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Simulation of free-surface flows by a finite element interface capturing technique
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Transient free-surface (FS) flows are numerically simulated by a finite element interface capturing method based on
a level set approach. The methodology consists of the solution of two-fluid viscous incompressible flows for a single
domain, where the liquid phase is identified by the positive values of the level set function, the gaseous phase by
negative ones, and the FS by the zero level set. The numerical solution at each time step is performed in three stages:
(i) a two-fluid Navier–Stokes stage, (ii) an advection stage for the transport of the level set function and (iii) a
bounded reinitialisation with continuous penalisation stage for keeping smoothness of the level set function. The
proposed procedure, and particularly the renormalisation stage, is evaluated in three typical two- and three-
dimensional problems.
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1. Introduction

Free-surface (FS) flows are a particular case of
multiphase flows, where there is a liquid phase and a
gaseous phase, the latter being lighter than the former.
Flows with an FS are found in several engineering
disciplines, as chemical, mechanical or hydraulic,
covering a wide range of fluid properties and flow
cases, such as sloshing in liquid storage tanks or open
channel flows. In this work, attention is focused on FS
incompressible isothermal flows of Newtonian viscous
fluids, in the cases where the surface tension is
negligible.

There are different approaches for the computation
of two-fluid flows, which are described as interface
tracking and interface capturing methods (Shyy et al.
1996). On one hand, interface tracking methods follow
explicitly the FS, which is defined over specific entities,
such as nodes or faces of a mesh used with a finite
element method (FEM). The domain considers only
the fluid phase, and the deformation of the domain, as
a consequence of the FS movement, can be solved in
different ways. The most common alternatives are
Lagrangian approaches, as in particle methods (Ide-
lsohn et al. 2004), where fluid particles are free to
move, and arbitrary Lagrangian-Eulerian (ALE) ap-
proaches (Hughes et al. 1981; Huerta and Liu, 1988;
Chippada et al. 1996; Rabier and Medale, 2003), where
the change in the shape of the domain involves either,
the deformation of the mesh, keeping the topology

constant, or a periodic remeshing, depending on the
magnitude of the displacements. In the last alternative,
large FS deformations are sometimes hard to model
due to the fixed topology, avoiding merging or
breaking up of the interface. On the other hand,
interface capturing strategies consider fixed tessella-
tions of the two-fluid domain, where the interface
crosses a set of elements. The precise position of the FS
is captured by an additional quantity, as a scalar field
given over the whole domain, or a fluid fraction
registered in each element crossed by the FS. Generally
speaking, these alternatives allow the folding of the
interface without special considerations, although they
are not as precise as interface tracking with regard to
the FS displacements. The most common interface
capturing methods are volume of fluid (VOF) (Hirt
and Nichols, 1981; Scardovelli and Zaleski, 1999) and
level set (LS) (Osher and Sethian, 1988; Sethian, 1995).
The former is based on the definition of a fluid fraction
F on each element of the discretisation, being F ¼ 0 in
the gaseous phase, F ¼ 1 in the liquid one and
0 5 F 5 1 for cells crossed by the interface, which is
recovered by specialised algorithms. On the other
hand, LS methods consider an additional scalar
variable, the level set function f, which is advected
by a transport equation, identifying the liquid phase
with positive values (f 4 0), the gaseous phase with
negative values (f 5 0) and the interface with null
values (f ¼ 0).
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In previous works (Battaglia et al. 2006, 2007), an
FEM-ALE strategy was developed for solving FS fluid
flows such as sloshing in tanks. However, the proposal
was limited to flow cases where the uniqueness of the
interface was verified.

The aim of this work is to apply an LS interface
capturing approach for solving two-fluid flows in a
single domain, considering both phases as Newtonian,
viscous and incompressible fluids. In the present case,
each fluid is indicated with a positive or negative value
of the LS function f, as described before. The f-field is
continuous over the whole domain, including the
transition across the FS, given naturally at f ¼ 0.

