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Integrated Constraint Programming Scheduling Approach for Automated
Wet-Etch Stations in Semiconductor Manufacturing
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This article addresses a challenging resource constrained flow shop scheduling problem from automated wet-
etch stations (AWSs) in wafer fabrication of semiconductor manufacturing facilities by means of a constraint
programming (CP) methodology. Wet etching in wafer fabrication is a difficult process considering the material
handling limitations and mixed intermediate policies. The proposed integrated approach consists of both a
CP model and an efficient search strategy in order to handle the different features of the process. The domain-
specific search strategy significantly improves the computational performance, a key aspect given the high
combinatorial complexity of the problem. The search strategy objective is to avoid losing time due to early
bad choices in the exploration and to produce good quality solutions with low computational effort. The
applicability of the proposed integrated CP methodology is successfully tested with several examples taken

from the literature, featuring a different number of jobs and baths.

1. Introduction

The scheduling problem is an important issue in process
operations in order to improve production performance. Sched-
uling approaches can be classified according to the type of
network structure they can handle, in terms of the function of
equipment units. The classification can range from the simplest
single machine problem, where a feasible or optimal order
sequence must be obtained, to more complex multipurpose
systems, where a given unit may be used by tasks belonging to
different production stages. In between, there are the multistage,
multiproduct plants, with products flowing through the stages.
Furthermore, one may encounter several intermediate storage
and transfer policies between consecutive stages.

Due to the industrial importance of multistage, multiproduct
environments and the fact that their scheduling problems are
challenging, significant research effort involving optimization
approaches has been given to this problem over the past decades.
Several excellent reviews can be found from Pekny and
Reklaitis,! Grieco et al.,> Kallrath,> Floudas and Lin,* and
Méndez et al.’ Despite significant advances there are still several
challenges that remain unaddressed. For example, there are many
issues related to the specific capabilities of the methods for
handling a large number of operational characteristics (e.g.,
storage and transfer policies), different types of constrained
resources, and different objectives (e.g., makespan, earliness,
or cost minimization). Finally, there are also questions on the
limitations and strengths of the various optimization techniques
used in the literature and the problem sizes that can practically
be addressed.

An analysis of the reviews reveals that scheduling problems
of multistage, multiproduct plants have been tackled by a variety
of optimization approaches as well as other solution methods.
Nevertheless, most of the approaches reported in the literature
rely on mathematical programming (MP) approaches, which
usually lead to mixed integer linear programming (MILP)

* To whom correspondence should be addressed. E-mail: luis.zeballos @
Ineg.pt.

" Universidad Nacional del Litoral.

* Laboratério Nacional de Energia e Geologia.

S INTEC.

10.1021/ie1016199

models. Due to the inherent complexity of the problems, there
are other solution methods, such as dispatching rules, meta-
heuristics, and artificial intelligence based methodologies.
Moreover, hybrid approaches have also been applied. Constraint
Programming®’ is a method based on artificial intelligence
techniques which has been effectively used by the process
system engineering community to deal with different classes
of scheduling problems.® ™"

Constraint programming (CP) is a paradigm for modeling and
solving optimization problems that consists of two phases. The
first one refers to the problem representation itself, using integer
and Boolean variables with the possibility of variables being
indexed by other variables. Furthermore, constraints can be
linear, convex, and logic. The second phase uses tree search
procedures (which enumerate assignments of values to variables)
combined with domain reduction and constraint propagation
algorithms to solve problems. In addition, it is worth remarking
that CP is a rigorous approach that given enough computational
time will give the optimal solution to optimization problems.

In the process system engineering community, CP has not
quite been evaluated considering the two phases. In most cases,
while formulations have been proposed for problem representa-
tion, only default search procedures, which do not exploit
domain-specific knowledge, have been considered in the second
phase. The exceptions in terms of the development of effective
and efficient search strategies, which are a fundamental support
for solving hard combinatorial optimization problems,’ are the
papers by Zeballos and Henning'? and Zeballos and Méndez."?

CP has also been integrated with MILP approaches in order
to take advantage of their complementary strengths.®'* Such
hybrid methods decompose the original problem into two
subproblems, one MILP and one CP. Models are separately
solved, and information obtained after solving the subproblems
is interchanged between them. Hybrid approaches have been
shown to be better than stand-alone MILP and CP models,**'
particularly in single stage problems with parallel units.'®

A few papers have shown that the full advantage of the CP
paradigm is obtained when addressing highly constrained
optimization problems considering the makespan as an objective
function.'"'*'*!7 The good performance of CP for makespan
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minimization is based on the optimization process that is
performed, which is continuously tightening the bound on the
objective function value. When the objective function is updated,
the time horizon is stretch contracted, leading to a direct domain
reduction on the model variables. Thus, the reason for the good
performance is that the mentioned bounding procedure acts as
an additional domain reduction process, which is executed
together with the domain reduction and constraint propagation
algorithms used by CP solvers to accelerate the search.

Much of the work in the field of production scheduling has
been focused on traditional multistage, multiproduct plants,'” 2"
which typically assumes unlimited intermediate storage and
transfer policies. Nevertheless, some contributions have included
this type of considerations,”’ >* which are critical in the
challenging optimization problem arising from semiconductor
manufacturing facilities addressed in this paper.

Semiconductor manufacturing is one of the fastest growing
industries in the world because of the diverse market focusing on
integrated circuits for networking, storage components, telecom-
munications/wireless, consumer, computer, and storage systems that
have become necessary tools of today.?* According to Hung and
Wang,? the overall manufacturing process can be separated into
six serial processes, which normally are performed separately in
different fabrication areas: (1) material fabrication, (2) wafer
fabrication, (3) wafer probe, (4) assembly, (5) raw testing, and (6)
final testing. Uzsoy et al.>**’ provide a comprehensive description
of the semiconductor manufacturing process.

