389172.2	тс	1356447	1357418	+
CGC14		тс	1357936	1359285	-
CGC14		-	1359454	1360272	+
CGC14		тс	1360401	1361225	+
CGC14		тс	1361242	1362168	+
CGC14		тс	1362174	1363136	+
CGC14		тс	1363141	1364148	+
CGC14	NP 389179.2	TC	1364151	1365800	+
CGC15	NP 389402.2	TC	1587926	1588900	+
CGC15	NP 389403.1	-	1588901	1590256	+
CGC15	NP 389404.1	тс	1590317	1591417	+
CGC15	NP 389405.2	CAZvme	1591540	1592631	+
CGC16	NP 389639.2	TC	1887352	1888743	+
CGC16	NP 389640.2	CAZvme	1888774	1890375	+
CGC17	NP 389694.1	TC	1938925	1940322	+
CGC17	NP_389695.2	CAZyme	1940625	1942124	+
CGC17	NP 389696 1	-	1942192	1942455	+
CGC17	NP 389697 1	CAZyme	1942714	1943982	<u>_</u>
CGC17	NP 389698 1	CAZyme	1944113	1945654	_
CGC18	NP 389742 2	TC	2029429	2031114	-
00010					
CGC18	NP 389743.2	-	2031439	2032890	+
CGC18 CGC18	NP_389743.2 NP_389744.1	- CA7vme	2031439 2032927	2032890 2033625	+ -
CGC18 CGC18 CGC18	NP_389743.2 NP_389744.1 NP_389745.1	- CAZyme TC	2031439 2032927 2033895	2032890 2033625 2034572	+ - -
CGC18 CGC18 CGC18 CGC18	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1	- CAZyme TC CAZyme	2031439 2032927 2033895 2034745	2032890 2033625 2034572 2035782	+ - - +
CGC18 CGC18 CGC18 CGC18 CGC19	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802 1	- CAZyme TC CAZyme CAZyme	2031439 2032927 2033895 2034745 2092899	2032890 2033625 2034572 2035782 2093762	+ - - +
CGC18 CGC18 CGC18 CGC18 CGC19 CGC19	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1	- CAZyme TC CAZyme CAZyme TC	2031439 2032927 2033895 2034745 2092899 2094010	2032890 2033625 2034572 2035782 2093762 2095785	+ - + -
CGC18 CGC18 CGC18 CGC18 CGC19 CGC19 CGC20	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1	- CAZyme TC CAZyme CAZyme TC TC	2031439 2032927 2033895 2034745 2092899 2094010 2115425	2032890 2033625 2034572 2035782 2093762 2095785 2116669	+ - + - -
CGC18 CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2	- CAZyme TC CAZyme CAZyme TC TC CAZyme	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268	+ - + - -
CGC18 CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20 CGC20	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389824.2	- CAZyme TC CAZyme CAZyme TC TC CAZyme	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127	+
CGC18 CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20 CGC20 CGC20	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389824.2 NP_389825.3 NP_389826.1	- CAZyme TC CAZyme CAZyme TC TC CAZyme - TC	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504 2119393	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127 2120751	+
CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20 CGC20 CGC20 CGC20 CGC20	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389825.3 NP_389826.1 NP_390025.1	- CAZyme TC CAZyme CAZyme TC TC CAZyme - TC	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504 2119393 2264680	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127 2120751 2264892	+ - + - - - - + +
CGC18 CGC18 CGC18 CGC19 CGC19 CGC19 CGC20 CGC20 CGC20 CGC20 CGC20 CGC21 CGC21	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389824.2 NP_389825.3 NP_389826.1 NP_390025.1 NP_390025.1	- CAZyme TC CAZyme TC TC CAZyme - TC TC TC	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504 2119393 2264680 2264903	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127 2120751 2264892 2265169	+ - + - - - + + + +
CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20 CGC20 CGC20 CGC20 CGC20 CGC21 CGC21 CGC21	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389825.3 NP_389826.1 NP_390025.1 NP_390026.1 NP_390027.1	- CAZyme TC CAZyme TC TC CAZyme - TC TC TC TC	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504 2119393 2264680 2264903 2265225	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127 2120751 2264892 2265169 2265671	+ - - - - - + + + + +
CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20 CGC20 CGC20 CGC20 CGC21 CGC21 CGC21 CGC21	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389824.2 NP_389825.3 NP_389826.1 NP_390025.1 NP_390025.1 NP_390027.1 NP_390027.1	- CAZyme TC CAZyme TC TC CAZyme - TC TC TC TC CAZyme	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504 2119393 2264680 2264903 2265225 2265668	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127 2120751 2264892 2265169 2265671 2266936	+ - - - - - + + + + +
CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20 CGC20 CGC20 CGC20 CGC21 CGC21 CGC21 CGC21 CGC21	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389824.2 NP_389825.3 NP_389826.1 NP_390025.1 NP_390025.1 NP_390027.1 NP_390028.1 NP_390029.1	- CAZyme TC CAZyme TC TC CAZyme - TC TC TC TC CAZyme	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504 2119393 2264680 2264903 2265225 2265668 2266936	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127 2120751 2264892 2265169 2265671 2266936 2267349	+ - - - - - + + + + - -
CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20 CGC20 CGC20 CGC20 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389825.3 NP_389826.1 NP_390025.1 NP_390025.1 NP_390027.1 NP_390028.1 NP_390029.1 NP_390030_1	- CAZyme TC CAZyme TC TC CAZyme - TC TC TC TC CAZyme - CAZyme -	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504 2119393 2264680 2264903 2265225 2265668 2265936 2267346	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127 2120751 2264892 2265169 22655671 2266936 2267349 2269463	+ - - - - - + + + + + - - -
CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20 CGC20 CGC20 CGC20 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389825.3 NP_389826.1 NP_390025.1 NP_390025.1 NP_390027.1 NP_390027.1 NP_390028.1 NP_390029.1 NP_390030.1 NP_390467 1	- CAZyme TC CAZyme TC TC CAZyme - TC TC TC CAZyme - TC CAZyme	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504 2119393 2264680 2264903 2265225 2265668 2265936 2267346 2664573	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127 2120751 2264892 2265169 2265671 2266936 2267349 2269463 2665391	+ - - - - - + + + + - - - - -
CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20 CGC20 CGC20 CGC20 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC22 CGC22	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389825.3 NP_389826.1 NP_390025.1 NP_390025.1 NP_390026.1 NP_390028.1 NP_390029.1 NP_390030.1 NP_390467.1 NP_390468.1	- CAZyme TC CAZyme TC TC CAZyme - TC CAZyme - TC CAZyme TC CAZyme	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504 2119393 2264680 2264903 2265225 2265668 2266936 2267346 2664573 2665436	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127 2120751 2264892 2265169 2265671 2266936 2267349 2269463 2665391 2665858	+ + + +
CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20 CGC20 CGC20 CGC20 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC22 CGC22 CGC22	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389825.3 NP_389826.1 NP_390025.1 NP_390025.1 NP_390025.1 NP_390027.1 NP_390029.1 NP_390029.1 NP_390046.1 NP_390468.1 NP_390560 1	- CAZyme TC CAZyme TC TC CAZyme - TC TC CAZyme - TC CAZyme TC CAZyme TC	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504 2119393 2264680 2264903 2265225 2265668 2266936 2267346 2664573 2665436 2741257	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127 2120751 2264892 2265169 2265671 2266936 2267349 2269463 2665391 2665858 2742112	+ - - - - - + + + - - - - - - - - - -
CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20 CGC20 CGC20 CGC20 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC22 CGC22 CGC22 CGC22 CGC22 CGC22	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389824.2 NP_389826.1 NP_390025.1 NP_390025.1 NP_390026.1 NP_390027.1 NP_390029.1 NP_390030.1 NP_390467.1 NP_390468.1 NP_390560.1 NP_390560.1	- CAZyme TC CAZyme TC TC CAZyme - TC TC TC CAZyme - TC CAZyme TC CAZyme TC	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504 2119393 2264680 2264903 2265225 2265668 2266936 2267346 2664573 2665436 2741357	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127 2120751 2264892 2265169 2265671 2266936 2267349 2269463 2665391 2665858 2742112	+ + + + + +
CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20 CGC20 CGC20 CGC20 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC22 CGC22 CGC22 CGC22 CGC22 CGC23 CGC23	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389825.3 NP_389826.1 NP_390025.1 NP_390025.1 NP_390027.1 NP_390027.1 NP_390027.1 NP_390029.1 NP_390030.1 NP_390467.1 NP_390467.1 NP_390468.1 NP_390560.1 NP_390561.1	CAZyme TC CAZyme CAZyme TC TC CAZyme - TC CAZyme - TC CAZyme TC CAZyme TC	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504 2119393 2264680 2264903 2265225 2265668 2265936 2267346 2664573 2665436 2741357 2742244	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127 2120751 2264892 2265169 2265671 2266936 2267349 2269463 2665391 2665858 2742112 2742774	+
CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20 CGC20 CGC20 CGC20 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC22 CGC22 CGC22 CGC23 CGC23 CGC23 CGC23	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389824.2 NP_389825.3 NP_389826.1 NP_390025.1 NP_390025.1 NP_390026.1 NP_390028.1 NP_390028.1 NP_3900467.1 NP_390467.1 NP_390468.1 NP_390560.1 NP_390560.1 NP_390561.1 NP_390562.2 NP_390562.2	- CAZyme TC CAZyme TC TC CAZyme - TC TC CAZyme - TC CAZyme TC CAZyme TC CAZyme TC	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504 2119393 2264680 2264903 2265225 2265668 2266936 2267346 2664573 2665436 2741357 2742244 2742909	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127 2120751 2264892 2265169 2265671 2266936 2267349 2269463 2665391 2665858 2742112 2742774 2743889	+ - - - - - + + + + - - - - - - - - - +
CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20 CGC20 CGC20 CGC20 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC22 CGC22 CGC22 CGC23 CGC23 CGC23 CGC23 CGC23 CGC23	NP_389743.2 NP_389744.1 NP_389745.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389824.2 NP_389825.3 NP_389826.1 NP_390025.1 NP_390026.1 NP_390027.1 NP_390028.1 NP_390029.1 NP_390029.1 NP_3900467.1 NP_390467.1 NP_390467.1 NP_390467.1 NP_390560.1 NP_390560.1 NP_390561.1 NP_390563.1 NP_390563.1	CAZyme TC CAZyme CAZyme TC TC CAZyme - TC CAZyme - TC CAZyme TC CAZyme TC CAZyme TC	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504 2119393 2264680 2264903 2265225 2265668 2266936 2267346 2664573 2665436 2741357 2742244 2742909 2744163	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127 2120751 2264892 2265169 2265671 2266936 2267349 2269463 2665391 2665858 2742112 2742774 2743889 2745479	+ - - - - - + + + + - - - - - - - - - -
CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20 CGC20 CGC20 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC22 CGC22 CGC23 CGC23 CGC23 CGC23 CGC23	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389825.3 NP_389826.1 NP_390025.1 NP_390025.1 NP_390025.1 NP_390027.1 NP_390029.1 NP_390029.1 NP_390029.1 NP_390467.1 NP_390467.1 NP_390560.1 NP_390560.1 NP_390561.1 NP_390561.1 NP_390561.1 NP_390563.1 NP_390564.1 NP_390564.1	CAZyme TC CAZyme CAZyme TC TC CAZyme - TC CAZyme - TC CAZyme TC CAZyme TC TC TC TC TC TC	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504 2119393 2264680 2264903 2265225 2265668 2266936 2267346 2664573 2665436 2741357 2742244 2742909 2744163 2745594	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127 2120751 2264892 2265169 2265671 2266936 2267349 2269463 2665391 2665858 2742112 2742774 2743889 2745479 2746463	+ + + +
CGC18 CGC18 CGC18 CGC19 CGC19 CGC20 CGC20 CGC20 CGC20 CGC20 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC21 CGC22 CGC22 CGC23 CGC23 CGC23 CGC23 CGC23 CGC23 CGC23	NP_389743.2 NP_389744.1 NP_389745.1 NP_389746.1 NP_389802.1 NP_389803.1 NP_389823.1 NP_389824.2 NP_389825.3 NP_389826.1 NP_390025.1 NP_390025.1 NP_390027.1 NP_390027.1 NP_390027.1 NP_390029.1 NP_390029.1 NP_390467.1 NP_390467.1 NP_390467.1 NP_390560.1 NP_390561.1 NP_390561.1 NP_390561.1 NP_390563.1 NP_390563.1 NP_390565.2 NP_390565.2	CAZyme TC CAZyme CAZyme TC TC CAZyme - TC CAZyme TC CAZyme TC TC TC TC TC TC TC TC	2031439 2032927 2033895 2034745 2092899 2094010 2115425 2117051 2118504 2119393 2264680 2264903 2265225 2265668 2265936 2267346 2664573 2665436 2741357 2742244 2742909 2744163 2745594 2746608	2032890 2033625 2034572 2035782 2093762 2095785 2116669 2118268 2119127 2120751 2264892 2265169 2265671 2266936 2267349 2269463 2665858 2742112 2742774 2743889 2745479 2746463 2747711	+ - - - - - - + + + - - - - - - - - - -

