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ABSTRACT

The efficiency of calcium lignosulfonate (CLS) as an expansive soil stabiliser was 

studied. CLS is a bio-based polymer, obtained as a sub-product of the paper industry. Its 

use as a soil stabilizer not only enhances the properties of the soil but also eliminates the 

economic and environmental costs of its disposal. In this project, CLS was added to a 

natural smectite clay (Clay) from Comodoro Rivadavia, Argentina. Smectite clays exhibit 

significant plastic volumetric deformations when subjected to moisture variations. Clay 

was stabilised using 3.0 and 5.0% mass of CLS. The efficiency of CLS as a stabilising 

agent was measured studying its influence on the physical properties of Clay (Atterberg 

limits, Cation Exchange Capacity, Specific Surface Area). Considerable reductions of the 

cation exchange capacity (CEC) and the specific surface were registered. Furthermore, a 

full hydro-mechanical characterisation of Clay with CLS was performed in saturated and 

unsaturated conditions. Results from free swell and swelling pressure tests show that CLS 

reduces by nearly a half and nearly a quarter the free swell and swelling pressure of Clay, 

respectively. Additionally, mercury intrusion porosimetry (MIP) and scanning electron 

microscopy (SEM) tests were carried out to evaluate the microstructure re-arrangement 

of Clay when CLS was added. Results showed that a relatively small amount of CLS 

might yield a reasonably satisfactory performance as a stabiliser, particularly in reducing 

the natural Clay’s swelling potential. Moreover, CLS induced an increase in the stiffness 

and strain at failure of Clay and a reduction in its porosity.

KEYWORDS: expansive clay, swelling soil, lignosulfonate, soil additive, 

microstructure, ground improvement.



2

1) INTRODUCTION

Expansive soils are responsible for volumetric changes that produce detrimental effects 

on civil engineering constructions. Lightweight structures, such as houses and pavements, 

are affected when founded over them (Bowles, 1978; Juárez Badillo & Rodríguez, 2000). 

Deep and slab foundations are some of the typical solutions projected to avoid these 

problems. 

To reduce these detrimental effects of founding over expansive soils, a previous 

stabilisation treatment is generally performed. Stabilisation treatments are performed to 

enhance the properties of the natural soil at the project site until it reaches the desired 

properties. Several additives are used to achieve this goal as, for example, lime, cement, 

fly ash, and different pozzolanic additives (Croft JB, 1964; Hoyos et al., 2004; Pedarla et 

al., 2011; Goodarzi et al., 2016; Bicalho et al., 2018). These traditional stabilisers yielded 

a satisfactory performance over the last decades. Nevertheless, some of them tend to 

increase the pH of pore water over nine, meaning a possible problem to alkaline-sensible 

ecosystems (Vinod et al., 2010; Indraratna et al., 2010). In these cases, a more acidic 

stabiliser would be appropriate.

During the last decades, a great effort has been made to replace industrial synthetic 

materials to bio-based materials and even biodegradable materials, when their application 

allows it. Additionally, the reuse of by-products gained particular interest since it makes 

them valuable. Furthermore, the use of polymers in geotechnical engineering has found 

different applications, including soil stabilisation. Calcium lignosulfonate, also known as 

CLS, is a bio-based polymer, obtained as a by-product of the paper industry. Using this 

polymer as a stabiliser for expansive soils achieves a double objective of reducing the soil 

expansion and providing a use for this by-product, thus eliminating the economic and 

environmental cost of its deposition. 
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Lignosulfonates and oil lignosulfonates reduce the water adsorbed between layers making 

it easier to compact clayey soil (Camacho Tauta et al., 2006). Furthermore, Seco et al. 

(2011) reported that additives with cations such as Ca2+ and Mg2+ reduce the repulsive 

forces between clay layers inducing them to flocculate. This flocculation reduces soil 

plasticity, increases permeability, reduces its expansion and increases the bearing 

capacity. 