The sequence of solution consists of three stages,
which solve separately the following parts of the
problem: (i) the fluid state, by solving the Navier–
Stokes (NS) equations over the two-fluid domain; (ii)
the transport of the LS function f, which implies the
displacement of the interface f ¼ 0; and (iii) a
reinitialisation of the f-field for keeping the regularity
of the LS function, which is specially important in the
neighbourhood of the FS, and can be performed every
certain number of time steps, according to the complex-
ity of the flow (Battaglia, 2009). The numerical
computation of each stage is made by different solvers
of the PETSc-FEM libraries (PETSc-FEM, 2009),
which are based on the Portable Extensible Toolkit
for Scientific Computation (PETSc) libraries (Balay
et al. 2008) and the Message Passing Interface (MPI,
2009) for parallel computing. The present results are
obtained with an interface capturing approach that
requires the synchronisation among the three solvers
involved and the development of a reinitialisation stage.

The performance of the method is shown first, for
the advection-renormalisation of the LS field over a
typical 2D example, and second, for two- and three-
dimensional dam-break problems, which are compared
to the available experimental data (Martin and Moyce,
1952) and other numerical results.

2. Governing Equations

The Partial Differential Equation (PDE) systems
presented in this section are solved by FEM, and
each one is related to the each stage of the solution.
The NS and the advective (ADV) solvers have been
previously analysed (Sonzogni et al. 2002; Storti et al.
2008), while the so-called bounded renormalisation
with continuous penalisation (BRCP) algorithm,
which renormalises the LS function field, was intro-
duced only for advection-renormalisation problems
(Battaglia et al. in press).

The multi-physics programming paradigm for the
synchronisation of the FEM modules was introduced
in previous works (Battaglia et al. 2006). The three

stages of solution run independently in parallel, and
they are linked by Cþþ synchronisation programs
named hooks, which are run at certain points in the
FEM modules execution. The concept of the hooks has
been borrowed from the GNU Emacs editor and from
the Linux (2010) kernel. The hooks allow the data
exchange among NS, ADV and BRCP solvers through
the use of queues (first-in-first-out, FIFO). In each
time step, the fluid velocities determined by the NS
solver are sent to the ADV one for performing the LS
function advection. Then, the LS field is sent to the
BRCP module, where the renormalisation is per-
formed. After that, the NS stage receives the LS field,
which is needed to determine the fluid properties in the
whole domain for the following time step.

The time dependence is present in two of the three
stages, the NS and the ADV, for which time
integration is performed by the trapezoidal rule with
parameter a, with a ¼ 1 for the backward Euler
method and a ¼ 0.5 for Crank–Nicolson.

2.1. Fluid state

The fluid state in the domain O for time t 2 [0,T] is
given by the NS equations system for two incompres-
sible and immiscible fluids, which is:

rðfðx; tÞÞ @tvþ v � rv� fð Þ � r � s ¼ 0;

r � v ¼ 0;
ð1Þ

where x 2 O is the position vector, v is the fluid
velocity, f is the body force by unit of mass, r(f(x,t)) is
the fluid density, @t (. . .) ¼ @(. . .)/@t indicates the
partial time derivative and f is the LS function.

The fluid stress tensor r is decomposed in an
isotropic –pI part and a deviatoric one T,

r ¼ �pIþ T; ð2Þ

where p is the pressure, I the identity tensor and T the
viscous forces tensor,

T ¼ 2 mðfðx; tÞÞe; ð3Þ

which is a function of the strain rate tensor e

determined as

e ¼ 1

2
½rvþ rvð ÞT�; ð4Þ

for Newtonian fluids, with (. . .)T indicating transposi-
tion and m ¼ m (f(x,t)) the dynamic viscosity.

The fluid properties, density and viscosity, depend
on both, the position x and the evaluation time t due to
the multiphase model, which is given by the LS
function f, defined over the whole domain O.
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The values taken by f indicate whether the region O is
occupied by one or another fluid (Sussman and
Smereka, 1997), according to the following,

fðx; tÞ
> 0 if x 2 Ol;
¼ 0 if x 2 �FS;
< 0 if x 2 Og;

8<
: ð5Þ

where the subdomain Ol corresponds to the liquid
phase and Og is the gaseous one, while both conditions
O ¼ Ol [ Og and Ol \ Og ¼ f are verified. Note that
the subindex adopted, l and g, correspond to the liquid
and the gaseous regions, respectively. Particularly, the
FS is defined as

�FS ¼ fxjfðx; tÞ ¼ 0g: ð6Þ

In this case, due to the renormalisation method
proposed for the LS function f, see section 2.3, the
function is bounded, i.e. 71 � f � 1, and the
transition between fluids is smooth.