CGC24	NP_390581.1	CAZyme	2758043	2760076	-
CGC24	YP_009513989.1	-	2759985	2760152	-
CGC24	NP_390582.1	тс	2760233	2761060	-
CGC24	NP_390583.1	TC	2761081	2761890	-
CGC24	NP_390584.1	тс	2761907	2762395	-
CGC24		тс	2762395	2762835	-
CGC24	NP 390586.2	TF	2763025	2765832	-
CGC24	YP 009513990.1	-	2766379	2766519	+
CGC24	NP 390587.2	тс	2766558	2767946	+
CGC24		тс	2768042	2768674	-
CGC25	NP 390659.2	тс	2841611	2843065	+
CGC25	NP 390660.1	-	2843106	2843828	-
CGC25	NP 390661.2	-	2843931	2844527	_
CGC25	NP_390662.1	CAZvme	2844675	2845838	-
CGC25	NP_390663.1	-	2845955	2847061	-
CGC25	NP_390664_1	-	2847048	2847917	_
CGC25	NP_390665.1	TC	2847871	2849466	-
CGC26	NP 390749 2	TC	2936382	2938178	_
CGC26	NP 390750 2	CA7vme	2938330	2939832	_
CGC26	NP 390751 2	TC	2930350	2940696	_
CGC26	NP 390752 1	TC	2930697	2940050	_
CGC26	NP 390753 2	тс	2940057	2941030	_
CGC27	NP_300800 2	CA7vme	2091121	2097257	_
CGC27	NP_300800.3	тс	3087360	3082232	-
CGC27	NF_390892.2		2002200	2005225	-
CGC27	NF_390093.1	- TC	2002441	20027206	т
	NP_390694.5	TC	2002000	2007290	-
	NP_390695.1	ТС	2000122	2100024	-
CGC28	NP_390906.1		3099123	3100034	+
CGC28	NP_390907.1		3100031	3100861	+
CGC28	NP_390908.1	CAZyme	3100881	3102179	+
CGC29	NP_390966.1	CAZyme	315/961	3159184	+
CGC29	NP_390967.1	-	3159258	3159689	-
CGC29	NP_390968.1	-	3159691	3160746	-
CGC29	NP_390969.1	CAZyme	3160761	3161894	-
CGC29	NP_390970.1	-	3162084	3163157	+
CGC29	NP_390971.1	TC	3163237	3163704	+
CGC29	NP_390972.1	CAZyme	3163735	3166131	-
CGC29	NP_390973.1	CAZyme	3166118	3167572	-
CGC29	NP_390974.1	-	3167569	3168600	-
CGC29	NP_390975.1	-	3168624	3169766	-
CGC29	NP_390976.1	CAZyme	3169763	3171646	-
CGC29	NP_390977.1	TC	3179306	3179884	+
CGC30	NP_391026.2	TC	3232640	3233818	+
CGC30	NP_391027.2	CAZyme	3233911	3235785	+
CGC31	NP_391281.1	TC	3489910	3491253	-
CGC31	NP_391282.1	CAZyme	3491655	3492689	-
CGC32	NP_391288.1	TC	3497614	3498351	-
CGC32	NP_391289.1	тс	3498352	3499257	-
CGC32	NP_391290.1	TF	3499541	3500350	+
CGC32	NP_391291.1	-	3500386	3501597	+