Canakci et al. (2015) studied different additives, such as lignin, rice powder and rice ash 

as soil stabilisation agents. They reported a reduction of 50% of the plasticity index of 

the expansive soils with the addition of 15% mass of lignin, an increase in the unconfined 

compressive strength (UCS), and an overall increase in the strength of the natural soil for 

long curing periods.

Alazigha et al. (2016) studied the effect of different percentages of CLS on natural soils. 

The natural soil modified with 2.0% mass CLS reduced the free swell and swelling 

pressure by 20%. Furthermore, Alazigha (2017) compared the addition of 2% CLS treated 

soil with 2% cement-treated soil and the untreated soil. Both CLS and cement addition 

changed the expansibility classification from highly expansive soil to low expansive soil. 

UCS increased for both samples in comparison to the untreated soil, 7% higher for 2% 

CLS and 11% higher for the 2% cement. The sample with 2% CLS increased its ductile 

behaviour. During the consolidation test, both samples with cement and CLS behave no 

longer like clayey soils, but more like silts (bigger particle size or more aggregated 

particles) yielding primary consolidation in less time. Finally, the permeability calculated 

during the consolidation tests presented similar values for the untreated soil and the soil 

with 2% CLS, particularly at consolidation pressures over 100 kPa. This effect was 

attributed to a less connected pore flow, promoting the hypothesis of more aggregated 

particles (Alazigha et al., 2018). 
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This work studies the effectiveness of a bio-based by-product of the paper industry, CLS, 

as a stabilisation agent for a highly expansive clayey soil  from Comodoro Rivadavia, 

Argentina (Clay). This clay of marin origin belongs to a geological formation called 

Patagonia which is composed exclusively of marine sediments of the Neritic type 

(oceanic deposition environment, up to a depth of approximately 180 meters) found in 

the surroundings of the city of Comodoro Rivadavia (Giacosa et al., 2004).  This soil had 

repeatedly presented problems in lightweight constructions. Several researchers are 

studying the behaviour of this soil as part of an ongoing project that aims to control, avoid 

or reduce its expansiveness (Ruiz et al., 2012; Orlandi et al., 2015; Marti et al., 2015; 

Orlandi et al., 2016; Pique et al. 2019, Orlandi et al., 2019, Manzanal et al., 2019, 

Codevilla et al., 2019).

The efficiency of CLS as a stabilisation agent was evaluated experimentally. The physical 

and hydro-mechanical properties of both saturated and unsaturated Clay with CLS were 

measured, as well as the free swell and swelling pressure. Additionally, to understand the 

interaction between Clay and CLS, the porosity and the morphology were analysed.

2) MATERIALS 

Clay

Natural smectite clay from San Jorge gulf basin, extracted from a surficial deposit of 

Comodoro Rivadavia, Argentina was studied (Clay). The clay has high plasticity with 

moisture content at the liquid limit (LL) of 80%, at the plastic limit (PL) of 39% and 25% 

at shrinkage limit (SL). Physical and chemical characteristics are presented in Table 1. It 

can be observed that Na+ is a predominant cation, although Ca2+, Mg2+ and K+ are also 

present. The clay has a relatively low sulphate concentration (3608 ppm). The specific 

surface of Clay, measured using the maximum adsorption of methylene blue, according 
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to Santamarina et al. (1994), is higher than 563 m2/g. According to the Unified Soil 

Classification System (USCS), Clay is classified as MH. 

Calcium Lignosulfonate

Calcium lignosulfonate (CLS) is a brownish powder kindly provided by GCP S.R.L. 

Some physicochemical characteristics of the product, provided by the manufacturer, are 

listed in Table 2. 

3) METHODS

X-ray diffraction analysis of Clay was conducted in a Philips 3020 diffractometer using 

radiation CuKα Ni filter (at 35 kV, 40 mA). Scanning is done between 3° and 70° 2θ, 

with a step of 0.04° and a count time of 2 s/step. The openings of the divergence, reception 

and dispersion slots are 1,0,2 and 1° respectively, and monochromator was not used. With 

an X'Pert High Score program, mineral phases were identified and quantify following 

Moore and Reynolds (1997) procedures.