Given the LS value f, the fluid properties for
Equations (1) and (4) are given as

rðfÞ ¼ 1

2
1þ ~HðfÞ
� �

rl þ 1� ~HðfÞ
� �

rg
� �

;

mðfÞ ¼ 1

2
1þ ~HðfÞ
� �

ml þ 1� ~HðfÞ
� �

mg
� �

;

ð7Þ

where the smeared Heaviside function ~H(f) is deter-
mined through:

~HðfÞ ¼ tanh
pf
~e

� �
; ð8Þ

where ~e is a reference parameter for the transition
width. In this case, for jfj ! ~e; ~HðfÞ ! 1, with the
consequence of a diminishing in the width of the
transition for the fluid properties needed for the NS
system in comparison to the transition between
f ¼ 71 and f ¼ 1 considered in the ADV step. In
particular, ~e ¼ 0:5 is adopted, reducing the transition
length in about 70%.

The infinitely differentiable function ~H(f) given in
Equation (8) is slightly different from the other
smooth Heaviside-like functions found in the literature
(Sussman and Smereka 1997; Olsson and Kreiss 2005;
Kurioka and Dowling 2009) because it counts on a
simpler mathematical expression, and it is not piece-
wise defined. This condition constitutes an advantage,
because the selected function naturally fits the bounds
jfj � 1 required by Equation (7) for the interpolation
of the fluid properties.

For the fluid flow problems considered in this
work, slip boundary conditions for the velocity v in

Equation (1) are given over the solid boundaries �wall,
while in the case of the pressure, p ¼ 0 is imposed on
top of the domain.

The solution of Equation (1) is made through the NS
solver from the PETSc-FEM libraries (Sonzogni et al.
2002), adopting linear elements with the same interpola-
tion for velocity and pressure fields, which are stabilised
with streamline upwind/Petrov-Galerkin (SUPG)
(Brooks and Hughes, 1982) and pressure stabilising/
Petrov-Galerkin (PSPG) (Tezduyar et al. 1992).

2.2. Level set function advection

The transport of the LS function f over the domain O
is produced by the velocity v obtained by solving the
NS equations, as follows,

@tfþ v � rf ¼ 0; ð9Þ

with boundary conditions given by

f ¼ �f over �in; ð10Þ

where the inflow section is �in ¼ {�jv � n 5 0}. In this
way, the advection procedure takes into account the
transport of the interface �FS in a natural way.

This transport step, named ADV, is numerically
solved by the advective module of the PETSc-FEM
program (Storti et al. 2008). The numerical instabil-
ities, which arise from the use of a Galerkin central
scheme for solving the transport equation of the LS
function f, can be avoided by an SUPG strategy
(Brooks and Hughes, 1982). Nevertheless, if the BRCP
is performed, the SUPG stabilisation is not necessary
for the transport of the LS function.

2.3. Reinitialisation of the level set function field

Most LS approximations include a renormalisation
step, where a distance function equation is solved with
the aim of keeping the regularity and the smoothness
of the f-field; otherwise, the advection of f or the
interpolation of the fluid properties across the interface
would lose precision in the numerical solution. Since
some redistancing procedures are extremely expensive
(Hysing 2007), they are gradually replaced by im-
proved algorithms (Mut et al. 2006, Elias et al. 2007).
An alternative to the redistancing strategy consists of
avoiding any reinitialisation by performing a highly
accurate transport of the LS field, such as discontin-
uous Galerkin methods (Marchandise and Remacle,
2006), high-order weighted essentially non-oscillatory
method, WENO (Kurioka and Dowling, 2009), or
mesh adaptivity near f ¼ 0 (Marchandise and Re-
macle, 2006), among others.
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In this work, the renormalisation process is focused
on conserving the regularity of the transition between
phases by solving a PDE, introduced by Battaglia
(2009).