CGC32	NP_391292.2	CAZyme	3501651	3502940	-
CGC32	NP_391293.1	CAZyme	3503020	3505083	-
CGC32	NP_391294.1	ТС	3505102	3505953	-
CGC32	NP_391295.1	ТС	3505957	3507213	-
CGC32	NP_391296.1	ТС	3507253	3508518	-
CGC32	NP_391297.1	TF	3508659	3509651	-
CGC32	NP_391298.2	TF	3509831	3510490	-
CGC32	NP_391299.1	тс	3510780	3512471	+
CGC33	NP_391305.1	тс	3516880	3517488	-
CGC33	YP 003097789.1	-	3517485	3519002	-
CGC33	NP 391308.1	тс	3518999	3520033	-
CGC33	NP 391309.1	-	3520030	3521106	-
CGC33	NP_391310.1	CAZyme	3521111	3522145	-
CGC33		TC	3522170	3523273	-
CGC33	NP 391312.1	тс	3523270	3524424	-
CGC33	 NP_391313.2	CAZvme	3524417	3525253	-
CGC33	NP 391314.1	, CAZyme	3525250	3526395	-
CGC33	NP 391315.1	TC	3526407	3528203	_
CGC33	NP_391316.1	TC	3528462	3529145	-
CGC33	NP_391317.1	TC	3529151	3529855	-
CGC34	NP 391325 1	CAZyme	3536012	3537433	+
CGC34	NP 391326 1	CAZyme	3537507	3539057	+
CGC34	NP 391327 1	TC	3539165	3540727	+
CGC34	NP 391328.2	TE	3540717	3541406	+
CGC34	NP 391329 1	тс	3541488	3541823	+
CGC34	NP 391330 1	тс	3541823	3542143	+
CGC35	NP 391336 1	тс	3547550	3549235	-
CGC35	NP 391337 1	CA7vme	35/19228	3551501	_
CGC35	NP 301338 1	-	3551/79	3557363	_
CGC35	NI _331330.1	тс	3557260	3552305	_
CGC35	NF_391339.1	тс	3552309	2554512	_
CGC35	NI _331340.1	тс	2554552	3555806	_
CGC25	NF_391341.1 ND 2012/2 1	CA7umo	2555002	2557671	-
	NF_391342.1	тс	2619651	26/0720	-
CGC36	NF_391433.1	CA7umo	2640034	2651069	-
	NP_591454.1	CAZyme	2651007	2021000	-
	NP_591455.1	CAZyme	2021037	2021022	-
	NP_391439.1	садуше	3033380	3050755	-
	NP_391440.1		3050/52	3058203	-
CGC38	NP_391451.1		36/3564	36/514/	-
CGC38	NP_391452.1		36/516/	3675994	-
CGC38	NP_391453.1	CAZyme	3676159	3678399	-
CGC38	NP_391454.1	CAZyme	3678399	3680420	-
CGC38	NP_391455.1	-	3680581	3680970	-
CGC38	NP_391456.1	CAZyme	3681370	3682140	+
CGC38	NP_391457.1	-	3682173	3683318	+
CGC38	NP_391458.1	-	3683438	3684766	+
CGC38	NP_391459.1	TC	3684826	3687468	-
CGC38	NP_391460.1	-	3687597	3688547	-
CGC38	NP_391461.2	ТС	3688812	3690263	+
CGC38	NP_391462.2	TC	3690269	3691375	+

