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The Lattice-Boltzmann method is a powerful tool to simulate fluid
dynamics in complex geometries. In this work, this algorithm is
applied to the modeling of wind-driven flow of shallow sea water
in interaction with the shore and the seabed. The macroscopic
fluid properties (velocities, pressure) are computed as moments
of the particle distribution functions. The present two-dimensional
implementation allows to investigate the influence, on the
equilibrium velocity-field of the sea, of the various parameters
determining the topography of the shore for two different coastal
models. The effect of the variations of the average density and
pressure of the liquid, and the wind velocity on the steady flow under
the surface of the sea is also addressed.

El método de Lattice-Boltzmann constituye una poderosa
herramienta para simular la dinámica de fluidos confinados en
regiones con geometrı́a compleja. En este trabajo, este algoritmo
se aplica a la modelación del flujo de las aguas costeras como
consecuencia del arrastre del viento, en interacción con la costa
y el fondo marino. Las propiedades macroscópicas del fluido
(velocidad, presión) se calculan a partir de los momentos de las
funciones de distribución. El esquema bidimensional implementado
permite investigar la influencia, sobre el campo de velocidades del
fluido en equilibrio, de la topografı́a del litoral para dos modelos
distintos del perfil de la costa. También se estudian los efectos
de las variaciones de la densidad y la presión del lı́quido y de la
velocidad del viento sobre el flujo estacionario bajo la superficie del
mar.

PACS: Dynamics of the upper ocean, 92.10.Fj; Beach, coastal, and shelf processes, 91.50.Cw; Lattice theory and statistics, 05.50.+q

I. INTRODUCTION

Despite the progress made during the last decades in the
study of ocean dynamics, the quantification and prediction of
these processes remains a challenging task [1]. The ocean is a
turbulent and stratified fluid displaying various phenomena
occurring in very different space and time scales.

Physical modelling constitutes a key ingredient in the
analysis of hydrodynamic processes in the coastal region. The
theoretical investigation of the main phenomena in coastal
waters is often divided in two phases. First, mathematical
and numerical models are built to account for the main
characteristics of the relevant hydrodynamical processes. In a
second stage, these hydrodynamic models serve as a basis for
other studies regarding, for instance, the sediment transport,
surface waves and water quality.

The dynamical processes in the nearshore region (e.g.,
coastal currents, tides, surface waves, tsunamis) are
usually determined by external driving forces. For practical
purposes, many investigations on the sea water dynamics
close to the coast neglect the effect of the liquid-air interface.
In these studies, the motion of the fluid is described in
terms of parameters such as the Iribarren number, which
characterizes the breaking of sea waves and its dependence
on the water depth, the profile of the coast, etc. [2] .

The chief difference between coastal and deep ocean waters is
the influence, on the fluid motion, of the physical constraints

imposed by the sea bottom (at relatively shallow depths)
and the coastline. From the numerical modelling perspective,
the irregular nature of coastal profiles translates in complex
boundary conditions to be imposed to the solutions of the
Navier-Stokes equation, thereby hindering the theoretical
description of the associated phenomena.

The Lattice-Boltzmann method (LBM) provides a
computational alternative to the solution of the
Navier-Stokes equation, which is well suited to incorporate
the interaction of the fluid with boundaries of arbitrary shape
(such as the coastline, wharfs, ships) [3,4]. The LBM is based
on the discretization of the Boltzmann transport equation,
which governs the time evolution of microscopic probability
distribution functions in the fluid. The discretization yields
a numerical method for evaluating the corresponding
macroscopic distribution functions on a Cartesian mesh.
Extensive theoretical and numerical evidence have been
provided which supports the convergence of the LBM
towards the solution of the Navier-Stokes equation [5].
Moreover, both the continuity equation and the Navier
Stokes equation can be obtained from the latter LBM via
a Chapman-Enskog expansion [6]. Beyond applications to
the modelling of ocean dynamics, the LBM has been used
to simulate many problems in magnetohydrodynamics,
turbulence, colloidal suspensions, multiphase flow, etc. [3,7].

In this work, the LBM is applied to the investigation of the
wind-driven circulation of shallow sea water. We assess the
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influence of the velocity of the wind dragging the upper
surface of the fluid on the equilibrium velocity field, and the
dependence of the latter on the shape of the coast.

Although there are various applications of the
Lattice-Boltzmann technique to the study of the coastal
hydrodynamics [8–11], these studies focus on the solution
of the so-called shallow water equations, which can be
obtained from the Navier-Stokes equations by integrating
the dependence of the fluid fields on the water depth. The
present implementation extends the applicability of the LBM
to the description of the fluid density and velocity fields
beyond the approximations inherent to the shallow water
equations (the latter are valid if the horizontal length-scale
is much larger than the vertical length-scale, the vertical
velocity of the fluid is small, etc.), thereby providing a more
realistic description of hydrodynamical phenomena near the
shore.

