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Abstract: The Spanish Antarctic Station Juan Carlos I has been registering surface air temper-
atures with the frequency of one reading per ten minutes since the austral summer 1987-88.
Although this data set contains valuable information about the climate patterns in and around
Antarctica, it has not been utilized in any existing climate studies thus far because of the concern
of its substantial missing data caused by the difficulty in collecting data in the extreme winter
weather conditions there. Such data sets do not fit the standard setting covered by the existing
times series techniques. However, by treating the temperature readings for each summer as a
function, the temperature data can be viewed as a time series of functional data. We introduce
new notions of increasing trends for general time series of functional data based on the so-called
record functions, and also develop useful nonparametric tests for such trends. Following our anal-
ysis, the data collected from Juan Carlos I Station exhibit an increasing trend in the Antarctic
temperature.
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1. INTRODUCTION

In recent years, there has been an intense focus on studies of climate change, for
scientific and other purposes. Many climate studies of Antarctica have been hin-
dered by poor quality data and yielded incomplete or inconclusive findings. But,
overall, the Antarctic Peninsula is believed to be an area of recent rapid regional
warming, with far more significant changes than those associated with global
warming. For example, Vaughan et al. (2003) reports that surface air tempera-
tures show warning trends reaching as high as 0.57oC per decade for the region
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around Faraday/Vernadsky Research Base (see the map provided in Section 2).
Similarly, Steig et al. (2009) reports a significant warming that exceeds 0.1oC
per decade over the past 50 years in most of West Antarctica.

Many of the meteorological data sets used in the existing climate studies of
Antarctica are from different sources and with varying durations. Some data sets
span more than 50 years and, obviously, contain rich information. But all data
sets appear to suffer varying degrees of data quality issues. Most common is the
issue of substantial missing data due to the unavoidable instrument malfunctions.
More specifically, meteorological data in Antarctica are generally collected only
when the weather stations are inhabited by researchers, usually in summer. Even
though many automatic weather stations (AWSs) have been installed in recent
decades to register measurements continuously, winter registers are often miss-
ing due to malfunctioned sensors caused by the adverse Antarctic climate. Since
malfunctioned sensors are repaired only when the station is re-inhibited in sum-
mer, large amount of missing data often incur in the data sets collected from
AWSs. Such temporal discontinuities due to instrument malfunctions can often
cause observations to be sparse or with uneven lengths within the duration of
the study. Different studies have considered different data quality control criteria
which sometimes exclude substantial data from the studies. For instance, out of
42 stations studied by Steig et al. (2009), Comiso (2000) used only the data from
21 stations, and Turner et al. (2005) further discarded the data from 2 stations.
More often than not, data collected with much human and economic effort would
not be fully utilized.

So far, almost all climate studies on Antarctica are based on long time series
data of surface air temperatures from stations which operate all year-round. In
fact, some of these studies adopt specific data quality control criteria so that the
selected data can be used to form long time series data and apply the existing
times series approaches for annual or monthly means. However, this approach,
as pointed out by Trenberth (1984) or Santer et al. (2000), often yields signif-
icant bias in annual and monthly means because of the sparse observations or
missing data in patches, and thus makes the means unsuitable for direct compar-
isons among different years. Moreover, such sparse observations or missing data
in patches no longer allow the data set be considered as series of observations
equally spaced in time. These type of data sets are not suitable for analysis using
the usual time series methods such as exponential smoothing, moving averages
or ARIMA modeling.

In this paper, by adapting a framework of functional data (or high resolution
data) analysis, we can overcome the issue of unequally spaced data and hence
utilize almost all of the observed data. Specifically, we assume that there is a
continuous underlying temperature curve for each summer, although this curve
is observed only at finite discrete time points due to the constraint of instrument
capability. To be precise, the underlying temperature curves can be expressed as
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a sequence of real functions {xt(s) : s ∈ [a, b]}Tt=1, where xt(s) represents the
temperature at time s in the time interval [a, b] in the summer of the t-th year
and t runs from 1 to T . In this set-up, the surface air temperatures from stations
that operate only in summer can be considered as a time series of functional
data, with one sample function observed each summer. Our goal is to define as
well as detect possible trends, either up- or down-ward, in such a time series of
functional data. These new ideas will be illustrated in Section 4 using the data
set obtained from the Spanish Antarctic Station Juan Carlos I (JCI).