Typical operations in semiconductor manufacturing are
cleaning, diffusion, oxidation, etching, ion implantation, electri-
cal-beam writing in wafer fabrication, baking in wafer probing,
and burn-in operation in testing. While semiconductor manu-
facturing involves several operations, most contributions address
only diffusion in wafer fabrication and burn-in operation in
device testing.>* Thus, a few papers are directly related to the
scheduling of electrical-beam writing, etching, and baking in
wafer probing. One good classification and meta analysis on
scheduling in semiconductor manufacturing can be found in
Mathirajan and Sivakumar.?*

In wafer fabrication, lots of wafers of raw silicon or gallium
arsenide are processed to arrange the paths of metal and wafer
material to produce the required circuits. This operation involves
many batch/semicontinuous physical and chemical steps with
the key process being wet etching. The scheduling of automatic
wet-etch stations (AWSs) is considered as a highly complex
problem,'® mainly because of the process features and the critical
resources (the material handling limitations and mixed inter-
mediate policies). The problem subject of this paper can be
described as the scheduling of serial flow shop multiproduct
stations with ZW/NIS (zero wait/no intermediate storage) and
LS/NIS (local storage/no intermediate storage) policies as well
as a shared material handling system with finite carrying capacity
(one lot at a time).?®

Regarding schedule performance measures, various objective
functions can be considered. Nevertheless, in industrial practice,
AWSs of wafer fabrication use makespan minimization. The
selection is based on management’s desire to improve through-
put of the AWSs because they can become a constraint on
factory output.”® Furthermore, the selection of this objective is
supported by considering that (a) managers wish to minimize
the number of AWSs in the plant because they take up a great
deal of clean room floor space®® and (b) decreasing the total
time required for the production of all wafers leads to lower
inventory and contamination and results in higher profits.>®

The inherent complexity of the scheduling problem of AWSs
has been addressed by several authors, mainly coming from the
process system engineering community.”® 3! Proposals have
presented exact (e.g., mathematical approaches), nonexact, and
nonoptimal algorithms (e.g., heuristic algorithm based on tabu
search) with different types of assumptions in order to make
the problem tractable (e.g., the material handling system as a
noncritical resource and a single robot for moving the wafers).
It is important to remark that the trend for this type of scheduling
is toward the development of mechanisms that yield good
solutions, since practical problems cannot be solved to optimality
due to resource limitations.

Geiger et al.”® presented a heuristic algorithm based on tabu
search (TS) for the scheduling problem considering a single
robot and makespan minimization. These authors first obtained
a sequence of lots on baths and then introduced the ordered set
of lots in an algorithm for scheduling transfers and processing.
Thus, they presented a nonexact algorithm where transfer times
and processing times are separately addressed.

Bhushan and Karimi?® developed a mixed integer linear
programming (MILP) approach for minimizing the total time
required to process a given set of wafers. Several reformulations
and constraints were numerically evaluated to identify the best
formulation when considering the scheduling problem with only
one robot. In addition, since MILP solutions become prohibitive
for moderately sized problems, a nonoptimal two-step strategy
based on such a mathematical formulation was developed. The
two-step procedure uses the MILP model without the robot
constraints (i.e., unlimited number of robots is considered) for
determining the job sequence in baths and then imposes the
single-robot restrictions on that sequence to obtain a feasible
schedule. Later, Bhushan and Karimi*® introduced other heuristic
procedures in order to address large instances of the scheduling
problem of AWSs with a single robot. The complete procedures
are based on several techniques, such as simulated annealing,
TS, and heuristic algorithms for determining initial sequencing
and timing of jobs. The authors concluded that the TS
sequencing procedure combined with two specific job-schedul-
ing algorithms exhibited a better performance than the one
reported by Geiger et al.”

More recently, Aguirre and Méndez®' developed a MILP
formulation that, in contrast to previous approaches, considers
more than one robot as part of the material handling system.
Similarly to Bhushan and Karimi,'® these authors proposed a
two-step strategy based on their MILP model to solve the whole
problem in a sequential manner. The two-step strategy makes
moderately sized case studies tractable.

Bixby et al."> used MIP and CP formulations as main
components of a special purpose decomposition algorithm,
called STARTS for space—time allocation for real-time schedul-
ing. This method iterates alternately over the space and time
dimensions. The algorithm uses separated, dedicated operational
models for each fabrication process area in order to make the
overall problem tractable. Although the iterative algorithm is a
general approach, only considerations about the diffusion
operation were given in the work. Model implementations for
the different fabrication areas were not reported.

The goal of this article is to introduce an effective and
efficient constraint programming methodology for the scheduling
problem of AWSs in an integrated way, which generates a
detailed schedule of production activities and transfer operations
that complies with stringent intermediate storage policies. Since
transport-related issues are tackled, it is assumed that material
handling devices are critical resources. In addition, input and



output buffers are not taken into account due to the fact that
their capacities are not regarded as limiting. It is important to
note that, since the addressed problem is highly constrained and
makespan minimization is the objective, we have favorable
conditions to use a constraint programming technique. In this
respect, the proposed formulation takes advantage of the
simplicity and the declarative power of the paradigm and is
oriented to short-term scheduling. Industrial-scale problems
consisting of hundreds of lots, dozens of stages, and long
scheduling horizons can be addressed using concepts introduced
for MILP formulations.** 3*

The rest of the paper is structured as follows. Section 2
describes the scheduling problem under consideration. Section
3 introduces the CP model for the AWS scheduling problem at
hand. One domain-specific search strategy is presented in section
4. Results are presented in section 5. Finally, conclusions are
pointed out in section 6.