Samples were studied using Infrared Spectroscopy (IR) to evaluate the compatibility 

between Clay and CLS. IR spectra of samples were analysed using KBr as a reference, 

recording the transmittance in the region 4000-600 cm-1 at a resolution of 4 cm-1 in a 

Shimadzu IRAffinity. 

The pore size distributions of the compacted specimens were characterised through 

mercury intrusion porosimetry (MIP) according to ASTM 2873 in a Pascal 440 Thermo 

Fisher, for measuring pores size between 7 nm to 13 000 nm, and Pascal 140 Thermo 

Scientific, for measuring pores size between 13 000 nm to 100 000 nm. Samples were 

compacted statically at the desired water content in a mould, with a minimum volume of 

1 cm3. After compaction, samples were dehydrated by freeze-drying technique (Delage 

& Lefebvre, 1984). First, samples were frozen by immersion in liquid nitrogen. Then, 
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samples were placed directly in the freeze-drying equipment at 50ºC and 2 Pa for three 

days were they dried by sublimation (Laccomo model FreeZone 2.5 76705). This 

procedure minimises the influence of the drying process on the structure of the soil 

skeleton (Birle, 2012; Delage & Lefebvre, 1984). 

The morphology of the samples was studied using scanning electron microscopy (SEM) 

within a Phenom-World ProX. For SEM images, small samples portions were mounted 

on aluminium stubs with carbon coating to ensure conductivity through the sample. 

Samples were conditioned as for MIP.

The Expansion Index (EI) tests were executed according to ASTM D4829 standards. The 

EI parameter is defined as 1000 times the specific vertical deformation of a sample free 

to swell during twenty-four hours. Samples were prepared using dry materials (Clay and 

CLS). Deionised water was added to achieve the desired moisture content and the sample 

was left for 24 hs to ensure the moisture homogenization prior compactation. The mould 

consisted of a three pieces cylinder of 101.6 mm diameter. The middle ring, in which the 

test was performed was 25 mm high. The sample was compacted dynamically with fifteen 

uniformly distributed blows of a rammer in free fall of 305 mm of height for each layer, 

in two layers of equal volume. Scarification was done to increase friction between each 

layer. Finally, the apparatus was dismantled, and the middle ring used to perform the test. 

The surplus soil was trimmed to fit the height of the ring, and a 6.9 kPa load was applied 

for at least 10 minutes before flooding the sample and starting the test. After ten minutes, 

the sample was ready, and then the ring was placed in a watertight container where a 

retractable anvil and an indicator for precise deformation measurements were placed over 

the sample to compute heave. 
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ASTM standard for this test allows the calculation of EI50 for samples with an initial 

degree of saturation between 40% and 60%. The EI between these degrees of saturation 

can be extrapolated to EI50, corresponding to a degree of saturation of 50%.

The free swell was measured according to ASTM D4546 in an oedometer apparatus. The 

free swell test defines the expansiveness capacity of the soil, which can be expressed as 

the percentage of height variation. The test consists of flooding a sample of 18 mm height 

and 76 mm diameter with deionised water while measuring its height variation. This test 

is finished when the sample reaches an asymptotic behaviour of height variation in a log 

scale time graph.

Swelling pressure is the pressure applied to a sample that restricts it from swelling. In this 

work, the swelling pressure was considered equal to the pressure that reduced the height 

of an expanded sample to its initial height. The sample was statically compacted in one 

layer into a mould of approximately 18 mm height and a diameter of 76 mm. It was then 

mounted in an oedometer apparatus, flooded under a pressure load of approximately 

5 kPa, and allowed to swell until an asymptotic behaviour in time log scale was reached. 

After the sample had expanded and reached its final height, loading steps were applied to 

determine the swelling pressure. For each loading step, its height variation was recorded 

until it reached an asymptotic variation in a time log scale, which is the end of the primary 

consolidation, and the corresponding void ratio was reported. Load increments were 

repeated until the void ratio of the specimen after swelling (es) reached the initial 

compaction void ratio (e0). This pressure is the specimen’s swelling pressure. 