While the research in functional data analysis has grown extensively in recent
years, (see Ramsay and Silverman, 2002; Ferraty and Vieu, 2006), its develop-
ment in the setting of time series remains relatively scarce. For example, the
functional autoregressive model of order 1 was introduced in Bosq (1991) and
then studied by several papers (see Bosq, 2000; Kargin and Onatski, 2008). How-
ever, these studies are mostly for the purpose of forecasting future values from
past ones in the context of stationary processes. To the best of our knowledge,
no definitions of trends for times series of functional data have been developed
in the literature. In this paper, we introduce the notion of record function (curve)
and we use it to develop new concepts of trend for series of functional data.
Moreover, we also propose new nonparametric tests for such trends. The pro-
posed new notions of trends and the nonparametric tests are shown to be useful
for carrying out the trend analysis for the data set from the Spanish Antarctic
Station Juan Carlos I (JCI) in this paper, but they are also important theoretical
advances in functional time series in their own rights.

The paper is organized as follows. In Section 2, we describe in detail the
data set obtained from the Spanish Antarctic Station Juan Carlos I (JCI). In
Section 3, we present our approach for the analysis of series of functional data,
including the definitions of the new concepts of record curves and trends, and the
proposal of the new “record based” tests for trends. These tests are then applied
in Section 4 to analyzing the Antarctic temperature data collected from JCI. The
test results conclude with an increasing trend in Antarctic temperature over the
years. Finally, we provide some concluding remarks in Section 5.

2. DATA DESCRIPTION

Spanish Antarctic
Station Juan Carlos I

Vernadsky
Research Base

The Spanish Antarctic Station JCI is located on the South
West coast of Hurd Peninsula, Livingston Island (62oS,
60oW). It has been collecting surface air temperature since
February 1988.
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FIGURE 1: (a) Available hourly temperatures registered at JCI Station since 1988 to 2007. (b) Hourly temperatures at
JCI Station for summer seasons only. (c): Boxplots and median trend for the last ten years.

The surface air temperatures are instantaneous values measured at 1.70 m
above the ground with an automatic weather station at 10 minutes time intervals
(Bañon et al., 2013). Since it is infrequent to have abrupt changes within the near-
by 10-minute interval readings, we consider in this paper the hourly data which
are the averages of all of the available 10 minute registers within each given hour
from 1988 to 2007. These hourly data are plotted in Figure 1 (a), which clearly
shows uneven lengths of available meteorological registers in different years,
with sizable missing data in many years. Figure 1 (a) further shows that the me-
teorological registers succeeded in running all year long in only a few years, and
that the data which are available across all 20 years are mostly during the summer
seasons (i.e., during the time period December 1 to February 28). However, the
plot of only the summer registers in Figure 1 (b) still shows considerable miss-
ing data, particularly at the beginning and the end of some summers which are
generally the coldest days of the summer. Therefore, we further remove the first
26 and the last 18 days from consideration, which still leaves sufficient number
of days in a continuous stretch in each summer. A quick visual examination by
connecting the medians from the boxplots of such data sets for the last ten years
(Figure 1 (c)) shows no indication of a positive or negative trend. Clearly, a more
refined or powerful approach for detecting trends would be useful.

Focusing on the summer registers only, the hourly data of the t-th year
can be represented by a vector of N points through the summer, such as
{Xt(s1), . . . , Xt(sN)}, or more generally, as {Xt(si) : i = 1, ..., N}Tt=1 where
si is the i-th time point (hour), i = 1, ..., N , and t is for the year t. For JCI
data, the final data set for our analysis consists of T = 17 discretized curves in
chronological order (from 1987/88 to 2006/07 except the years 1987/88, 1992/93

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



2014 5

and 1996/97 which have more than two thirds of missing data, namely 93.47%,
94.87% and 69.70% respectively), and each is observed on a gird of N = 1, 103
time points which are the hourly registers from December 27 0:00 to February
10 23:00.

3. TREND ANALYSIS OF TIME SERIES OF FUNCTIONAL DATA

In this section, we describe trends in a series of functional data based on “record
functions” defined below in Section 3.1. Since our primary interest is one of
determining whether there is an increasing trend in the series of Antarctic tem-
peratures, we illustrate our approach for increasing trends throughout the paper.
In this case, the “record functions” correspond to “maximum functions”. The
theoretical extensions for testing a decreasing trend or the two sided alternative
should follow easily. For instance, the approach for decreasing trends can be
modified in a straightforward manner by replacing the maximum functions with
“minimum functions”.