2. Problem Description

Semiconductor manufacturing involves many batch/semicon-
tinuous physical and chemical operations. The main stage in
semiconductor manufacturing facilities is wafer fabrication,
which is a procedure composed of several repeated sequential
steps to produce complete electric circuits. At the beginning of
the production process, the wafer is covered with a thin uniform
layer of SiO,. Next, selected portions of the wafer are marked
in order to form a circuit configuration. This step is called
photolithography or photomasking. The etching process is used
immediately after the photolithography to etch the unwanted
material from the wafer. Since this operation is not selective,
the circuit configuration must be traced over the wafer. It is
important to note that etching is a key step in the wafer
fabrication process that involves transfers of expensive wafer
lots between baths and severe constraints on bath times. In
semiconductor manufacturing facilities, the wet-etching process
is carried out by one or more highly automated stations (AWSs).
Thus, these units are responsible for removing the unnecessary
film of SiO, formed on the surface of the wafer, in a series of
chemical and deionizing baths.

The AWS deals with group of wafers of the same type,
hereafter named wafer lots. Lots in the input buffer come from
the upstream process. After processing in the last bath, lots enter
the output buffer. In this type of technology, wafer lots are
moved across a chemical or water bath to another by means of
automated material handling devices, for example, robots. One
or more transportation units move lots from bath to bath for
processing. Thus, baths are linked by a transportation system
that picks up lots in order to execute the material movements.
The resulting problem is the scheduling of serial flow shop
multiproduct stations with ZW/NIS and LS/NIS policies as well
as the restricted material handling system. Figure 1 shows a
schematic representation of a typical AWS.

The scheduling problem for AWSs to be tackled in this work
has the following features:

(a) A set of N lots of wafers (i =1, 2, ..., N), hereafter named
jobs, must be manufactured following predefined recipes that
show the sequence of baths to be visited. It is assumed that
wafer lots follow the same sequence of baths across the system,
considering the input and output buffers j =0, 1, ... M + 1,
where M is the total number of baths). Since baths alternate in
the AWS, odd baths have chemicals (Je = {1, 3,5, .., M —
1}) and even baths have water (Jw = {2, 4, 6, ..., M}).

(b) While chemical baths are followed by a zero wait storage
policy (ZW), water baths can be used as local storage.
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Figure 1. Schematic representation of a typical AWS.

ZW/NIS: Zero Wait/No Intermediate Storage

LS/NIS: Local Storage/No Intermediate Storage

(c) The processing time for a given lot depends on the lot
and the bath (z;).

(d) A bath can process one lot at a time.

(e) Chemical and water baths are linked by robots which
transport a wafer’s lots from a bath to another. Since the
transport system is composed of a limited number of robots, it
becomes a critical resource.

(f) Robots cannot move multiple lots at a time and cannot be
used as temporary buffer.

(g) Robots are free of collisions since they have different
paths to execute their movements.

(h) Transfer times between consecutive baths for lots depend
on a single route involving the origin and destination. The time
for transferring lots between successive baths j — 1 and j is
represented by ;.

(i) Baths and robots do not need any setups.

(j) There are no breakdowns associated with baths or robots.

Given all the above features, the scheduling problem consists
of determining (i) the wafer’s lot sequence at each bath, (ii) the
allocation and sequence of transport activities to be carried out
by each robot, and (iii) the timings of the processing and
transport activities. The goal of this problem is makespan
minimization.

3. Constraint Programming Model

In this section, the CP model for the scheduling problem of
an AWS is presented. The approach has been implemented in
the ILOG OPL constraint programming language,” embedded
in the OPL Studio 3.7 Package.*® It resorts to some specific
scheduling constructs, which are available in the ILOG Sched-
uler*® software package.

3.1. Nomenclature.

Subscripts

i = lot

J = bath or buffer
r = robot

Sets

I = set of lots or jobs

J = set of baths and buffers
Jw = set of water baths

Jc = set of chemical baths
R = set of alternative robots

Parameters

t; = residence time of job i in bath j
mr; = transfer time between j — 1 and j
TPT; = total processing time for lot i
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Special Parameters and Variables. The model handles the
following parameters connected with resources:
bath; = models bath j (chemical or water) where the lots can
reside during a given time. Baths are defined as unary
resources, which are a special type of renewable resources
of capacity 1. Thus, unary resources can execute just one
operation on a part at any time and become reusable once
the operation being done is finished.
robot, = represents the robot r. This device is another unary
resource that can transport only one wafer’s lot at a time.
Model Variables. In this work two types of activities are
employed: PrTask and TrTask. Each activity is described by
means of duration, start time, and end time variables (i.e.,
Task.duration, Task.start, and Task.end) that verify the condition
Task.start + Task.duration = Task.end. While the first type
represents the processing of lots in baths, the second one
represents movements executed by the robot transporting lots
between consecutive baths.
PrTask; = corresponds to the processing of lot i in bath j
TrTask;;+1 = models robot movements transporting lot i from
bathjtoj+ 1
Mk = makespan, corresponds to the total time required to
complete all the jobs in the wet-etch station
3.2. Model Constraints. The CP approach employs some
specific scheduling constructs available in the modeling language
ILOG OPL Studio.*> One of them is precedes, which imposes
a proper sequence of nonoverlapping activities. Another con-
struct is requires, which prescribes the assignment of renewable
resources demanded by activities. Finally, one of the most
important constructs is activityHasSelectedResource. It acts like
a predicate that assumes a value equal to one when an activity
has been assigned to a specific resource belonging to a given
set of alternative resources.
Baths Assignment Constraints.

PrTaskl.j requires bathj Viel, Vjel (1)

PrTask; precedes PrTask,,, Vie I, Vje J, j= last(J)
2

Constraint 1 prescribes that lot i must be assigned to bath j
belonging to the set J. Since baths have been declared as unary
resources, all the activities that are assigned to them will be
automatically sequenced without requiring additional constraints.
Constraint 2 enforces a proper sequencing of tasks corresponding
to any pair of consecutive processing operations at baths j and
Jj + 1to be executed on lot i by resorting to the special construct
precedes. Therefore, the activity located at the right-hand side
cannot be started until the activity on the left-hand side is
finished.