Unconfined compressive strength (UCS) was measured according to ASTM D2166 

standard in a Controls-Wykeham Farrance Tritech 50 kN testing machine. Samples were 

compacted statically in three equal volume layers in a three-piece cylinder, 38 mm 

diameter and 76 mm height. Scarification was done to provide continuity between layers. 
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The specimen was compressed at a constant displacement rate determined as the 10% of 

the specimen height. Force (N) and displacement (mm) were automatically recorded 

during the test. The initial elastic and the secant modulus were determined. 

For determining soil suction, the filter paper method test was used, according to ASTM 

D5298 and Bulut & Leong (2008). The procedure consists in measuring the moisture 

content of a calibrated filter paper in contact with soil (matric suction) or in equilibrium 

with the partial vapour pressure in a sealed container with no more than 1ºC temperature 

fluctuation (total suction). Samples require a minimum of seven days to reach a 

hygroscopic balance between the filter paper and the soil mixtures. A precision weighing 

balance is used to measure the moisture content of the filter paper. The ASTM standard 

proposes the calibration of the gravimetric water contents of the filter paper Whatman 

No. 42 and suction measured adopted for this study. 

In order to obtain both, matric and total suction, two soil specimens of 100 mm diameter 

and 25 mm height were compacted. A set of three filter papers were placed between the 

samples to measure the matrix suction. The filter papers in contact with the sample had a 

larger diameter (100 mm), while the one in the middle a smaller one (90 mm). The smaller 

filter paper is subtracted quickly, and the increase of its weight registered. Muñoz-

Castelblanco et al. (2012) presented a procedure in which they change the initial moisture 

of the filter papers to determine the hydraulic hysteresis of the material. In this series of 

tests, the filter papers were previously oven-dried. The total suction was measured, 

placing two extra sets of filter paper over the upper soil sample avoiding contact between 

the specimens. The sets were placed in a sealed container to gain a moisture equilibrium 

for seven days before measuring the moisture of the filter papers. Compacted samples 

were prepared to start from different water content with a targeted dry density. 
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There is a link between the water retention curve (WRC) and the pore size distribution 

(PSD) of a soil sample obtained with MIP since the interface between the non-wetting 

fluid (air in case of WRC or liquid Hg in case of MIP) and the wetting fluid (water and 

air, in case of WRC or Hg vapour for MIP) is governed mainly by capillarity. MIP can 

be related to the drying path of the initially saturated sample by applying an increase of 

external air pressure (non-wetting fluid) (Romero, 1999; Muñoz-Castelblanco et al., 

2012).

Sample preparations: CLS – Clay admixture

Clay was firstly mixed with two different mass percentages of CLS to clay: 3% (Clay + 

3% CLS) and 5% (Clay + 5% CLS). Physical (Atterberg Limits, Specific Surface) and 

chemical (FTIR, CEC) tests were performed on the mixtures.

The hydraulic and mechanic behaviour of compacted Clay and Clay + CLS was 

characterised. For Clay + CLS mixtures, 105ºC oven-dried Clay was mixed with CLS. 

The mixtures were wetted to the desired water content and stored in an airtight container 

for at least twenty-four hours to homogenise the moisture content. Finally, samples were 

statically compacted to the desired dry density.

Mixtures were submitted to a standard Proctor compaction method (ASTM D698) to 

select the initial densities and water contents for the tests. The maximum dry density 

(γdmax) and 95% of the maximum dry density (γd95%) are reported in Table 3. 

Clay and Clay + CLS mixtures were tested at the same dry density and moisture content. 