3.1. Definitions of increasing trends for functional data based on record functions

Let {xt(s) : s ∈ [a, b]}Tt=1 be a sequence of T real functions (curves) defined on
the same compact interval [a, b]. In the JCI data setting, xt(s) represents the con-
tinuous temperature reading of the entire summer time interval [a, b] of year t. For
simplicity, [a, b] is assumed to be [0, 1]. One obvious increasing trend is to require
that {xt(s)}Tt=1 satisfy x1(s) ≤ x2(s) ≤ . . . ≤ xT (s) at every point s ∈ [0, 1].
But the requirement of such a monotonicity at every point s on the entire time
interval is clearly overly restrictive for defining trends, we resolve to pursuing in-
creasing trends by examining the proportion of time that each curve matches with
the previous maxima or attains new maxima. More specifically, we formulate
notions of positive trend for functional data {xt(s)}Tt=1 by tracking sequentially
in t the proportion of time s, during the observed time interval [0, 1], that each
curve xt(s) has attained the maxima accumulated up to year t, namely among
{x1(s), . . . , xt(s)}. The rationale is that if each of the later curves in the sequence
matches often the records set by all previous curves or continues to create new
records, there is evidence to indicate a gradual increment or an increasing trend
through the sequence. We state those definitions precisely using the following ex-
pressions. For each t ∈ {1, . . . , T}, we denote by rt(·) the maximum function up
to t-th curve, where rt : C[0, 1]t → C[0, 1] and rt(s) ≡ max{x1(s), . . . , xt(s)}
for s ∈ [0, 1]. This maximum function up to t-th curve will be referred to as
the record function up to year t. Then the proportion of the time that the curve
xt(·) attains (or overlaps with, or spends at) the maximum function up to the t-th
curve (namely rt(·)) iswt ≡

∫ 1

0
I{xt(s)=rt(s)}ds, where IA stands for the indicator

function of set A. Similarly, we define the minimum function up to t-th curve as
rt(s) ≡ min{x1(s), . . . , xt(s)} for s ∈ [0, 1], and the proportion of time that the
curve xt(·) overlaps with rt(·) as wt ≡

∫ 1

0
I{xt(s)=rt(s)}ds.

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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3.1.1. Strong increasing trend in a sequence of functional data

Consider the setting of hypothesis testing where the null hypothesisH0 is “There
does not exist a trend”. Under the null hypothesis H0, the sequence of curves up
to any t-th curve are all equally likely to achieve the maximum rt(s) at any
time point s. This fact allows us to assume that the curves in the sequence are
exchangeable, which thus implies that the expected value of wt = 1/t (and also
wt = 1/t) for all t. If the sequence of curves progresses with the pattern of spend-
ing more than the expected share of time at the maximum curve, and less than
the expected share of time at the minimum curve, it would suggest an increasing
trend. This notion of increasing trend is formulated more precisely below.
Definition I. (Strong Increasing Trend) The sequence {xt(s) : s ∈ [0, 1]}Tt=1 is
said to have a Strong Increasing Trend if it satisfies the following conditions:

0 < w2 −
1

2
< · · · < wT −

1

T
, (1)

and

0 > w2 −
1

2
> . . . > wT −

1

T
. (2)

Because of the symmetry of the equations on (1) and (2), in what follows we
will only deal with (1). The corresponding test for (2) can be obtained similarly.
Finally, the Bonferroni method can be applied to perform both tests simultane-
ously.

For testing whether there is an increasing trend in a given sequence of func-
tions, we first consider the alternative hypothesis Ha that there is an increasing
trend according to Definition I. In other words, we examine whether the normal-
ized fraction of time spent at the maximum function up to year t, {wt − 1/t}
for t = 2, . . . , T , is a strictly positive increasing sequence of t. This strictly pos-
itive increasing requirement is quite restrictive, and thus the naming of “Strong
Increasing Trend” in the definition. It amounts to requiring each function in the
sequence be a record with respect to all the previous years. We proceed to intro-
duce positive trends with lesser degrees of restrictiveness below.

3.1.2. Weak increasing trends in a sequence of functional data

Definition II. (Weak Increasing Trend) The sequence {xt(s) : s ∈ [0, 1]}Tt=1 is
said to have a Weak Increasing Trend if it satisfies the following condition:

min
t∈T

(
wt −

1

t

)
> 0, (3)

where T stands for the set {2, . . . , T}. Recall that, if there is no trend in the
sequence, we would expect to observe wt = 1/t for all t. Hence, Equation (3)
implies that every t-th curve spends more time than expected at the maximum
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FIGURE 2: Left: Sequence with a Strong Increasing Trend. Middle: Sequence with a Weak Increasing Trend. Right:
Sequence with a k0-Weak Increasing Trend.

function up to year t. Clearly, this is a weaker notion of increasing trend than that
of Definition I, since (1) implies (3).