Baths Timing Constraints.

PrTasklj.duration =1 Viel, VjelJc 3)

PrTaskij.duration z 1 Viel VjeJw 4)

Constraint 3 fixes the duration of the PrTask; activity
according to the job and the assigned chemical bath. The task
duration must be equal to the residence time since the
intermediate storage policies “zero wait” and “no intermediate
storage” must be followed in the chemical bath j. In turn,
constraint 4 places a lower bound on the duration of the PrTask;
activity according to the job and the assigned water bath.
Processing activities can be delayed after their predefined
minimum residence times since the intermediate storage policies

“local storage” and “no intermediate storage” must be followed
in the water bath ;.

Robots Allocation and Timing Constraints.

TrTask;;

1) requires R Vi € I,

Vje J,j# first(J)
)

TrTask..

j—1-duration = 77, Vi e [,

Vje J, j#Z first(J)
(6)

TrTask;_,;.startt = PrTask;_,.end Vie I,
vje J, j= firstD)  (7)

TrTask;_,.end = PrTask;.start Vi e I,
Vje J, j= first(J) (8)

Constraint 5 prescribes that the transportation task TrTask;—;
must be assigned to just one robot of the set of alternative
material handling resources. Constraint 6 fixes the length of the
transportation activity TrTask;—,; of lot i between baths j — 1
and j. The duration of this task is strictly equal to the time
required by a given robot to go from bath j — 1 to j since this
resource cannot be used as temporary storage. Constraints 7
and 8 specify the start and end times of activities that take place
in robots. Expression 7 enforces the start of task TrTask;-; of
job i to coincide with the end of the processing activity on lot
i in bath j — 1. Constraint 8 sets the end of activity TrTask;;
of job i to be equal to the start of the processing task on lot i
in bath j.

activityHasSelectedResource(TrTasky; , R, robot,) A

acti UityHasSelectedResource(TrTaski,j, 1o R, robot,) N
TrTask;;, precedes TrTask;;_; =
PrTask;end + 7, + ; = PrTask;,. start
Vi,i'e Li=i, VjelJ, Yre R,j#last(J), ]jZ first(J)

(€))

Given that one robot is not able to deliver a lot in a bath and
immediately pick up another one from the same bath, these
activities must be executed with a certain temporal separation.
In order to do that, the temporal relationship between the
processing activities performed in both lots is fixed. Constraint
9 prescribes the situation when the activity corresponding to
lot i is performed before the one representing lot i’; the robot
must first transport lot i from bath j to j + 1 (s7;+,) and later
move lot i’ from bath j — 1 to j (7).

PrTaskgend + 7, + 7; < Prlask;;start V PrTask;.end +
Ty + 7 < Priaskgstart Vii'e Li= 1,
Vje J,j# last(J) (10)

It is important to note that when a single robot is available to
carry out transportation activities, constraint 9 can be simplified.
Thus, constraint 10 is needed in the model in order to prescribe
the temporal relationships between the processing activities
performed in the lots.

Objective Function. If makespan is chosen as the objective
function, expressions 11 and 12 allow its definition. This goal
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Figure 2. Conceptual representation of the execution of two wafer lots with different total processing times.

search {

forall( i in I ordered by increasing TPT[i]){
tryall(n in 1..card(R))

b

)i
forall(j in J: j<last(J) ordered by decreasing ord(j)) {
forall( i in T ordered by increasing TPTTi]){
try
PrTask[i,j].start = dmin(PrTask[i,j].start)
|
PrTask[i,j].start > dmin(PrTask[i,j].start)
endtry;

1

forall(j in J: j>first(J) ordered by decreasing ord(j)) {

activityHasSelectedResource(TrTask([i,j-1,j],R,robot[ nextc(first(R),n-1+ord(i))]);

O 00NN BN =

Figure 3. Search strategy that guides the variable domain reduction procedure (GVDR).

used in the proposed CP approach aims at minimizing the total
time required to complete all the lots in the wet-etch stations.

PrTaskij. end < Mk Viel VjeJ, j= lastJ)
(11)

min Mk (12)

4. Search Strategies

CP systems allow users to choose one search strategy from
a set of default ones or define one which can be tailored to a
given problem type. This last feature makes the CP paradigm
very attractive for solving real-life or large-size optimization
problems. Some of the most common default strategies are
depth-first search (DFS), slice-based search (SBS), and depth-
bounded discrepancy search (DBDS). Since they do not take
advantage of problem information, their computational perfor-
mances can be significantly improved in general. In this work,
we introduce a domain-specific search procedure that attempts
to avoid losing time due to early bad choices in the search and
tries to produce good quality solutions with reduced computa-
tional effort. This objective is sought out by guiding the
exploration process, and not by restricting the search space.

The search strategy presented in this section attempts to
improve the computational performance by resorting to a
balanced assignment of transportation activities to robots and a
variable domain reduction approach associated with processing
tasks that guide the movement through the search space. For
both procedures, activities are arranged in identical form. Each
method starts with activities associated with lots in the last bath,
then, it continues with tasks corresponding to the lot connected
to the previous bath and so on, until reaching tasks associated
with the first bath. Another characteristic of the arrangement is
that it focuses on tasks corresponding to lots that seem to be
more demanding in a given time period, in terms of transporta-
tion resources, i.e., the ones that demand more times the robots.
This finding can be noticed by analyzing Figure 2 corresponding

to two wafer lots, with different total processing times, in a
system with four baths.

As can be seen, since the total processing time of lot i is
smaller than the one of lot i/, the robot is used more times by
lot i than by lot i’ considering the total processing time of lot i.
Thus, for each lot, the ordering procedure calculates its
associated total processing time (7PT;) just by adding the
processing times required in all baths. The processing times in
the bath with the smallest average processing time are affected
by a weighing factor (wf, greater than 1) in order to emphasize
the bath relevance in the complete processing sequence. The
average processing time of each bath is computed adding the
processing times of all lots requiring the bath and then dividing
the result by the number of lots. Afterward, tasks corresponding
to lots are organized in an increasing arrangement of total
processing times in order to try to address first those lots that
seem to be more demanding in terms of transport resources.