CGC38	NP_391463.1	-	3691372	3692496	+
CGC38	NP_391464.2	TC	3692533	3693906	-
CGC39	NP_391526.1	TC	3749487	3750677	+
CGC39	NP_391527.1	CAZyme	3750768	3752174	-
CGC39	NP_391528.1	TC	3752280	3753752	-
CGC39	NP_391529.1	ТС	3753933	3755291	-
CGC40	NP_391631.2	CAZyme	3849818	3851893	+
CGC40	NP 391632.1	-	3852186	3852704	-
CGC40	NP 391633.1	ТС	3852718	3853377	-
CGC41	NP 391670.1	CAZyme	3892351	3893121	-
CGC41		-	3893441	3893986	+
CGC41		-	3894030	3894401	-
CGC41		ТС	3894463	3895785	-
CGC42		CAZyme	3902210	3903649	-
CGC42		ŤF	3903646	3905031	-
CGC42		тс	3905333	3906103	+
CGC43		тс	3938307	3939641	-
CGC43	NP 391719.1	TC	3939869	3941806	+
CGC43	NP 391720.1	TF	3942234	3943613	+
CGC43	NP 391721.1	TF	3943667	3944509	+
CGC43	NP_391722.1	CA7vme	3944560	3945420	-
CGC44	NP 391735.1	CAZyme	3958516	3959844	-
CGC44	NP_391736.1	TC	3959841	3960173	-
CGC44	NP 391737.1	TC	3960192	3961550	-
CGC44	NP_391738.1	TC	3961566	3961874	-
CGC45	NP 391750 1	TC	3971060	3972433	+
CGC45	NP_391751.1	-	3972448	3973278	-
CGC45	NP 391752 1	тс	3973364	3975091	-
CGC45	NP 391753.1	TC	3975088	3976791	-
CGC45	NP 391754 1	TC	3976791	3977807	-
CGC45	NP_391755.1	TC	3977791	3979197	-
CGC45	NP_391756.1	TC	3979753	3981105	+
CGC45	NP_391757.1	-	3981227	3982915	+
CGC45	NP 391758 1	-	3982973	3983173	+
CGC45	NP 391759 1	CA7vme	3983187	3984026	-
CGC45	NP 391760 1	TC	3984133	3985230	-
CGC45	NP 391761 1	-	3985351	3986244	-
CGC45	NP 391762 1	-	3986428	3987885	+
CGC45	NP 391763 1	тс	3987927	3988763	_
CGC46	NP_391785.2	TC	4010404	4011684	+
CGC46	NP 391786 1	CAZyme	4011842	4012570	_
CGC46	NP 391787 2	TF	4012866	4013699	-
CGC46	NP 391788 1	-	4013795	4014475	-
	NP 391789.1	тс	4014682	4015968	+
	NP 391790.2	тс	4015987	4017426	· ·
	NP 301701 2	CA7vme	4013507	4018656	_
	NP 391802 2	CA7vme	4022544	4030548	-
CGC47	NP 201202.2	-	40200 44 4020710	4031645	_
CGC47	NP 20120/ 1	_	4030710	4032043	-
	ND 201205 2	тс	4037797	4032245	-
	INF_33T003'S	i C	4032340	4033733	-