Even though the condition min
t∈T

(wt − 1/t) > 0 in (3) is less stringent than that

of (1), it can still be too restrictive for many practical situations, since requiring
(wt − 1/t) > 0 for all t would amount to requiring the curve of every single year
in the sequence be a record function (in a weak sense) with respect to all its
previous years. Instead, we may consider the following definition which is less
restrictive and yet still captures meaningful patterns of increasing trends.
Definition III. (k0-Weak Increasing Trend) The sequence {xt(s) : s ∈ [0, 1]}Tt=1

is said to have a k0-Weak Increasing Trend if there exists k0 ∈ T such that

w̄[k] > 0, ∀ k ≥ k0, (4)

where w̄t ≡ wt − 1/t for t = 2, . . . , T whose corresponding order statistics are
denoted by w̄[2] ≤ w̄[3] ≤ . . . ≤ w̄[T ].

Figure 2 provides some examples to illustrate the difference between the three
notions of increasing trends. The left panel shows that x2(s) spends w2 = 55%
of the time at the maximum function up to year 2, whereas x3(s) spends w3 =
75% up to year 3. This gives 0 < w2 − 1/2 = 0.05 < w3 − 1/3 = 0.417, and
thus satisfies condition (1). On the other hand, x2(s) spends w2 = 45% of the
time at the minimum function up to year 2, whereas x3(s) spends w3 = 25% up
to year 3. This gives 0 > w2 − 1/2 = −0.05 > w3 − 1/3 = −0.083, and thus
also satisfies condition (2). The middle panel shows that x2(s) spends w2 = 75%
of the time at the maximum function up to year 2, whereas x3(s) spends w3 =
35% up to year 3. This gives w2 − 1/2 = 0.25 and w3 − 1/3 = 0.016, and thus
satisfies (3) but not (1). Finally, the right panel shows a sequence of functions in
which x2(s) spends w2 = 45% of the time at the maximum function up to year
2, whereas x3(s) spends w3 = 65% up to year 3. This gives w̄[2] ≡ w2 − 1/2 =
−0.05 and w̄[3] ≡ w3 − 1/3 = 0.3167, and thus the sequence satisfies (4) with
k0 = 3 but not (3) nor (1).

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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3.2. Nonparametric tests for an increasing trends in a series of functional data

In this section, we develop nonparametric tests for the proposed increasing
trends for a sequence of functional data. Let {Xt(s) : s ∈ [0, 1]}Tt=1 be a sam-
ple sequence of T functional data defined on a rich enough probability space
(Ω,A, P ). For each t ∈ T ≡ {2, . . . , T}, let Rt(s) ≡ max{X1(s), . . . , Xt(s)}
for 0 ≤ s ≤ 1 be the sample maximum function up to year t. The timeXt spends
at the maximum function up to year t is then Wt ≡

∫ 1

0
I{Xt(s)=Rt(s)}ds. This

quantity, with the standardized time scale 0 ≤ s ≤ 1, is also the proportion of
time that Xt matches with the maximum function from the first t years, whose
expected value under P is Jt ≡ E (Wt) =

∫ 1

0
P (Xt(s) = Rt(s)) ds.

Under the null hypothesis of no trend in {Xt(s) : s ∈ [0, 1]}Tt=1, these curves
are exchangeable and hence Jt = 1/t for each t. For testing only the hypotheses
whether a particular curve Xt is a record function up to year t, it would suffice
to conduct an individual test for

H0,t : Jt = 1/t vs. H1,t : Jt > 1/t. (5)

If the null hypothesis H0,t is rejected for (almost) all t with very small p-values,
the Bonferroni device can be used to uphold simultaneously all the rejections.
This approach of combining results from individual tests, however, is known to
be inefficient. Therefore, we seek to develop a global test with an overall test
statistic for assessing whether there exists an increasing trend. To this end, we
may consider the following more complex hypotheses,

H0 : min
t∈T

(Jt − 1/t) = 0 vs. HA : min
t∈T

(Jt − 1/t) > 0. (6)

Note that the alternative hypothesis HA states that there is a weak increasing
trend in the sense of Definition II. Let J̄ ≡