The proposed strategy is referred to as guided variable domain
reduction (GVDR). The strategy GVDR is depicted in Figure
3. Statements in lines 2 and 3 order the assignment of
transportation activities describing the movements of wafer lots
between consecutive baths according to the arrangement of
activities pointed out before. Therefore, the strategy starts with
transportation tasks corresponding to the lot movements to the
last bath (j), then it continues with tasks corresponding to the
lot passages to the previous bath (j — 1) and so on, until reaching
tasks associated with the second bath. For each bath, tasks
connected with lots are addressed in an increasing order of total
processing times. Considering that arrangement of transportation
tasks, the “tryall” instruction (line 4 in Figure 3) tries to allocate
the transportation activity corresponding to the lot with the
smallest total processing time in the last bath to robots, then it
attempts with the task associated with the next lot in the last
bath and so on, until reaching the transportation activity
corresponding to the lot with the biggest total processing time
in the last bath (). Then, the procedure continues in the same
fashion with the lot movements associated with the previous
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bath (j — 1) by taking them in the order that was previously
found. Thus, it proceeds chronologically to build an initial
allocation of activities to robots in a consistent fashion.

The assignment step starts with the task corresponding to the
lot with the smallest total processing time in the last bath,
TrTask;, one in turn, trying to allocate this to one of the devices
that belongs to the set of alternative robots R. If an assignment
is found to be infeasible, the system will backtrack and try
another one. When all robots belonging to set R have been tried
and have also failed, the backtracking step is more profound
and affects the previously allocated task. Therefore, if necessary,
all the assignments can be revised and the backtracking process
can achieve the allocation of the activity corresponding to the
first lot in the last bath. It is worth noting that the third argument
of the activityHasSelectedResource predicate (line 5 in Figure
3) is a function that attempts each task assignment by iterating
over the corresponding set of alternative robots in a circular
way (“nextc”). Consequently, if an activity TrTask; has been
initially assigned to robot r, the system tries to allocate the next
activity TrTasky; to unit ', which is the next one in set R. If the
number of wafer lots is greater than the number of robots, once
the last unit of set R has been assigned an activity, the next
task is allocated to the first unit of such set. Therefore, the
procedure begins a second step of assignments.

If all transportation tasks have successfully been allocated,
the variable domain reduction procedure begins. It attempts to
find the timing to the processing activities operating on the
domains of their start time variables. Considering the same
arrangement of baths and lots used in the assignment step (lines
8 and 9 in Figure 3), the domain pruning, which corresponds
to statements in lines 8 —14, can start. This recursive procedure
operates on the domains of the start time variables associated
with lots. The domains of such variables are characterized by
two extreme points: the earliest start and the latest start times
(EST and LST). The proposed domain reduction approach
performs the pruning by adopting lower values for the ESTs
(line 11). The domain pruning procedure begins by assigning
the least possible value to the start time of the lot with the
smallest total processing time in the last bath. If such variable
instantiation succeeds, it proceeds likewise with the next lot in
the last bath. It continues in a similar way until all the domains
of the lots associated with the last bath have been tried. Then,
the procedure continues in the same fashion with the lots in the
previous bath by taking them in the order that was previously
found. If an infeasible solution is found, backtracking takes place
by relaxing the domain of the last addressed variable and then
attempting the allocation of a value greater than the previous
one (line 13). Eventually, the domain reduction procedure
succeeds in finding a feasible solution to the problem. When
the domain pruning procedure cannot find a set of start times
for all processing tasks, the backtracking will be even deeper
and will reach the assignment of transport activities. The strategy
ends when the entire search tree has been explored.

To show the effect of using search procedures, the model
presented in section 3 was solved with three default methods
(DFES, SBS, and DBDS) as well as with another search procedure
that takes advantage of domain knowledge. The SGVDR
strategy (simplified guided variable domain reduction) is a
slightly modified version of the GVDR strategy where lots are
addressed in the specific order shown in the set of lots and not
organized in an increasing order of total processing times. Thus,
no clever order is given for lots in SGVDR. In addition, it is
worth noting that in cases where only one robot is considered,

Table 1. Problem IDs and Main Characteristics

[M x NI
problem baths jobs
P1 6 5
P2 6 15
P3 6 25
P4 12 5
P5 12 15
P6 12 25
P7 4 8
P8 4 8
P9 12 10

lines 2—5 (Figure 3) are not needed and therefore GVDR
strategy is only composed of lines 8—16.

5. Computational Results

In the literature, there are a huge number of case studies
connected with the scheduling problem in semiconductor
manufacturing. Nevertheless, most of them are related not to
the wet-etching process, but to other typical fabrication areas
in the semiconductor industry. In addition, some problems are
simplified to cope with the assumptions considered in formula-
tions. For example, Ham et al.*” developed a MILP approach
without taking into account transfer and storage limitations, and
assuming identical processing times for all combinations of jobs,
steps, and machines (equal to 1). Then, the mathematical
formulation was tested with problems involving 15 operations,
5 flexible machines, and 60 jobs.

In this section, nine test problems are solved to illustrate the
capabilities of the CP approach (model + search strategy).
Examples were taken from the specific and more relevant
literature related to the wet-etching operation involved in
semiconductor manufacturing. Table 1 summarizes the charac-
teristics of the various case studies that are going to be
considered. Data for case studies P1—P6 and P9 were taken
from Bhushan and Karimi* and are given in Table 6 in the
Appendix. Examples P1—P3 correspond to the first 6 consecu-
tive baths and the first 5, 15, and 25 wafer lots, respectively.
Case studies P4, P5, P6, and P9 comprise the 12 consecutive
baths and the first 5, 15, 25, and 10 wafer lots, respectively.
Problem P6 corresponds to the [12 x 25] case study introduced
by Bhushan and Karimi.*® Processing and transfer times for case
study P7, introduced by Bhushan and Karimi,® are given in
Table 7 in the Appendix. Example P7 corresponds to a [4 x 8]
scheduling problem, with case study P8 being a slightly modified
version, previously studied by Aguirre and Méndez.*' In
problem P8 transfer times are 10 times larger than in P7, while
the processing times are the same. Only one robot is considered
in problems P1—P9.