A similar strategy is the Conservative Level Set
method (Olsson and Kreiss 2005; Olsson et al. 2007),
although it does not count on a penalisation term as in
the present work.

The reinitialisation consists of solving the PDE
system by FEM, where the variable is f. The operator
BRCP is

f ðf2 � f2
refÞ � kDfþM ĤðfÞ � Ĥðf0Þ

� �
¼ 0; ð11Þ

where k is a diffusive parameter, M a penalty
coefficient and fref a reference value for the variable
f, adopted as fref ¼ 1, while f0 is the initial LS
function value for the renormalisation step provided
by the solution of Equation (9). The diffusion
parameter k, with squared length units, is related to
an adopted typical element size h, usually from h2 to
(3h)2, depending on the FS behaviour, such that a
lower k provides a thinner transition.

The positive coefficient M is non-dimensional and
should be adopted as O 10ndþ2

� �
, with nd the number of

spatial dimensions involved. Furthermore, the function
adopted for the penalising term, Ĥ(f), has the
continuous expression

ĤðjÞ ¼ tanhð2pfÞ; ð12Þ

which is a smeared Heaviside function. The purpose of
selecting a smooth function which is continuous across
the interface is to avoid a complicated numerical
treatment, especially in three-dimensional problems.

The effect of Equation (11) can be explained as
follows. The first two terms constitute a steady heat
conduction equation with a source term, f being the
temperature, i.e.

kDfþQðfÞ ¼ 0; ð13Þ

where Q fð Þ ¼ �fðf2 � f2
refÞ is the source term and k

acts as a thermal diffusivity parameter.
Physically, the source term Q(f) forces f to reach

the stable equilibrium temperatures, i.e. those f* for
which Q(f*) ¼ 0 and Q0(f*) 5 0, with Q0(f) ¼ dQ/
df. Since Q(f*) ¼ 0, a spatially constant solution
f ¼ f* is a solution of Equation (13). Therefore, if
f ¼ f* þ df, with df a small perturbation, the source
term is negative due to the condition Q0(f*) 5 0, and
f tends to f*, independently of the sign of df. For the
renormalisation method, this condition is analogous
for the roots f* ¼ +fref. Conversely, when
Q(f**) ¼ 0 and Q0(f**) 4 0, the roots f** are

unstable equilibrium temperatures, and any perturba-
tion df produces a positive increment in the source
term, taking f away from the equilibrium value f**,
as occurs when f ¼ 0 in Equation (13).

Furthermore, the Laplacian term in Equation (13)
produces a smooth transition of semiwidth d ¼ Oðk1=2Þ
between the bounds given by the stable roots of the
source term, which are f* ¼ +fref. Therefore, it is
verified that a larger value of the diffusivity leads to a
wider transition. This is shown in Figure 1 for a steady
problem with initial conditions given by piecewise-
constants values for f0, and the solutions of Equation
(13) corresponding to different values of diffusivity.

When Equation (11) is numerically solved over an
unstructured or locally refined mesh, the diffusivity k
should be chosen considering a given d value, i.e.
k ¼ Oðd2Þ. An appropriate transition semiwidth d can
be given by the size of two or three elements near the
interface f ¼ 0, regarding the precision of the numer-
ical advection step.

The last term of Equation (11), or penalising term,
takes into account the known values f0, i.e. those
determined in the advection step. The aim of this term
is to avoid the displacement of f ¼ 0, i.e. the mass loss
during the renormalisation process, by weighting
Ĥ(f)7Ĥ(f0). Convenient values for the penalty M
are Oð10ndþ2Þ, while low values such as M ¼ 1, lead to
a higher error in the interface position, and with
M ¼ 0 the algorithm fails because it lacks the reference
f0 from the advective step. For M > Oð10ndþ2Þ, the
renormalisation effect is lost, because the f-field tends
to the f0 -field, and the solution given by the ADV step
is recovered (Battaglia et al. (in press)). Penalty
parameters for preserving the interface position were
also proposed by other authors, as in the Edge-
Tracked Interface Locator Technique (ETILT) method
(Tezduyar 2006; Cruchaga et al. 2007).