The targeted dry density was 12.4 kN/m3, equal to the 95% of the maximum standard 

Proctor d of Clay. The moisture content at dry of optimum (dry), at optimum (opt) and 

at wet of optimum (wet) were also obtained from Standard Proctor curve of the Clay at 

the target dry density (Table 3).
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4) RESULTS AND DISCUSSION

CLS – Clay interaction

Smectite (Sm) with impurities of calcium (Ca2+) and feldspar (F) was identified within 

the XRD diffractogram of Clay, as is shown in Figure 1. The interaction between CLS 

and Clay was firstly analysed by considering how CLS affects basic geotechnical 

properties of Clay (Table 4). Calcium-rich additives used to stabilise highly expansive 

clays, such as CLS, require the verification of sulphate concentration. It should be lower 

than 8000 ppm to avoid the formation of ettringite and thaumasite. These minerals can 

produce considerable expansion (Mitchell and Dermatas, 1992; Puppala et al.,2005). The 

soil studied presented lower sulphate concentration of 3608 ppm. 

Clay was mixed with 3% (Clay + 3% CLS) and 5% (Clay + 5% CLS) in mass of CLS to 

dry mass of clay. The addition of CLS to Clay increased the Atterberg Limits, which may 

be interpreted as a contradiction to the positive effect of CLS treatment in terms of 

reducing Clay’s swelling potential. Nevertheless, it decreased the specific surface (Se) 

and cation exchange capacity (CEC), both obtained by the method proposed by 

Santamarina (1994). These parameters are closely related to the expansiveness of clay, 

the smaller the Se and the CEC, the lesser the clay would expand with water. This 

contradiction may present an incompatibility when using these admixtures and try to 

classify them with traditional classification methods since most of them are based on 

plasticity index properties. Orlandi et al. (2019) analysed the variation of the Atterberg 

Limits of a highly expansive clay for different dosages of different types of lignins. They 

did not find a clear trend in the LL and IP when adding CLS.

Samples were initially studied using Infrared Spectroscopy to evaluate the compatibility 

of Clay with CLS (Figure 2). The main bands of Clay agree with those reported in 

different works (Venkatathri, 2006; Castro & Coral, 2013; Da Silva & Guerra, 2013). 
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These researchers reported that natural clays usually present a broad band between 3680-

3160 cm-1 that corresponds to O-H stretching vibration of water coordinate to hydroxyl 

groups and Al, Si, and Mg ions. The peaks at Si-O stretching 1624 cm-1 would correspond 

to the presence of water in the silicate structure, and the band at 1120 cm-1 is due to 

siloxane stretching (Si-O-Si). Lastly, the band at 870 cm-1 and 800 cm-1 correspond to Si-

O stretching and vibrations.

The main bands of CLS are also in agreement with those reported in previous works 

(Ortiz, 2009; Boeriu et al. 2004). These works report that lignosulfonate usually present 

a broad band 3600-3300 cm-1 that corresponds to hydroxyl groups in phenolic and 

carboxylic acids. The peak at 2940 cm-1 would correspond to a C-H stretching, and the 

band at 1770 cm-1 is due to aromatic acetoxy groups. In the region from 1900 to 800 cm-1, 

known as the fingerprint region, several bands with variable intensity are observed. There 

is a shoulder at 1700 cm-1 which corresponds to aromatic acetoxy groups, bands at 

1623 cm-1 which corresponds to unconjugated carbonyl carboxyl stretching, C=C 

vibrations bands at 1513 cm-1, C-H deformations and aromatic ring vibrations at 1450 cm-

1, more C-H deformation at 1171 cm-1 and C-O and C-C vibrations associate with COH 

bending at 1050 cm-1. Lastly, the band at 645 cm-1 was assigned by Ortiz (2009) to S-O 

stretching vibration of the sulfonic groups.