In the following, we describe the two-dimensional
implementation of the Lattice-Boltzmann method, the coastal
profiles and the boundary conditions used in the calculations.
Some numerical examples of the application of the LBM to
the simulation of the nearshore dynamics are presented in
the section results. Finally, some conclusions are drawn.

II. METHODOLOGY

II.1. Lattice-Boltzmann Method

For an isolated system composed by identical particles
undergoing two-body uncorrelated collisions, the time
evolution of the single-particle phase-space distribution
function f (~x, t) is governed by the Boltzmann transport
equation:

∂ f
∂t

+ ~u · ∇ f = Ω, (1)

where ~x and ~u stand for positions and velocities of the
particles, and Ω is the collision operator.

The LBM simplifies the description of gas dynamics
underlying the Boltzmann equation (1) by reducing the
number of fluid particles and fixing their positions at the
nodes of a lattice [3, 5]. In the present paper, where the
motion of the fluid occurs in two dimensional space, the
Lattice-Boltzmann particles are restricted to stream in 9
possible directions, including the possibility to stay at rest, as
represented in Figure 1. These set of directions of motion are
called the microscopic velocities, and they will be denoted by
the vectors ~ei where i = 0, ..., 8. This two-dimensional model
is commonly known as the D2Q9 model [3].

Likewise, a discrete probability distribution function
fi(~x, t), i = 0.., 8, (which describes the probability of streaming
along each specific direction) is associated to each lattice site.
The macroscopic density of the fluid can be obtained by
summing over the components of the microscopic particle
distribution function:

ρ(~x, t) =
∑
i=0,8

fi(~x, t). (2)

Furthermore, the macroscopic velocity ~u(~x, t) is computed as
the average of the microscopic velocities ~ei weighted by the
distribution functions fi:

~u(~x, t) =
1
ρ

∑
i=0,8

c fi(~x, t)~ei, (3)

where c = ∆x
∆t is the so-called lattice speed.

Figure 1. Velocity vectors corresponding to one lattice node in the D2Q9
model.

Diffusive and collision contributions to the variation
of the microscopic distribution function are taken into
account separately in the LBM. Therefore, the methodology
comprises two key steps: streaming and collision, which are
computed separately.

In Figure 2, it is shown schematically how the streaming
step takes place for the interior nodes. At each point in
the lattice, the values of the discrete distribution function
along the different directions are passed to the neighbouring
nodes. This prescription applies for the inner nodes only, the
treatment of the points lying on the edges of the grid will be
described in the following subsection.

Figure 2. Schematic representation of the streaming process in the LBM at
an interior lattice node.

Employing the Bhatnagar-Gross-Krook approximation for
the collision operator, the corresponding process can be
modelled through the equation:

fi(~x + c~ei∆t, t + ∆t) − fi(~x, t) = −
fi(~x, t) − fieq(~x, t)

τ
. (4)
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In equation (4), the function f eq
i represents the phase-space

distribution of the fluid in equilibrium. The parameter τ is
the relaxation time towards local equilibrium, and is related
to the kinematic viscosity ν via the expression:

ν =
2τ − ∆t

6

(
∆x
∆t

)2

. (5)

The calculations were performed using our own
implementation of the LBM, which was written in Fortran
95. The present implementation was benchmarked against
the numerical solutions of model problems [12], showing a
similar accuracy. The propagation stops when the relative
variation of the velocity field at every lattice point is lower
than 10−4. All the simulations performed were found to
converge to the stationary distribution after about 105

iterations. Typically, the CPU running time (for calculations
employing 400×200 grid points) was approximately 3 hours
in a personal computer (ASUS, model X4535A, Dual Core
processor at 1.60 GHz). Since the update of the phase space
distribution function at the lattice points is a local process, the
computational cost of the LBM is expected to grow linearly
with the number of nodes. However, the algorithm is easily
parallelizable, and the calculation time can be significantly
reduced, for example, by using graphical processors [13].

II.2. Boundary conditions

Three different types of boundaries need to be modelled in
the present study, namely the sea-air interface, the incoming
velocity distribution of the fluid approaching the coast
and the sea-soil interface. The corresponding boundary
conditions are chosen as follows:

(i) In order to mimic the influence of the dragging force of the
wind on the upper layer of the sea water, a constant velocity
utop was set for these mesh points. The value of utop is chosen
according to the empirical relation utop = 0.03 uwind, which
holds for steady wind velocities between 5 and 30 m·s−1 [14].
uwind denotes the velocity at 10 meters height from the surface
of the ocean.

(ii) Assuming a laminar flow, and that no forces other than
wind and viscous stresses act on the fluid layers in the
horizontal direction, a constant velocity gradient

∆u
∆z

=
σ

ρseaν
(6)

is established for the horizontal velocity of deep ocean waters
(i.e., at distances from the coast for which the fluid interaction
with the seabed can be neglected). In equation (6), ν and ρsea
represent the kinematic viscosity and density of the water,
respectively, and σ is the wind stress. Furthermore, the stress
σ is related to the velocity of wind by the empirical formula
σ = ρairCdu2

wind [14], where ρair is the density of the air and Cd
is the drag coefficient.