Case studies were solved to a maximum time limit of 3600
CPU seconds by the commercial software ILOG OPL Studio
3.7,% based on the ILOG Solver’® and Scheduler*® packages.
In all cases, a computer consisting of an AMD Athlon 64 X2
Dual Core 2.2 GHz processor with 1 GB of RAM was used.

5.1. Comparison of Search Strategies. The goal of this
section is to evaluate the quality of the CP model and the search
strategies introduced. It is worth noting that the CP model will
be tested considering the default search strategies DFS, SBS,
and DBDS as well as the new proposed SGVDR and GVDR
search strategies. In all cases where GVDR was used, the
weighing factor took the value wf = 1.2, which was experi-
mentally proved to be appropriate. It is important to note that
the search strategy was adjusted to obtain the best performance
considering the case studies found in the literature. Nevertheless,
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first solution

best solution/optimal

problem variables constraints makespan CPU time makespan CPU time search strategy
P1[6 x 5] 226 380 NS - NS 3600° DES
97.4 398.5 82.6 403.3 SBS
91.6 35.47 82.6 40.81 DBDS
93.7 0.05 82.6 3.84 SGVDR
92.6 0.01 82.6 2.84 GVDR
P2 [6 x 15] 676 1665 NS - NS 3600° DES
NS - NS 3600” SBS
NS - NS 3600” DBDS
208.6 0.13 189.2 2301° SGVDR
205.4 0.14 185.0 350° GVDR
P3 [6 x 25] 1126 3650 NS - NS 3600° DES
NS - NS 3600” SBS
NS - NS 3600” DBDS
336.0 0.45 312.1 2717° SGVDR
325.1 0.53 297.3 1346° GVDR
P4 [12 x 5] 406 695 NS - NS 3600” DFES
NS - NS 3600” SBS
NS - NS 3600” DBDS
153.2 0.04 144.1 0.22° SGVDR
161.5 0.06 144.1 0.39" GVDR
P5[12 x 15] 1216 3060 NS - NS 3600” DFS
NS - NS 3600” SBS
NS - NS 3600” DBDS
308.8 1.10 281.5 1260° SGVDR
294.0 0.76 273.2 949" GVDR
P6 [12 x 25] 2026 7675 NS - NS 3600” DFES
NS - NS 3600° SBS
NS - NS 3600” DBDS
465.6 9.92 451.8 818” SGVDR
497.5 17.29 443.4 493° GVDR

“NS, no solution was found in 3600 s. ” Unable to prove optimality within the imposed time limit (3600 s).

if instance characteristics change, the search mechanism may
require a readaptation to achieve the best performance.

Computational results for examples P1—P6 are presented in
Table 2. It is clear that the model performs poorly with default
search strategies (DFS, SBS, and DBDS). Thus, there is an
obvious need for search strategies exploiting domain-specific
knowledge, such as the structure of the manufacturing plants.

The GVDR strategy showed the best performance of the five
search strategies because it allowed finding better solutions for
problems P2—P6. As can be seen, the best solution reached for
problem P6 when adopting the GVDR strategy was 1.86% better
than the one obtained when taking into account the SGVDR
strategy. Furthermore, the best solution was achieved in short
CPU time. The GVDR strategy led to the attainment of an
optimal solution for problem P1 slightly faster than SGVDR
and considerably quicker than SBS and DBDS. While SGVDR
and GVDR achieved solutions for all problems, default strategies
were not able to find a solution for cases P2—P6 within the
predefined time limit. In addition, both SGVDR and GVDR
strategies allowed improving the quality of the initial solutions.

Since Table 2 illustrates the first feasible solutions that were
found and the differences among these and the optimal or
suboptimal ones reached within 3600 s, another analysis of the
CP performance can be done from this perspective. In all cases,
the incorporation of the SGVDR and GVDR strategies origi-
nated solutions in which the quality of these was quickly
improved. In addition, it can be seen that in most cases, with
the exceptions of P4 and P6, the GVDR strategy originated first
solutions of better quality than the SGVDR strategy. Finally,
Table 2 also shows the problem sizes, to evaluate the impact
of an increase in the number of wafer lots and baths on the
problem size. It follows that when the problem size increases,
it becomes more difficult to find a feasible solution and prove
optimality. In fact, only P1 can be solved to optimality, meaning
that there is still room for improvement.

5.2. Comparison of the CP Approach with Others
Taken from the Literature. The scheduling problem of AWSs
has been considered by different contributions, such as Bhushan
and Karimi®® as well as Aguirre and Méndez.*' These authors
solved different case studies, among them P6—P8. It is worth
noting that, since SGVDR, DFS, SBS, and DBDS search
mechanisms tested in this study rendered a lower computational
performance than the GVDR strategy in most of examples
shown in Table 2, this section only shows computational results
corresponding to the CP model with the GVDR strategy. Results
for the CP approach are compared with those obtained using
our implementation of the MILP approach given by Aguirre
and Méndez.*" In order to make the direct comparison of CPU
times, the mathematical formulation was implemented in ILOG
OPL Studio 3.7* and solved with CPLEX 9.1.%°