Database

DB=gnl|TC-DB|P34942|3.D.1.6.1;ID=NP_387896.1 DB=GH18|CBM50;ID=NP_387897.1 DB=gnl|TC-DB|A0L4L0|3.A.1.132.3;ID=NP_388035.1

DB=CE4;ID=NP_388038.1 DB=gnl|TC-DB|Q1J2S8|2.A.53.3.13;ID=NP_388039.1 DB=gnl|TC-DB|C6CWW0|2.A.28.2.5;ID=NP_388040.2

DB=gnl|TC-DB|P40411|3.A.1.14.15;ID=NP_388042.2 DB=gnl|TC-DB|P40410|3.A.1.14.15;ID=NP_388043.1 DB=gnl|TC-DB|P40409|3.A.1.14.15;ID=NP_388044.1 DB=sp|P0A9E0|ARAC_ECOLI|AraC|AraC/XylS;ID=NP_388045.1

DB=GH3;ID=NP_388047.1 DB=gnl|TC-DB|B5UIP4|2.A.109.1.3;ID=NP_388174.1

DB=gnl|TC-DB|O34691|2.A.1.82.4;ID=NP_388177.1 DB=gnl|TC-DB|P33449|2.A.1.2.70;ID=NP_388178.1

DB=gnl|TC-DB|P46920|3.A.1.12.2;ID=NP_388180.2 DB=gnl|TC-DB|P46921|3.A.1.12.2;ID=NP_388181.1 DB=gnl|TC-DB|P46922|3.A.1.12.2;ID=NP_388182.1

DB=gnl|TC-DB|C9NXL0|2.A.118.1.4;ID=NP_388184.2

DB=CBM26|CBM25|GH13_28|CBM20;ID=NP_388186.2

DB=gnl|TC-DB|P33231|2.A.14.1.1;ID=NP_388188.2 DB=gnl|TC-DB|P96712|2.A.1.3.50;ID=NP_388189.2 DB=gnl|TC-DB|Q07711|3.A.7.7.1;ID=NP_388307.1 DB=GH126;ID=NP_388308.1

DB=gnl|TC-DB|Q54066|4.D.1.1.2;ID=NP_388311.1

DB=gnl|TC-DB|H1X8H0|2.A.3.14.3;ID=NP_388313.1 DB=gnl|TC-DB|P39115|3.A.1.121.3;ID=NP_388442.1 DB=gnl|TC-DB|P96704|2.A.3.1.16;ID=NP_388443.1

DB=gnl|TC-DB|A9VJD5|9.B.74.3.1;ID=NP_388446.1

DB=gnl|TC-DB|P28246|2.A.1.2.7;ID=NP_388449.1

DB=GH18|CBM50;ID=NP_388452.2

DB=GT1;ID=NP_388453.2 DB=gnl|TC-DB|G4PA66|9.B.28.1.5;ID=NP_388575.1 DB=gnl|TC-DB|Q81JL2|9.B.33.1.1;ID=NP_388576.1 DB=tr|Q74D24|Q74D24_GEOSL|PilR|NtrC/DctD;ID=NP_388577.1

DB=gnl|TC-DB|Q93KC0|3.A.1.1.11;ID=NP_388579.1 DB=gnl|TC-DB|Q93KB9|3.A.1.1.11;ID=NP_388580.1 DB=GH105;ID=NP_388581.1

DB=CE12;ID=NP_388583.1

DB=gnl|TC-DB|G4PA66|9.B.28.1.5;ID=NP_388585.1 DB=PL11_1|CE12|PL11|CBM2|CBM35;ID=NP_388586.1 DB=PL11_1|CE12|PL11|CBM2|CBM35;ID=NP_388587.1 DB=CE12;ID=NP_388588.1 DB=GH42;ID=NP_388589.1 DB=gnl|TC-DB|C9RT46|3.A.1.1.9;ID=NP_388591.1 DB=gnl|TC-DB|A9QDR7|3.A.1.1.29;ID=NP_388592.1 DB=gnl|TC-DB|A9QDR8|3.A.1.1.29;ID=NP_388593.1 DB=GH4;ID=NP_388594.1 DB=GT0;ID=NP_388610.1 DB=GT2|GT2_Glycos_transf_2;ID=NP_388611.1 DB=GT0;ID=NP_388612.1 DB=gnl|TC-DB|P52067|2.A.1.35.1;ID=NP_388613.1