Figure 1. Artificial reaction–diffusion problem for
renormalisation of f depending on the diffusion coefficient
k value.

124 L. Battaglia et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
t
o
r
t
i
,
 
M
a
r
i
o
]
 
A
t
:
 
1
9
:
4
6
 
9
 
J
u
l
y
 
2
0
1
0



The renormalisation process acts mainly in the
neighbourhood of the FS, where the loss of precision
in the FS position and the mass loss are registered
(Mut et al. 2006; Cruchaga et al. 2007). On the other
hand, when f � fref, i.e. far from the interface, the
three terms in Equation (11) tend to zero. Finally, the
operator of Equation (11) is numerically solved by
FEM on each time step or every nreno time steps, after
the computation of the ADV stage.

3. Numerical examples

3.1. Advection-renormalisation problem: the disk of
Zalesak

The effectiveness of the renormalisation method is
evaluated by solving the problem presented by Zalesak
(1979) and reproduced by several authors (Mut et al.
2006, Elias and Coutinho 2007, Gois et al. 2008),
which consists of a notched disk inside a square unit
domain with 0 � (x, y) � 1. The initial conditions are
shown in Figure 2, being the radius Rd ¼ 0.15 m, while
the notch wd ¼ 0.05 m wide and hd ¼ 0.25 m height.
The disk is centred at (xd, yd) ¼ (0.5,0.75) m at the
beginning of the computation, Figure 3, enclosing the
f 4 0 region, and the velocity field is given by

vx ¼ 2p y� ycð Þ;
vy ¼ �2p x� xcð Þ;

ð14Þ

which produces a rigid rotation of the notched disk
around the point (xc, yc) ¼ (0.5,0.5) m. After one
revolution, the numerical results are compared to the
initial position, that should be recovered.

The problem is solved by two different strategies:
using only Equation (9), and with Equation (9) plus the
periodic renormalisation with Equation (11), named
ADV and ADV þ BRCP, respectively. For one revolu-
tion, the final time of tf ¼ 1 s is discretised in 628 time
steps ofDt ¼ 1/(200p) s� 0.0016 s, with an implicit time
integration considering a ¼ 0.7 for the trapezoidal rule.
The finite element mesh consists of 1282 bilinear
quadrilateral elements of typical size h ¼ 7.8 6 1073 m.

The diffusivities for the renormalised examples
are kA ¼ 2h2 ¼ 1.22 6 1074 m2 in case ADV þ

BRCP(A), or kB ¼ 4h2 ¼ 2.44 6 1074 m2 in case
ADV þ BRCP(B), while the penalty is chosen as
M ¼ 10,000 in both cases. The renormalisation is
performed every nreno ¼ 4 advection time steps.

The performance of the three solution alternatives
are shown in Figure 4, where the profiles of f ¼ 0 in
t ¼ 1 s are represented for the three alternatives: (a)
pure advection, (b) advection plus renormalisation
with kA ¼ 2h2 and (c) advection plus renormalisation
with kB ¼ 4h2. Note that in the pure advection case the
notch is almost disappeared, while in (b) it is well
captured. Furthermore, the disappearance of the notch
in (c) is attributed to the wider transition induced by a
higher value of k than in (b), as explained in section
2.3. The shape distortion of the disk in the results
computed with ADV þ BRCP(A) is similar to the one
presented by Kurioka and Dowling (2009) for the same
problem with a 1002 elements mesh and a high-order
advection solver.

Regarding area conservation of the f 4 0 region,
there are few differences among the alternatives ADV
and ADV þ BRCP(B), where the disk gains between 9
and 10% of area due to the disappearance of the
notch, while in case ADV þ BRCP(A) the area
decreases about 1%.

Figure 5 shows the LS function field for (a) ADV
and (b) ADV þ BRCP(A). In the first case, the
transition from 71 to þ 1 is not uniform, the relief
is smoothed, and the notched disk tends to disappear.
In case ADV þ BRCP, the transition presents uniform
width around the whole f ¼ 0 curve. Then, the
constant width provided by the BRCP stage replaces
the redistancing procedures classically performed in LS

Figure 2. Shape of f ¼ 0 for the disk of the Zalesak test.
Figure 3. Initial level set function field for the notched disk
for h ¼ 7.8 6 1073 m.
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methods (Sussman and Smereka, 1997; Sussman et al.
1999).