Table 3 shows a comparison between the results of the CP
approach and the MILP model considering problems P1—P9.
For case studies P4, P7, and P8, it should be noted that the
proposed CP formulation requires lower CPU times to obtain
the best solutions. For problems P4, P7, and P8, this contribution
achieved the optimal solution in 0.39, 1.32, and 1.40 s,
respectively, in comparison with 7.36, 12.58, and 72.34 s
required by the mathematical model. Nevertheless, it is worth
remarking that while the CP approach was unable to guarantee
global optimality for the best solutions generated within the
maximum CPU time for examples P4, P7, and P8, the MILP
formulation did that in 14.49, 33.16, and 152.68 s, respectively.
For the moderate and large case studies (P3, PS5, P6, and P9),
the CP approach achieved feasible solutions, while the math-
ematical method found no solution within the given time limit
for examples P3, P5, and P6. Moreover, the solution reached
with the CP approach for problem P9 is 3.5% better than the
one obtained with the MILP model. Another important remark
is that the computational performance of the MILP formulation
decreased faster than the one of the CP approach.
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Table 3. Comparison of Results Corresponding to Problems P1—P9

first solution

best solution/optimal

problem variables constraints makespan CPU time makespan CPU time approach
P1[6 x 5] 511 1050 218.1 0.01 82.6 0.94 MILP
226 380 92.6 0.01 82.6 2.84 CP + GVDR
P2 [6 x 15] 4756 10500 196.1 1687 195.2 3600 MILP
676 1665 205.4 0.14 185.0 350¢ CP + GVDR
P3 [6 x 25] 13301 29750 NS - NS 3600 MILP
1126 3650 325.1 0.53 297.3 1346 CP + GVDR
P4 [12 x 5] 1711 3510 154.4 2.38 144.1 (7.36) 14.49 MILP
406 695 161.5 0.06 144.1 0.39¢ CP + GVDR
P5 [12 x 15] 16906 35880 NS - NS 3600 MILP
1216 3060 294.0 0.76 273.2 949 CP + GVDR
P6 [12 x 25] 47777 102051 NS - NS 3600 MILP
2026 7675 497.5 17.29 4434 493.37¢ CP + GVDR
P7 [4 x 8] 661 1512 87.825 0.17 84.37 (12.58) 33.16 MILP
265 632 96.585 0.02 84.37 1.32¢ CP + GVDR
P8 [4 x 8] 661 1512 139.01 3.45 120.47 (72.34) 152 MILP
265 632 128.20 0.05 120.47 1.40¢ CP + GVDR
P9 [12 x 10] 7316 9768 206.30 3452 206.30 3452¢ MILP
811 1715 232.8 0.38 199.00 3440 CP + GVDR
“ Unable to prove optimality within the imposed time limit (3600 s).
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Figure 4. Gantt diagram depicting the best solution for example P9.
Table 4. Comparison of Results Corresponding to Problem P6 [12 x 25]*
first solution best solution
variables constraints makespan CPU time makespan CPU time approach
47777 102051 NS - NS 3600” MILP model
- - - - 478.6 - A2’ heuristic
2026 6725 497.8 17.29 4434 493.97" CP model + GVDR

“NS, no solution was found in 3600 s; —, not reported. * Unable to prove optimality within the imposed time limit (3600 s).

The best schedule generated for problem P9 is shown in
Figure 4. This figure depicts the bath’s workload and the
requirements of robot and moreover shows the high coordination
that must exist between the production system and the material
handling device.

Bhushan and Karimi* solved different examples, one of them
being P6, which involves 12 consecutive baths and 25 wafer
lots and is thus larger than P7—P9. Table 4 presents the
computational statistics for their®® heuristic approach, for the
MILP model by Aguirre and Méndez*' and our CP integrated
approach. Table 4 lists the results reported in ref 21 for the A2’
heuristic algorithm, which had the best performance among all

algorithms tested. A2 is a heuristic algorithm composed of three
parts: (1) one sequencing technique based on TS, (2) one
heuristic for initial sequence called nNEH, and (3) one schedul-
ing algorithm based on iterative improvements referred to as
1L

An analysis of the results in Table 4 shows that the CP
formulation presented the best performance. While the MILP
model could not obtain a feasible solution within the time limit
of 3600 s, the solution reached by the heuristic algorithm was
worse than the one obtained using the CP formulation. As can
be seen, the best solution reached by the proposed approach is
7.35% better than the one obtained when taking into account
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Table 5. Comparison of Results Corresponding to Problems P2 and P3 with Two and Three Robots®
first solution best solution
problem variables constraints makespan CPU time makespan CPU time approach
P2, two robots 4996 22380 181.3 410.85 170.9 3589° MILP model
676 3450 179.4 0.48 169.7 4.46° CP model + GVDR
P2, three robots 5116 32670 165.6 546.34 164.2 2371° MILP model
676 4710 187.5 0.08 164.0 2009” CP model + GVDR
P3, two robots 13701 63550 NS — NS 3600” MILP model
1126 8750 291.7 248 274.8 44.16" CP model + GVDR
P3, three robots 13901 92950 NS - NS 3600” MILP model
1126 12350 289.4 32 269.6 56.38" CP model + GVDR
“NS, no solution was found in 3600 s. ® Unable to prove optimality within the imposed time limit (3600 s).
Units
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Figure 5. Gantt diagram depicting the best solution for problem P2 with three robots.

the A2 heuristic. In addition, the CP approach achieved a good
quality solution (443.4) in short CPU time (8.23 min).

5.3. Performance with Multiple Robots. In order to extend
the comparison between the CP approach and the MILP model
for problems involving multiple robots, Table 5 lists the model
statistics and computational results, for case studies P2 and P3
with two and three robots. It can again be seen that, in all
instances, the CP approach originated first feasible solutions in
very short CPU times and quickly improved the quality of
solutions. It is important to remark that while the CP approach
was able to obtain feasible solutions for all cases within the
maximum CPU time enforced, the MILP formulation achieved
feasible solutions only for P2. Furthermore, for these cases, the
CP formulation achieved better quality solutions in less time.
While the best solution for the instance with two robots was
achieved in 4.46 s by the CP approach, the MILP formulation
obtained a lower quality solution in 3589 s. Nevertheless, the
solution quality between MILP and CP is roughly the same for
problem P2 for the imposed time limit.