DB=gnl|TC-DB|Q8R706|2.A.3.3.22;ID=NP_388615.1

DB=gnl|TC-DB|P43672|3.A.1.120.6;ID=NP_388618.1

DB=tr|A0A0F6AXY2|A0A0F6AXY2_SALT1|CueR|MerR;ID=NP_388620.1 DB=gnl|TC-DB|O06473|2.A.1.32.3;ID=NP_388621.1

DB=gnl|TC-DB|Q83XH1|3.A.1.121.4;ID=NP_388623.2 DB=gnl|TC-DB|P38919|3.A.18.1.1;ID=NP_388624.1 DB=gnl|TC-DB|Q9X665|3.A.1.14.7;ID=NP_388630.1 DB=gnl|TC-DB|Q8GRB1|3.A.1.14.8;ID=NP_388631.1 DB=gnl|TC-DB|Q8GRB2|3.A.1.14.8;ID=NP_388632.1 DB=gnl|TC-DB|P15028|3.A.1.14.1;ID=NP_388633.1

DB=PL1_6|PL1;ID=NP_388637.1 DB=gnl|TC-DB|Q41364|2.A.47.3.1;ID=NP_388638.1 DB=gnl|TC-DB|R5HFF1|9.B.126.2.7;ID=NP_388671.1 DB=gnl|TC-DB|O34929|2.A.1.26.2;ID=NP_388672.1 DB=gnl|TC-DB|O34840|2.A.19.2.7;ID=NP_388673.1

DB=gnl|TC-DB|O34897|1.A.23.3.1;ID=NP_388675.1

DB=CE4;ID=NP_388679.1

DB=gnl|TC-DB|O31543|1.A.35.3.3;ID=NP_388681.1 DB=GH4;ID=NP_388699.1

DB=gnl|TC-DB|P54715|4.A.1.1.8;ID=NP_388701.1 DB=gnl|TC-DB|Q9WYC3|3.A.1.135.5;ID=NP_388702.1 DB=gnl|TC-DB|Q9WYC4|3.A.1.135.5;ID=NP_388703.1 DB=gnl|TC-DB|P80874|8.A.5.1.4;ID=NP_388834.1

DB=gnl|TC-DB|P54428|9.A.40.2.1;ID=NP_388836.1

DB=gnl|TC-DB|P54428|9.A.40.2.1;ID=NP_388840.1

DB=gnl|TC-DB|007591|1.A.43.1.2;ID=NP_388842.1

DB=gnl|TC-DB|Q57634|1.A.23.4.2;ID=NP_388845.1

DB=CE4;ID=NP_388847.1

DB=gnl|TC-DB|007553|2.A.35.1.6;ID=NP_388849.1

DB=gnl|TC-DB|O07550|3.A.1.106.8;ID=NP_388852.1 DB=gnl|TC-DB|O07549|3.A.1.106.8;ID=NP_388853.1 DB=gnl|TC-DB|O07515|2.A.88.4.1;ID=NP_388882.2

DB=gnl|TC-DB|P55339|3.A.1.143.1;ID=NP_388885.1 DB=gnl|TC-DB|P55340|3.A.1.143.1;ID=NP_388886.1 DB=gnl|TC-DB|P55341|3.A.1.143.1;ID=NP_388887.1

DB=gnl|TC-DB|Q819S9|2.A.45.3.1;ID=NP_388889.1

DB=GT51;ID=NP_388892.2 DB=GT1;ID=NP_389104.1

DB=gnl|TC-DB|P77307|3.A.1.139.2;ID=NP_389106.1 DB=gnl|TC-DB|Q5Z8H2|3.A.1.139.1;ID=NP_389107.1 DB=gnl|TC-DB|Q99163|1.E.31.1.6;ID=NP_389163.1 DB=CBM50;ID=NP_389164.1

DB=gnl|TC-DB|O34853|9.A.10.1.1;ID=NP_389166.1 DB=gnl|TC-DB|D9RF44|2.A.20.1.7;ID=NP_389167.2
DB=gnl|TC-DB|O34739|2.A.3.8.12;ID=NP_389169.1

DB=gnl|TC-DB|K6W5C2|9.B.142.2.5;ID=NP_389171.2 DB=gnl|TC-DB|Q55487|4.D.2.1.9;ID=NP_389172.2 DB=gnl|TC-DB|B2GH49|9.B.160.1.10;ID=NP_389173.2

DB=gnl|TC-DB|P26902|3.A.1.5.2;ID=NP_389175.2 DB=gnl|TC-DB|P26903|3.A.1.5.2;ID=NP_389176.1 DB=gnl|TC-DB|P26904|3.A.1.5.2;ID=NP_389177.1 DB=gnl|TC-DB|P26905|3.A.1.5.2;ID=NP_389178.1 DB=gnl|TC-DB|P26906|3.A.1.5.2;ID=NP_389179.2 DB=gnl|TC-DB|P0A6W3|9.B.146.1.6;ID=NP_389402.2

DB=gnl|TC-DB|P07373|2.A.103.1.3;ID=NP_389404.1 DB=GT28;ID=NP_389405.2 DB=gnl|TC-DB|P94488|2.A.2.3.2;ID=NP_389639.2 DB=GH43_11|GH43;ID=NP_389640.2 DB=gnl|TC-DB|Q45068|2.A.25.1.5;ID=NP_389694.1 DB=CBM81|GH5|CBM2|CBM3|CBM5|CBM6|GH5_2;ID=NP_389695.2

DB=GH30|CBM35|CBM6|GH30_8;ID=NP_389697.1 DB=CBM6|CBM13|CBM22|CBM36|GH43_16|GH43;ID=NP_389698.1 DB=gnl|TC-DB|M3JA40|1.B.52.2.1;ID=NP_389742.2