(
J̄2, J̄3, . . . , J̄T

)
, where J̄t ≡ (Jt −

1/t) for t = 2, . . . , T and whose corresponding order statistics are J̄[2] ≤ J̄[3] ≤
. . . ≤ J̄[T ]. Obviously, under the null hypotheses H0 in (6) J̄[2] is expected to be
zero, and a positive value of J̄[2] would be evidence for rejecting H0. Similarly,
under the null hypotheses in (5), J̄ should be a vector of zeros, and J̄[k] > 0 for
any k > 1 would be evidence in support of the alternative hypothesis in (5) with
an increasing trend. This observation leads us to consider testing the following
hypotheses

H0 : J̄[k] = 0 ∀k ∈ T vs. HA1 : J̄[k0] > 0 for some k0 > 1. (7)

To apply the tests above to real data, we need to replace the continuous
curves by their discrete observations, since each curve is observed only at a
finite number of time points. Specifically, if the t-th curve is observed only at
N time points, s1, s2, . . . , sN , it can be expressed as the N -dimensional vector
(Xt(s1), Xt(s2), . . . , Xt(sN)), for t = 1, . . . , T . Note that s1, s2, . . . , sN are not
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required to be equally spaced. We assume a simple nonparametric regression
model for each data curve such that, for each t = 1, . . . , T ,

Xt(sj) = µt(sj) + et(sj), for j = 1, . . . , N, (8)

where {et(sj), j = 1, . . . , N} are i.i.d. random variables with mean zero,
which represent random fluctuations around the mean value µt(sj). Under the
null hypothesis H0, µt(s) is assumed to be independent of t, i.e., µt(s) =
µ(s) for all t. Therefore, the proportion of time that the t-th curve spends at
the maximum curve can be simply accounted for by the random fluctuations
{et(s1), . . . , et(sN)}. The maximum value and maximum error of the first t
curves at the specific time point sj are respectively

Rt(sj) ≡ max{X1(sj), . . . , Xt(sj)} and e(t)(sj) ≡ max{e1(sj), . . . , et(sj)}.

Note that the assumption that the error terms {et(sj), j = 1, . . . , N} are i.i.d.
implies that the maximum errors {e(t)(sj), j = 1, . . . , N} are i.i.d. as well. The
natural test statistic for testing (5) is the time that t-th curve spends at the max-
imum vector up to the t-th curve, namely τt ≡

∑N
j=1 I{Xt(sj)=Rt(sj)}. For model

(8), under the null hypothesis of (5), the distribution of τt is B(N, p), a bino-
mial distribution with N trials and each trial has the event probability p, where
p ≡ P (Xt(sj) = Rt(sj)) = P

(
et(sj) = e(t)(sj)

)
= 1/t, for any t = 1, . . . , T .

This can be applied to performing hypothesis tests for the simplest setting (5)
by noting that the proportion of time that {Xt(sj), j = 1, . . . , N} matches with
the maximum vector up to the t-th year is Ĵt ≡ τt/N . The null hypothesis in (5)
should be rejected if Ĵt − 1/t > cα, where cα is the critical value corresponding
to a pre-fixed level α for the binomial test.

If we are to test the more complicated hypotheses in (6), we may con-
sider the test statistic given by the first order statistic of the vector ˆ̄J ≡(
Ĵ2 − 1/2, Ĵ3 − 1/3, . . . , ĴT − 1/T

)
, which is ˆ̄J[2] ≡ mint∈T(Ĵt − 1/t). Simi-

larly, if we are to test the hypotheses in (7), we may consider the test statistic ˆ̄J[k]

for some k > 1, where ˆ̄J[k] is the (k − 1)-th order statistic of the elements in ˆ̄J.
For both cases, the null hypothesis should be rejected when the test statistic ˆ̄J[2]

or ˆ̄J[k] is larger than a suitable critical value.

3.2.1. Calculation of critical values

We have described several tests for increasing trends so far, but the lack of inde-
pendence of the random variables {(Ĵt − 1/t) : t ∈ T} makes it difficult to cal-
culate precise critical values for the tests, since the calculations involve a highly
complex combinatorial problem. Nonetheless, we note that, under the null hy-
pothesis and assuming that model (8) holds and also that there are no ties in
observed data, the task of determining the critical values is equivalent in theory

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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FIGURE 3: A realization of vectors of ranks on the lattice for four observed curves. The last observed curve (green)
spends 40% of the time at the maximum.