Figure 5 depicts the Gantt chart describing the best solution
reached for problem P2 with three robots when the GVDR
strategy is employed. It can be noticed that transport tasks were
allocated to robots trying to balance the load of these.

6. Conclusions

An integrated CP approach for the scheduling problem of
AWSs involving multiple robots in the material handling system
and strict intermediate storage policies has been presented. The

formulation is composed of two parts: a new model and an
efficient search strategy that is shown to have a major impact
on the computational performance when compared to default
search strategies. The proposed search strategy (GVDR) speeds
up the solution process by guiding the assignment of transport
activities to material handling devices and the domain variable
reduction procedure on the processing activities. Overall, it puts
emphasis on the idea that an underlying search strategy that is
tailored to specific problems is fundamental for solving complex
optimization problems.

In the 13 case studies considered, the integrated approach
had a good computational performance. Despite not reaching
optimal solutions for moderate and large-size case studies
within the 3600 s time limit, solutions of very good quality
were achieved within a few minutes of CPU time. The
proposed CP approach was shown to compare favorably with
the recent MILP formulation reported by Aguirre and
Méndez®' as well as with the heuristic approach of Bhushan
and Karimi.*® In particular, it is important to remark that,
when problem sizes increase, the computational performance
of the CP approach decreases more slowly than the one of
the MILP formulation. In addition, in contrast to rigorous
MILP models, the CP formulation is able to guide the search
in order to find a good solution in a reasonable time, even
for medium-scale problems. In view of the above, the
proposed integrated approach has the potential to be used
by industry as a powerful decision-making tool.
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Table 6. Processing Times of Jobs on Baths and Transfer Times of Jobs for Examples P1—P6 and P9

bath
job 1 2 3 4 5 6 7 8 9 10 11 12
1 43 6.7 11.3 6.3 2.5 6.9 8.1 7.5 4.2 7.1 39 6.8
2 5.8 6.7 8.2 6.5 4.9 6.5 12.8 6.8 104 6.7 11.8 6.7
3 10.6 6.7 2.6 6.4 2.7 7.3 13.0 6.6 114 6.8 9.2 6.6
4 2.7 6.9 6.9 7.6 35 7.4 39 6.6 72 6.7 39 6.8
5 4.1 6.7 11.0 6.8 74 6.2 3.1 6.3 3.7 6.2 9.4 6.9
6 3.7 6.9 2.5 6.4 6.5 6.6 2.5 6.6 2.6 6.5 2.7 6.3
7 10.5 6.7 3.7 6.6 11.9 6.6 2.6 6.2 6.9 6.5 39 6.8
8 39 6.8 6.6 6.4 33 6.9 3.4 6.4 11.3 6.7 5.8 7.5
9 2.5 75 1.4 7.6 6.6 6.8 11.0 6.9 12.9 6.5 52 7.8
10 10.8 6.7 10.1 6.5 2.5 6.6 2.7 7.1 4.6 6.5 11.4 6.3
11 8.7 6.2 4.2 7.2 6.1 6.2 59 6.5 4.6 6.7 8.8 6.6
12 7.0 6.3 7.2 6.6 2.7 6.7 8.9 7.1 29 6.7 6.4 6.8
13 9.1 6.8 2.8 6.4 59 6.4 59 6.9 104 6.9 8.8 6.5
14 2.7 6.1 114 6.9 7.7 6.4 5.1 6.2 4.7 6.9 10.0 6.8
15 2.8 6.8 6.8 6.3 42 6.7 8.5 6.6 5.7 6.5 43 6.9
16 5.7 6.9 2.8 7.1 4.7 6.1 39 6.9 44 6.4 2.7 6.3
17 2.5 7.6 6.7 6.5 2.6 6.4 3.4 7.2 2.9 6.7 7.8 6.4
18 39 6.8 12.1 6.8 2.7 6.3 9.3 6.2 4.7 6.3 2.6 6.8
19 9.7 6.7 7.6 6.4 10.9 6.9 2.6 6.7 4.6 6.6 10.1 6.3
20 2.6 6.7 2.9 6.5 10.4 6.9 2.6 6.7 11.5 6.6 3.7 6.2
21 4.7 6.6 4.9 6.9 2.6 6.8 12.7 6.2 2.6 6.7 6.9 6.4
22 2.5 6.3 2.6 6.6 7.9 6.8 12.5 6.8 2.6 6.5 7.8 6.4
23 11.4 6.4 8.9 6.6 2.7 6.4 11.4 7.4 11.3 6.8 2.9 6.9
24 6.8 6.5 2.8 7.5 3.9 72 9.8 6.5 8.6 6.3 11.8 6.2
25 8.8 6.9 8.8 6.8 11.3 6.8 11.3 6.1 6.7 6.5 2.6 6.4
= 1.2 .7'[2:06 .7'[3208 Ty = 1.0 .7'[5204 .7'[6206 .7'[7:10 .7'[8:10 .7[9:08 .7[10:04 .7'[11208 .7'[12:10 T3 = 1.2

Table 7. Processing Times of Jobs on Baths and Transfer Times of
Jobs for Example P7

bath
job 1 2 3 4
1 11.10 6.68 5.24 6.92
2 8.47 6.35 10.10 7.02
3 9.19 6.35 4.60 6.71
4 10.80 7.12 10.20 6.83
5 7.40 7.05 4.07 6.58
6 10.80 6.76 1.01 6.37
7 3.48 6.67 1.41 6.46
8 2.51 6.23 8.00 6.23
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Appendix

Processing times of jobs on baths and transfer times of jobs for
examples P1—P6 and P9 (Table 6) and for example P7 (Table
7) are included.
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