Additionally, the same problem is solved with
ADV þ BRCP over a 2562 elements mesh with time
step Dtr ¼ 8 6 1074 s, diffusivity kr ¼ 2h2r ¼ 3:05�
10�5 m2, penalty Mr ¼ 10,000 and nreno ¼ 4. The LS
function field and the final profile obtained with this
refined mesh are shown in Figure 6.

The difference in the width of the transitions in
Figures 6(a) and 5(b) is due to the diffusivity values
chosen in each case, which are kr ¼ 3.05 6 1075 m2

and kA ¼ 1.22 6 1074 m2, respectively. Regarding the
property d ¼ Oðk1=2Þ, then dr � 2k1=2r ¼ 0:012 m for
Figure 6(a) and dA � 2k1=2A ¼ 0:022 m for Figure 5(b).

Furthermore, for the case ADV þ BRCP(B), kB ¼
2.44 6 1074 m2 and dB � 2k1=2B ¼ 0:032 m 4 wd/2, i.e.
the proposed transition is too smooth and the method
is not able to keep the notch width, as shown in
Figure 4(c).

3.2. Collapse of a liquid column in 2D

This example is a typical test for interface-capturing
methods (Marchandise and Remacle 2006, Cruchaga
et al. 2007, Elias and Coutinho 2007, Tang et al. 2008,
Kurioka and Dowling 2009), consisting of a two-
dimensional water column which collapses after being
liberated, and is also known as the dam-break problem.

Figure 4. Curve of f ¼ 0 for the disk of Zalesak at t ¼ 1 s solved without and with BRCP (thick lines), together with the initial
condition (thin lines); (a) ADV; (b) ADV þ BRCP (A); (c) ADV þ BRCP (B).

Figure 5. Level set function field at t ¼ 1 s for the case of the notched disk; (a) ADV; (b) ADV þ BRCP(A).
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Experimental results are available for different geome-
trical configurations and fluids, e.g. see Martin and
Moyce (1952), Cruchaga et al. (2007), allowing the
validation of numerical methods.

The domain O considered for the numerical
simulation is illustrated in Figure 7, being the domain
of width and height Wd ¼ 0.228 m and Hd ¼ 0.228 m,
respectively, while the initial liquid domain Ol – the
water column – is Wc ¼ 0.057 m width and Hc ¼
0.114 m height, resulting in an aspect ratio of ra ¼ Hc/
Wc ¼ 2, the same as in the physical model of Martin
and Moyce (1952).

The fluids considered for the simulation are air for
the gaseous phase, with density rg ¼ 1 kg/m3 and
dynamic viscosity mg ¼ 1.0 6 1075 kg/(m s), and
water for the liquid phase, with its density
and dynamic viscosity being rl ¼ 1,000 kg/m3 and
ml ¼ 1.0 6 1073 kg/(m s), respectively.

For the fluid problem, boundary conditions are a
perfect slip over the whole contour, v � n ¼ 0, as
indicated in Figure 7, where n is the unit normal to the
contour, and null pressure on the top of the domain.
Boundary conditions for the transport problem are not
required because there are no inflow sections for the
domain O.

The initial velocity field is v0 ¼ 0 for the NS and
the ADV problems, while the initial LS function field is
given such that the water column Ol includes nodes
where 0 5 f � 1, while in the rest of the domain O,
i.e. the gaseous phase Og, is71 � f 5 0, and f ¼ 0 is
the initial FS position. For the numerical simulation,

the gate is instantaneously removed and the column
collapses due to the gravity acceleration g ¼ 9.81 m/s2.

The numerical problem is solved for a uniform
structured finite element mesh composed by quad-
rilaterals with typical size h � 0.0023 m and approxi-
mately 10,200 nodes, which is the same for the three
stages to be solved: NS, ADV and BRCP. The time
step adopted is Dt ¼ 0.002 s along 1,000 time steps,
with an implicit temporal integration for the NS and

Figure 6. Results of the analysis for the rotating disk with the refined mesh; (a) LS function field; (b) initial (thin) and final
(thick) f ¼ 0 profiles.