to undertaking the procedure prescribed below. To find the time spent at the max-
imum curve (vector) by a given curve Xt(·), it suffices to obtain the rank of the
value Xt(sj) among {X1(sj), . . . , XT (sj)} at each sj for all j = 1, . . . , N . This
point is articulated in the following 3-step procedure.
Step 1: Transform each functional to its corresponding rank vector – At each
time point sj , we first rank all the observed values {X1(sj), . . . , XT (sj)} and
denote by λtj the rank associated with Xt(sj). For simplicity, we assume that
there are no ties in the ranking. Repeat this procedure for all sj , j = 1, . . . , N
and for all t ∈ {1, . . . , T}. Let Λt = (λt1, . . . , λtN) ∈ {1, . . . , T}N denote the
vector of ranks corresponding to the t-th observed curve (Xt(s1), . . . , Xt(sN)).
Step 2: Map functionals with permutations of ranks on a lattice – We now detach
ourselves from the observed sample functionals {Xt(s1), . . . , Xt(sN)}Tt=1 and
their probability spaces and, instead, work directly with their rank vectors as the
trajectories on the lattice {1, . . . , T}N , which is to be built up using the following
algorithm:

• We build up Λ1 by selecting a value for λ1j at random from {1, . . . , T} for
each j, j = 1, . . . , N .
• We build up Λi (i > 1) by selecting a value for λij at random from {1, . . . , T} \
{λ1j, . . . , λ(i−1)j} for each j, j = 1, . . . , N .
• We continue this way to build up all Λ1, . . . ,ΛT until the set of trajectories

completely fill the lattice {1, . . . , T}N (Figure 3 shows a simple example of
such a realization on the lattice for T = 4 curves on N = 5 time points.)

Step 3: Calculate the values of test statistics from rank realizations – For each

rank realization (Λ1, . . . ,ΛT ), we can compute the values of test statistics ( ˆ̄J[2]

or ˆ̄J[k]).
By iterating this 3-step procedure sufficiently many times, we can obtain with

reasonable accuracy an approximate distribution function of our test statistics
and their desired quantiles. The key to obtain the distribution of our test statistics
is to observe that, under the null hypothesis, each rank realization (Λ1, . . . ,ΛT )
on the lattice {1, . . . , T}N obtained through the 3-step procedure above has the
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same probability 1/(T !)N .
In principle, we can obtain the exact distribution of the test statistic under

the null hypothesis by considering all possible sets of trajectories (Λ1, . . . ,ΛT )
on the lattice {1, . . . , T}N and calculating their corresponding values of the test
statistic. Since all sets of trajectories have the same probability under the null
hypothesis, we thus obtain the exact distribution of our statistic. Obviously, this
task can become quite cumbersome or unrealistic when T and/or N are large,
given that the set of trajectories is cardinal (T !)N . In this case, we may resort to
using Monte Carlo methods.
Remark 1 Note that the procedure described above can also be applied to
testing the hypothesis of a strong increasing trend. In this case, for each set
of trajectories, the only change needed in the procedure is to calculate the
corresponding realization of the statistic ˆ̄Jstrong ≡ #{ˆ̄J : 0 < Ĵ2 − 1/2 < . . . <

ĴT − 1/T}, instead of ˆ̄Jweak ≡ #{ˆ̄J : ˆ̄J[2] > 0}. Clearly, ˆ̄Jstrong ≤ ˆ̄Jweak. Recall
that ˆ̄J ≡ (Ĵ2 − 1/2, . . . , ĴT − 1/T ) and ˆ̄J[2] ≡ mint=2,...,T (Ĵt − 1/t).
Remark 2 Our proposed test procedure remains valid even if there are missing
data in observed curves. In this case, some realignment of time points from indi-
vidual curves is needed before implementing the 3-step procedure. Specifically,
we consider only the largest subset of the original time points sj for which all in-
dividual curve are completely observed. This modified sample of curves, though
observed on a reduced number of time points, constitute a complete data set, and
thus our test procedure is readily applicable. Although the number of time points
N is effectively reduced to the cardinal of the subset of time points that provide
a complete sample, the test results remain valid, since our approach does not
require observations from each curve be equally spaced.

3.3. Multiple time series of functional data

Suppose that there are time series of functional data collected from more than one
weather station, and that we are interested in synthesizing the information from
different stations into a coherent combined analysis. For convenience, we discuss
only the setting of two stations, as the extension to more stations is straight-
forward. In this case, we have two sets of observed data X1(s), . . . , XT (s),
Y1(s), . . . , YT (s) 0 ≤ s ≤ 1 , defined on a suitable probability space (Ω,A, P ).