With these ingredients we set the fluid velocities for the
left-most grid points, assuming the following values for the

parameters: ρair = 1.22 kg·m−3, Cd = 1.69 · 10−3. It depends
also on the density and on the kinematic viscosity of the sea
water, for which several values were considered (see next
section).

(iii) We consider the interaction of the moving fluid with two
shore models: a step-like profile:

110 [1 + tanh {α(x − 250)}] + 1, (7)

and the so-called Dean profile [15]:

A(400 − x)
2
3 + 200. (8)

These two models allow to characterize the fluid dynamics
in present of sharp and smooth variations of the water depth
near the coast. Moreover, the modification of the parameters
α and A allow to tune the length-scale of these variations for
both profiles in a continuous way.

The collisions of fluid particles with the solid-fluid boundary
are assumed to be elastic. To reflect this behaviour, the
distribution functions are reversed at every time step for the
grid points on the solid-liquid interface.

The relations arising from imposing constant velocities at the
edge points (conditions (i) and (ii)) and the choice (iii) are
known as Zou-He and bounce-back boundary conditions,
respectively [16].

III. RESULTS

We performed calculations of the wind-driven ocean
circulation using the LBM and employing the
Maxwell-Boltzmann distribution as the equilibrium
distribution function. All the relevant parameters (velocity of
the wind, average density and pressure of the water, α and A)
were systematically varied. As an illustration, in this section
we present some results computed assuming uwind = 5 m·s−1,
∆z = 0.01 m, τ = 0.8, ρsea = 1025 kg·m−3 and ν = 10−6 m2

·s−1.
The latter two values correspond to the density and the
kinematic viscosity of water at a temperature of 293 K.

In Figure 3, we show the equilibrium velocity field
established in the nearshore region for the hyperbolic tangent
model and for two different values of the parameter α. It
can be seen, that in both cases there is a strong influence of
the water-soil interface in the circulation pattern leading to
vortex formation. Moving away from the centre of the vortex,
the fluid velocity initially increases, but this behaviour is
replaced by a reduction of the current as we approach the sea
bottom. The fluid is at rest in the region close to the fluid-solid
boundary, and this area is broader for the more abrupt coast
profile.

Since ∇ × ~u represents twice the rotational velocity of the
fluid, the right panels of Figure 3 indicate that vortex rotation
is faster for the water interacting with the smoother profile,
while the portion of the fluid having non-vanishing rotational
velocities is smaller in this case. On the other hand, there
is a region of positive values of the rotor field, which can
be attributed to velocity gradients rather to the presence of
vortices.
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Figure 3. Velocity field (left panels, in m/s) and its rotor (right panels) of
the fluid interacting with the coast following an hyperbolic tangent profile.
The spatial variation of the coast model is characterized by the parameters
α = 0.0075 (top) and α = 0.035 (bottom).

For the Dean profile, a more complex pattern of fluid
velocities is observed. It includes a zero-velocity fringe
in the fluid connecting to different centres around which
the fluid rotates. The results in this case resemble those
obtained for the slowly varying hyperbolic tangent profile,
which suggests that the wind-driven coastal dynamics is
determined in first place by the overall slope of the sea-shore
boundary instead of the details of the topography of the coast.

Figure 4. Velocity field (left panels, in m/s) and its rotor (right panels) of the
fluid interacting with the coast following a Dean profile. The spatial variation
of the coast model is characterized by the parameters A = −4 (top) and
A = −3.5 (bottom).

IV. CONCLUSIONS

As a contribution to the development and application
of ocean models for coastal applications, we simulated
the dynamics of wind-driven shallow sea water with the
Lattice-Boltzmann method. The numerical efficiency of
this implementation allowed to investigate the effects of
the interaction of the ocean with the coast for different
values of the parameters (wind velocity, average density
and pressure of the liquid) spanning the complete range
of interest in practical situations. The solution of the
Lattice-Boltzmann equations on a two-dimensional grid

withouth performing the standard depth-averaging, allows
to extend the applicability of the LBM to the description
of the coastal hydrodynamics beyond the approximations
inherent to the shallow water equations. The results reported
in the previous section show that vertical currents and their
dependence on the water depth play a significant role in
the determination of undertow patterns. Therefore, their
accurate theoretical description is important to achieve a
better understanding of coastal phenomena.

The results of the present numerical scheme can be directly
combined with existing models to predict the dynamics of
coast sediments, concentration of nutrients, etc. [17] . For
example, the circulation pattern observed near the coast, in
particular the dependence of the rotational velocity on the
slope of the coast profile, is expected to play a major role in
phenomena like sediment transport.
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