Figure 7. Geometry and boundary conditions for the
collapse of a water column example in 2D.
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the ADV problems, considering an integration para-
meter a ¼ 0.7 for the trapezoidal rule, while the BRCP
stage is stationary each time step.

The reinitialisation step is proposed with para-
meters k ¼ 2h2 ¼ 1.04 6 1075 m2 and M ¼ 10,000.
The number of ADV steps which are performed before
each reinitialisation is nreno ¼ 2 for this particular
example.

In Figure 8, The dimensionless front position
xf(t*)/Wc is represented versus the dimensionless time
t� ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g=Wc

p
, for the numerical results and the

experimental measurements taken from Martin and
Moyce (1952). In that figure, the slope of the curve
represents the velocity of the advancing front, which is
well captured.

Other reference results, also represented in Figure 8,
were numerically obtained by using the ETILT

method, from Cruchaga et al. (2007), and a VOF
approach developed by Elias and Coutinho (2007). In
both references, the aspect ratio is ra ¼ Hc/Wc ¼ 2,
which means that there is a physical similarity of the
problem solved with different Wc values, according to
the dimensionless front position and dimensionless
time. Furthermore, Elias and Coutinho (2007) solved
the collapse of the column in a 3D domain instead a
two-dimensional one.

The evolution of the dimensionless water height
hc (t*)/Wc, measured over the left side of the domain, is
represented as a function of the dimensionless time
t� ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g=Wc

p
in Figure 9. In that figure, the

displacement of the numerical curve from the experi-
mental one is smaller than in Figure 8, and the mean
descending velocity is well captured, considering the
slope of the curves. Again, numerical reference results
are taken from Cruchaga et al. (2007) and Elias and
Coutinho (2007), which are also included in Figure 9.

The FS position in different instants of the
simulation are shown in Figure 10, including early
stages without breaking, as in t ¼ 0.14 s or t ¼ 0.28 s,
and later stages with air capture and interface merging.

3.3. Collapse of a liquid column in 3D

The three-dimensional example presented is the
numerical simulation of the collapse of a cylindrical
water column, which was also experimentally studied
by Martin and Moyce (1952). The problem was solved
for one-fourth of the column inside a cubic domain, as
represented in Figure 11, with proper boundary
conditions in order to keep the symmetry of the
problem, as made by other authors (Akin et al. 2007;
Cruchaga et al. 2010, Tang et al. 2008).

The domain O consists of a cube with an edge
length b ¼ 0.2284 m, in which the water column, i.e.
the fluid domain Ol, is centred in the corner of the

Figure 8. Dimensionless front position xf(t*)/Wc versus
dimensionless time t� ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g=Wc

p
for the 2D dam-break

problem: numerical results and experimental data.

Figure 9. Dimensionless column height hc (t*)/Wc versus dimensionless time t� ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g=Wc

p
for the problem of the 2D dam-

break problem: numerical results and experimental data.
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Figure 10. FS positions for several instants in the 2D dam-break problem.
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plane coordinates (x1,x2) ¼ (0.2284,0.2284) m, its
radius and height being r0 ¼ 0.0571 m and h0 ¼
0.1142 m, respectively, giving an aspect ratio ra ¼ 2,
see Figure 11.

The collapse is started once the column is released
instantaneously at time t ¼ 0 due to the action of the
gravity acceleration g ¼ 9.81m/s2, given in –x3 direc-
tion. The fluid properties for water are density rl ¼
1,000 kg/m3 and dynamic viscosity ml ¼ 1.0 6 1073

kg/(ms), while for the air are rg ¼ 1 kg/m3 and
mg ¼ 1.0 6 1075 kg/(ms), respectively.