For t = 2, . . . , T , let RX
t (s) ≡ max{X1(s), . . . , Xt(s)} and RY

t (s) ≡
max{Y1(s), . . . , Yt(s)} be the two respective sample maximum function
up to t-th curve. The time that Xt and Yt spend jointly at their re-
spective maximum function up to year t can be expressed as WXY

t ≡∫ 1

0
I{Xt(s)=RX

t (s)}I{Yt(s)=RY
t (s)}ds, whose expected value is Jt ≡ E

(
WXY
t

)
=∫ 1

0
P
(
Xt(s) = RX

t (s), Yt(s) = RY
t (s)

)
ds. Under the null hypothesis of no

trends, we again assume the following nonparametric model for the data from
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each station, for given s ∈ [0, 1] and t = 1, . . . , T ,

Xt(s) = µt(s) + et(s) and Yt(s) = νt(s) + ηt(s),

where et(s) and ηt(s) are i.i.d. random variables with zero mean and represent
the random fluctuations around the mean values µt(s) and νt(s) respectively. We
further assume that µt(s) and νt(s) are independent of t. Therefore, under the
null hypothesis, the time each curve spends at the maximum function can be
explained entirely by the random fluctuations et(s) and ηt(s).

Assume that the curves are observed at a finite number of time points
s1, . . . , sN , not necessarily equally spaced. Similar to the one sample case,
the test statistic is now the time that Xt(·) and Yt(·) simultaneously
spend at their respective maximum vectors up to the t-curve, namely, τt ≡∑N

j=1 I{Xt(sj)=RX
t (sj)}I{Yt(sj)=RY

t (sj)}, as t progresses from 1 to T . Under the null
hypothesis of no trends, τt follows the binomial distribution B(N, p), with N tri-
als and each with the probability of success p = P (Xt(sj) = RX

t (sj), Yt(sj) =
RY
t (sj)) = P

(
et(sj) = e(t)(sj), ηt(sj) = η(t)(sj)

)
.

If we are to test the hypotheses whether the particular pair curve (Xt(·), Yt(·))
matches with the pair of the maximum functions up to year t, it suffices to test
for H0 : Jt = p vs. H1 : Jt > p. However, in this case it is not appropriate
to simply assume that p = 1/t2, and more involved parametric modeling of this
parameter is needed. Following the modeling, we can estimate p from the ob-
served data and then proceed to carry out the test in a similar way as in dealing
with data from a single station. More precisely, we string together the observed
data from both stations in a chronological ordered sequence, and treat the com-
bined sequence as an observed function and then carry out the test procedures
for one station as described in Sections 3.2. In some sense, the stringing together
multiple sequences of functional data into one actually lengthens the domain of
the underlying functional and thus enhances the suitability of the functional data
approach proposed in this paper.

4. TREND ANALYSIS FOR ANTARCTIC TEMPERATURE DATA

We now apply our proposed approach in Section 3 to investigate possible trends
in the surface air temperature data collected at JCI Station from 1988 to 2007. As
described at length in Section 2, we have filtered out parts of the data whose data
quality is in question but we have also retained as much data as possible to ensure
that the selected final data set represents sufficient profile of the weather pattern
through the years for a meaningful trend analysis. Specifically, the final data set
consists of 17 discretized curves and each is observed on 1,103 time points which
correspond the hourly registers in the middle ten weeks of the summer. This final
data set corresponds to the setting of {Xt(sj) : j = 1, 2, · · · , 1103}17

t=1.
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FIGURE 4: Value of ˆ̄J[k] (blue curve) together with respectively the 0.9 (red), 0.95 (violet) and 0.99 (green) critical
values.

We perform the global tests for possibly weak increasing trends as defined in
(6) and (7). The results are shown in Figure 4. At 0.10, 0.05 and 0.01 levels of
significance, the global test fails to reject the null hypothesis in (6), as seen from
the value of the test statistic corresponding to the plot of ˆ̄J[k] for k = 2 in Figure
4. This result also immediately implies that the global test fails to reject the null
hypothesis that is associated with an alternative hypothesis of a strong increasing
trend. On the other hand, Figure 4 does show that for all ˆ̄J[k] with k > 8 the
test rejects the null hypothesis in (7) which is associated with a less restrictive
alternative. This implies that at least half of the observed 17 summer temperature
curves have spent a large amount of time at or near the record functions, and thus
indicates a weak increasing trend over the years. This finding provides further
support for the common belief of a rapid warming in the Antarctic Peninsula.
This same finding is also claimed in IPCC (2014).