DB=CBM63|GH5;ID=NP_389744.1 DB=gnl|TC-DB|O34343|9.B.143.4.1;ID=NP_389745.1 DB=PL1_8|PL1;ID=NP_389746.1 DB=CBM50;ID=NP_389802.1 DB=gnl|TC-DB|Q5EAK4|2.A.16.2.2;ID=NP_389803.1 DB=gnl|TC-DB|E9RJ18|3.A.7.13.2;ID=NP_389823.1 DB=GT1;ID=NP_389824.2

DB=gnl|TC-DB|Q8DPQ6|2.A.66.1.41;ID=NP_389826.1 DB=gnl|TC-DB|D5MY22|1.E.27.1.2;ID=NP_390025.1 DB=gnl|TC-DB|Q99163|1.E.31.1.6;ID=NP_390026.1

DB=GT2|GT2_Glycos_transf_2;ID=NP_390028.1

DB=gnl|TC-DB|P68579|3.A.1.112.4;ID=NP_390030.1 DB=CBM50;ID=NP_390467.1 DB=gnl|TC-DB|H2ABT5|1.E.19.2.3;ID=NP_390468.1 DB=gnl|TC-DB|005703|3.A.1.15.3;ID=NP_390560.1

DB=gnl|TC-DB|P77735|8.A.5.1.6;ID=NP_390562.2 DB=gnl|TC-DB|O05407|2.A.11.1.5;ID=NP_390563.1 DB=G4NVN1|CcpC;ID=NP_390564.1

DB=GH46;ID=NP_390566.1

DB=CBM38|GH32|CBM66;ID=NP_390581.1

DB=gnl|TC-DB|P26382|4.A.6.1.2;ID=NP_390582.1 DB=gnl|TC-DB|P26381|4.A.6.1.2;ID=NP_390583.1 DB=gnl|TC-DB|P26380|4.A.6.1.2;ID=NP_390584.1 DB=gnl|TC-DB|P26379|4.A.6.1.2;ID=NP_390585.1 DB=P23914|LevR;ID=NP_390586.2

DB=gnl|TC-DB|P96704|2.A.3.1.16;ID=NP_390587.2 DB=gnl|TC-DB|G4NXW2|2.A.76.1.8;ID=NP_390588.1 DB=gnl|TC-DB|P30145|2.A.25.1.2;ID=NP_390659.2

DB=CBM50;ID=NP_390662.1

DB=gnl|TC-DB|F9VN10|3.D.10.1.4;ID=NP_390665.1 DB=gnl|TC-DB|Q0P9Y2|2.A.114.1.5;ID=NP_390749.2 DB=GH51;ID=NP_390750.2 DB=gnl|TC-DB|P94530|3.A.1.1.34;ID=NP_390751.2 DB=gnl|TC-DB|P94529|3.A.1.1.34;ID=NP_390752.1 DB=gnl|TC-DB|P94528|3.A.1.1.34;ID=NP_390753.2 DB=GH105;ID=NP_390890.3 DB=gnl|TC-DB|Q9KWT8|3.A.1.1.10;ID=NP_390892.2

DB=gnl|TC-DB|C9RT46|3.A.1.1.9;ID=NP_390894.3 DB=gnl|TC-DB|A9QDR8|3.A.1.1.29;ID=NP_390895.1 DB=gnl|TC-DB|O51924|3.A.1.1.7;ID=NP_390906.1 DB=gnl|TC-DB|Q8RJU8|3.A.1.1.18;ID=NP_390907.1 DB=GH4;ID=NP_390908.1 DB=GT4;ID=NP_390966.1

DB=GT4;ID=NP_390969.1

DB=gnl|TC-DB|Q735G9|9.A.24.1.13;ID=NP_390971.1 DB=GT35;ID=NP_390972.1 DB=GT5;ID=NP_390973.1

DB=GH13_9|CBM48|GH13;ID=NP_390976.1 DB=gnl|TC-DB|O32074|2.A.88.3.1;ID=NP_390977.1 DB=gnl|TC-DB|P0A4K4|2.A.1.2.34;ID=NP_391026.2 DB=GT51;ID=NP_391027.2 DB=gnl|TC-DB|P46349|2.A.3.1.5;ID=NP_391281.1 DB=GH18;ID=NP_391282.1 DB=gnl|TC-DB|Q8DNC0|3.A.1.142.1;ID=NP_391288.1 DB=gnl|TC-DB|Q8DNB9|3.A.1.142.1;ID=NP_391289.1 DB=007015|SigB;ID=NP_391290.1 DB=GH53|CBM61;ID=NP_391292.2 DB=GH42;ID=NP_391293.1 DB=gnl|TC-DB|O07011|3.A.1.1.2;ID=NP_391294.1 DB=gnl|TC-DB|O32261|3.A.1.1.2;ID=NP_391295.1 DB=gnl|TC-DB|O07009|3.A.1.1.2;ID=NP_391296.1 DB=5993|ECK120004834|Gal5;ID=NP_391297.1 DB=sp|P9WMG5|MCE2R_MYCTU|Mce2R|GntR;ID=NP_391298.2 DB=gnl|TC-DB|P71067|2.A.14.1.3;ID=NP_391299.1 DB=gnl|TC-DB|H8E4X1|9.B.18.1.2;ID=NP_391305.1