The finite element mesh employed for the numer-
ical simulation counts on 503 hexahedral elements with
uniform edge length h � 4.5 6 1073 m. Numerical
simulation is performed along 1,000 time steps of
Dt ¼ 0.001 s with implicit integration for NS and
ADV, and renormalisation at each time step, i.e.
nreno ¼ 1, adopting a penalising parameter of
M ¼ 500,000 and a diffusion coefficient k ¼ 2h2 ¼
4.17 6 1075 m2. Perfect slip conditions over the walls
are imposed for the NS stage, while ADV do not
require boundary conditions, as in the former case.

The dimensionless front displacement rf(t*)/r0 of
the breaking column as a function of the dimensionless
time t� ¼ t

ffiffiffiffiffiffiffiffiffiffiffi
2g=r0

p
is represented in Figure 12, where

the experimental measurements of Martin and Moyce
(1952) are compared with the numerical results
obtained through: (i) the present NS þ ADV þ BRCP
approach, (ii) Edge-Tracked Interface Locator Tech-
nique (ETILT) and Moving Lagrangian Interface
Remeshing Technique (MLIRT), both from Cruchaga
et al. (in press), and a Least Square Finite Element
Method (LSFEM) (Tang et al., 2008).

Since there are no experimental results for the
dimensionless height of the top of the column, only
numerical results are shown in Figure 13,

Figure 11. Geometry for the problem of the collapse of a
cylindrical water column in 3D.

Figure 12. Dimensionless front position rf (t*)/r0 versus
dimensionless time t� ¼ t

ffiffiffiffiffiffiffiffiffiffiffi
2g=r0

p
for the problem of the

collapse of a cylindrical water column in 3D: numerical
results and experimental data.

Figure 13. Dimensionless column height hc (t*)/r0 versus dimensionless time t� ¼ t
ffiffiffiffiffiffiffiffiffiffiffi
2g=r0

p
for the problem of the collapse of a

cylindrical water column in 3D: numerical results.
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corresponding to the method introduced in the
present work and the results presented in Cruchaga
et al. (2009) for ETILT and MLIRT, considering the
dimensionless column height hc(t*)/r0 as a function
of the dimensionless time t*. All these results
correspond to an aspect ratio of ra ¼ Hc/Wc ¼ 2,
and then to similarity flows. The early stages of
the collapse of the column are represented in
Figure 14.

4. Conclusions

The simulation of viscous and incompressible FS flows
is numerically performed by a three-stage FEM based
on the level set approximation, consisting of: an NS
solver for the fluid flow, a transport equation for the
advection of the level set function field, and a
renormalisation step for keeping some properties of
the scalar field, in a weak-coupling paradigm. Each of

Figure 14. Initial stages for the problem of the collapse of a cylindrical water column in 3D.
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the three steps is numerically computed over the same
fixed finite element mesh, and can be solved through
parallel computing. Particularly, the application of a
continuous operator, named BRCP, is introduced for
two-fluid flow problems.

Appropriate values for the user-defined para-
meters required by the BRCP are directly proposed
as (i) a function of the number of spatial dimensions
for the penalising parameter M, and (ii) a diffusivity
k proportional to the square of the transition
semiwidth between the limiting bounds of the level
set function f. In the latter case, the mesh size near
the interface can be taken as a reference for
proposing d.

The advection and renormalisation stages are used
to solve a classical test, the disk of Zalesak in section
3.1, which shows the performance of the renormalisa-
tion method for keeping the sharpness of the interface
and the regularity of the level set function field obtai-
ned. The renormalisation parameters are applied
according to the guidelines given in section 2.3, and
the influence of the diffusivity k over the transition
width d is verified.

Two typical two- and three-dimensional transient
FS problems are solved by the three-stage methodol-
ogy, in sections 3.2 and 3.3, respectively. The results
are in good agreement with the experimental mea-
surements and with the results obtained through
other numerical methods taken from the literature for
the early stages of the problem, showing the ability of
the proposed strategy to consider large density and
viscosity ratios. Furthermore, after the water impact
over the walls, the present method reproduces
complex topological changes, as the breaking up
and merging of the FS. The BRCP coefficients M and
k were given directly by the estimations mentioned
before.

The three-stage proposal can be applied to FS flows
as well as to general two-fluid flows problems, taking
into account that the boundary conditions in the
interface are directly solved by the two-phase level set
method.
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