5. CONCLUDING REMARKS

Motivated by the need to explore the data set collected at Spanish Antarctic Sta-
tion JCI between 1988 and 2007, we have introduced three notions of positive
trend, strong, weak and k0-weak, for a general framework of series of functional
data and also developed nonparametric inference approaches for testing such
trends. Under this framework, we consider the surface air temperatures regis-
tered at JCI for each summer as a function observed at finite grid points, and ap-
ply our approach to investigate this sequence of functions. Our findings suggest
that there is indeed evidence of an increasing trend in the temperatures regis-
tered at JCI Station over the years. We believe that these findings can help better
understand climate change in the Antarctic region.

The proposed approach is important in its own right as a theoretical advance
in functional data analysis which should have broad applicability to problems in
other domains. It broadens the scope of functional data analysis to include irregu-
larly structured data sets which are observed unequally spaced and with possible
missing data. The approach is applicable as long as: i) the available data have a
common time span from one year to the next throughout the years in the study;
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and ii) this common time span constitutes a sufficient portion of the year. This
is the case for our JCI data set. Obviously, our approach can become unreliable
if there are substantial missing data that are randomly scattered throughout and
hence fail to provide a common time span for the direct comparison or ranking
of observations from all years in the study.

In its original form, our JCI data can be viewed as high resolution data with
missing values. When analyzing such a data set, there is inevitably a trade-off
between the desire to keep the resolution sufficiently high in order to retain the
data structure and to reduce the presence of missing data sufficiently to suit the
analysis. Indeed, considering only yearly or monthly averages in our analysis
can surely help “avoid’ missing data situations, but its over smoothing may risk
corrupting important data structure. Also, over smoothing often results in non-
negligible loss of efficiency and potential bias. A case in point is the yearly me-
dians seen in Figure 1 (c). As for hourly averages, while they may still incur
some loss of resolution, they do retain most of the data structure, since there are
unlikely to be sharp phase shifts within a short time interval such as an hour.
In fact, even working with hourly averages of our JCI data, we still have some
missing data and, eventually, we can only focus on the time span for which the
hourly averages are available for all years. As it turns out, this particular time
span does cover more than 50 % of the central part of the summer temperature
structure every year.

When dealing with high resolution temperature data, it is important to account
for phase variation. Otherwise, one may obtain increasing portions of maximum
temperatures without true warming condition. This seems less an issue in our
case since temperatures in Antarctica tend to exhibit some regularity in their
phase variations. However, in a setting of possible phase shift where the yearly
curves are horizontally shifted versions of each other or a gradual shift in the
onset of the seasons, the weak increasing trend may be subject to confounding
with phase variation. In this case, the test results should be questioned, unless
an additional test for phase shift can be devised to separate a phase shift from
a real trend. Another issue on whether or not the phase variation is cyclical can
also further complicate the study of trends. It would be worthwhile conducting a
thorough study on this subject.

We provide two remarks on the nonparametric model (8) used in our ap-
proach. The assumption that the yearly functions are independent under the null
hypothesis of no trends seems to be well accepted by most subject matter ex-
perts. This assumption is critical, as it implies in particular that, under the null
hypothesis, the functional data are exchangeable for the years under considera-
tion. On the other hand, the assumption of i.i.d. {et(sj)}Nj=1 in model (8), though
also widely used in practice, may not necessarily hold in reality. It would be
useful to consider modifications that reflect some practical correlation structure.
We plan to investigate this further in the future by modeling the residuals with a
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functional AR(1) model. A closely related problem has been considered recently
by Berkes et al. (2009), namely the problem of testing the i.i.d. functional ob-
servations {Xt(s), s ∈ [a, b]}Tt=1 under the null assumption that the mean curve
remains constant in t, i.e. E(Xt(s)) = µ(s). Their test shows high power values
against the alternative in which the data can be divided into several consecutive
segments, with a constant mean within each segment but which differs from seg-
ment to segment. The simplest case of only two segments would correspond to a
change point problem. Our approach is different, as we are interested in testing
whether or not there is an increasing (or decreasing) trend among the underlying
mean curves.

Finally, we note that although the methodology developed in this paper has
been illustrated only with JCI temperature data, it is applicable to many other
domains as well. For example, the methodology can be applied to the studies
of consumption behaviors of restaurant goers where the data are often collected
irregularly and only around holiday or low seasons.
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