DB=gnl|TC-DB|P75905|4.D.1.1.3;ID=NP_391308.1

DB=GT2|GT2 Glycos transf 2;ID=NP 391310.1 DB=gnl|TC-DB|P71056|9.B.183.1.9;ID=NP 391311.1 DB=gnl|TC-DB|P73948|2.A.38.4.5;ID=NP 391312.1 DB=GT2|GT2 Glycos transf 2;ID=NP 391313.2 DB=GT4;ID=NP_391314.1 DB=gnl|TC-DB|Q6MMD5|9.B.18.2.1;ID=NP 391315.1 DB=gnl|TC-DB|P39851|8.A.3.2.1;ID=NP 391316.1 DB=gnl|TC-DB|P39850|8.A.3.2.1;ID=NP_391317.1 DB=GH68;ID=NP 391325.1 DB=GH32;ID=NP 391326.1 DB=gnl|TC-DB|O07002|2.A.3.11.1;ID=NP_391327.1 DB=G4NYS7|YsiA;ID=NP_391328.2 DB=gnl|TC-DB|P49856|2.A.7.1.5;ID=NP 391329.1 DB=gnl|TC-DB|D5CES3|2.A.7.1.10;ID=NP 391330.1 DB=gnl|TC-DB|Q07837|8.A.9.1.2;ID=NP 391336.1 DB=GH65;ID=NP 391337.1

DB=gnl|TC-DB|O06991|3.A.1.1.26;ID=NP_391339.1 DB=gnl|TC-DB|O06990|3.A.1.1.26;ID=NP_391340.1 DB=gnl|TC-DB|O06989|3.A.1.1.26;ID=NP_391341.1 DB=CBM20|CBM34|GH13_20|GH13;ID=NP_391342.1 DB=gnl|TC-DB|R6S968|9.B.146.1.4;ID=NP_391433.1 DB=GT4;ID=NP_391434.1 DB=GT2|GT2_Glycos_transf_2;ID=NP_391435.1 DB=gT4;ID=NP_391439.1 DB=gnl|TC-DB|O32273|2.A.66.2.6;ID=NP_391440.1 DB=gnl|TC-DB|P42954|3.A.1.104.1;ID=NP_391451.1 DB=gnl|TC-DB|P42953|3.A.1.104.1;ID=NP_391452.1 DB=GT2|GT4;ID=NP_391453.1 DB=GT4;ID=NP_391454.1

DB=GT26;ID=NP_391456.1

DB=gnl |TC-DB | Q9AIS0 | 1.C.105.2.6; ID=NP_391459.1

DB=gnl|TC-DB|P39569|9.A.11.1.2;ID=NP_391461.2 DB=gnl|TC-DB|P39570|2.A.3.9.2;ID=NP_391462.2 DB=gnl|TC-DB|P46333|2.A.1.1.106;ID=NP_391464.2 DB=gnl|TC-DB|C2UR80|2.A.1.46.5;ID=NP_391526.1 DB=PL9|PL9_2;ID=NP_391527.1 DB=gnl|TC-DB|P94575|2.A.39.3.4;ID=NP_391528.1 DB=gnl|TC-DB|P94574|2.A.1.3.57;ID=NP_391529.1 DB=GT51;ID=NP_391631.2

DB=gnl|TC-DB|Q6MLN2|9.B.149.1.11;ID=NP_391633.1 DB=GT2|GT2_Glycos_transf_2;ID=NP_391670.1

DB=gnl|TC-DB|P77328|2.A.40.5.1;ID=NP_391673.2 DB=GH32;ID=NP_391683.2 DB=P15400|SacY;ID=NP_391684.3 DB=gnl|TC-DB|P39608|1.A.16.3.2;ID=NP_391685.1 DB=gnl|TC-DB|P46317|4.A.3.2.2;ID=NP_391718.1 DB=gnl|TC-DB|P09489|1.B.12.5.1;ID=NP_391719.1 DB=P15400|SacY;ID=NP_391720.1 DB=P26212|SacT;ID=NP_391720.1 DB=GT8;ID=NP_391722.1 DB=GH4;ID=NP_391735.1 DB=gnl|TC-DB|P46319|4.A.3.2.2;ID=NP_391736.1 DB=gnl|TC-DB|P46317|4.A.3.2.2;ID=NP_391737.1 DB=gnl|TC-DB|P46318|4.A.3.2.2;ID=NP_391738.1 DB=gnl|TC-DB|P46318|4.A.3.2.2;ID=NP_391736.1

DB=gnl|TC-DB|Q2G2M9|3.A.1.106.2;ID=NP_391752.1 DB=gnl|TC-DB|P29018|3.A.1.129.1;ID=NP_391753.1 DB=gnl|TC-DB|P0ABK2|3.D.4.3.2;ID=NP_391754.1 DB=gnl|TC-DB|P0ABJ9|3.D.4.3.2;ID=NP_391755.1 DB=gnl|TC-DB|P94363|2.A.24.2.4;ID=NP_391756.1

DB=CE4;ID=NP_391759.1 DB=gnl|TC-DB|P94360|3.A.1.1.26;ID=NP_391760.1

DB=gnl|TC-DB|P94357|2.A.115.1.2;ID=NP_391763.1 DB=gnl|TC-DB|P42308|2.A.11.1.2;ID=NP_391785.2 DB=GH16|GH16_21;ID=NP_391786.1 DB=P39805|LicT;ID=NP_391787.2

DB=gnl|TC-DB|Q1CWQ3|2.A.1.24.4;ID=NP_391789.1 DB=gnl|TC-DB|P38919|3.A.18.1.1;ID=NP_391790.2 DB=CE12;ID=NP_391791.2 DB=CBM16;ID=NP_391802.2

DB=gnl|TC-DB|Q86Z14|8.A.49.1.2;ID=NP_391805.2