When testing Clay + 3% CLS and Clay + 5% CLS, bands of CLS were visible, especially 

in the range between 1600 cm-1 and 1000 cm-1 that correspond to deformation and 

vibrations of the aromatic groups of CLS. The same was found by Vinod et al. (2010) 

who took this result as a confirmation of a bonding formation between the clay minerals 

and lignosulfonate. 
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The microstructure of compacted CLS-Clay samples

Figures 3 and 4 show the pore size distribution curves of Clay and Clay + CLS. Graphs 

are presented in terms of both density functions and cumulative intruded void ratio where 

the intruded pore radius is represented on the logarithmic scale x-axis. The pore size 

density distribution presented in Figure 3 shows two dominant pore size on the dry of 

optimum moisture content (opt) for Clay and Clay + CLS as obtained by different authors 

(Romero, 2011; Alonso et al. 2013). These two dominant pore sizes are referred to as 

micro-porosity (7 to 80 nm approximately) and macro-porosity (7000 to 70000 nm). 

Regarding the micro-porosity, it is noted that the most frequent microstructural pore size 

of Clay is bigger than the most frequent microstructural pore size of both Clay + 3% CLS 

and Clay + 5% CLS. This can be related to a microstructural void ratio reduction with the 

CLS addition as it showed a significant reduction of both cation exchange capacity and 

specific surface for both studied samples. Indraratna et al. (2010) proposed a stabilisation 

mechanism in which CLS formed a chain that entered between clay particles, neutralising 

electric charges of the surface of the clay, holding the clay particles together. The 

neutralisation of electric charges in clay surface reduce the repulsive forces between clay 

particles. This effect can be related to the microporosity decrease. 

Regarding the macro-porosity, the smallest pore characteristic size was obtained for Clay 

+ 3% CLS mixture, followed by the untreated Clay and Clay + 5% CLS mixtures 

respectively. However, considering the void ratio, it is noted that CLS reduced the 

porosity in 5% for Clay + 3% CLS and 11% for Clay + 5% CLS as can be observed in 

Figure 4. The micro and macro-structural void ratio portions can be obtained according 

to Delage and Lefebvre (1984) throughout the intrusion and extrusion on MIP. These 

authors defined micro-porosity as the reversible portion of mercury extruded from the 

samples when the pressure of mercury is diminished (Figure 4). This is related to the 
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microstructural configuration of the sample, the surface charges of clay platelets and the 

non-wettability of mercury. The macro-porosity portion of the sample is the non-

reversible mercury volume stacked in the sample. The macro void ratio is calculated as 

the initial void ratio minus the micro void ratio, which is the last registered void ratio of 

the test. The results showed that the macro void ratio decreased with the addition of CLS, 

 = 0.52 for Clay,  = 0.45 for Clay + 3% CLS and  = 0.44 for Clay + 5% CLS. 𝑒𝑀 𝑒𝑀 𝑒𝑀

The decrease in the pore volume due to CLS can be observed on SEM images of 

compacted samples with different percentages of CLS with moisture content at dry of 

optimum (dry) (Figure 5a) and wet of optimum (wet) (Figure 5b). 

Expansion Index, Free swell, swelling pressure and consolidation analysis

The presence of smectite with predominately Na+ cations explains the high swelling 

potential of Clay (Al-Rawas, A. A., 1999). Six samples were tested to obtain the average 

expansion index of each mixture. Table shows the results with an evaluation given by 

ASTM D4829. There is a reduction of the expansion potential for increasing percentages 

of CLS, according to the results obtained for specific surface and cation exchange 

capacity. When adding 3% of CLS, the potential expansion decreases from “high” to 

“medium”, and when adding 5% of CLS, it decreases “high” to “low”. These results 

constitute an engaging approach to expansiveness reduction considering these tests have 

a constant time length generally much smaller than free swell tests. 

Free swell tests were conducted to confirm this proposition. These provide the total 

expansion of the soil mixtures. After reaching the total expansion, samples were subjected 

to loading steps. The initial conditions and the results of the tests are presented in Figure 

6. The free swell of the untreated Clay was 32%. Clay with 3% and 5% of CLS presented 

a reduction of the free swelling of 40% and 45% respectively. This result confirms that 
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CLS reduces the swelling capacity of Clay (Alazigha et al., 2016; Alazigha et al., 2018). 

Alazigha et al. (2016) observed that the reduction in the expansiveness of a CLS treated 

sample is due to the binding of soil minerals due to CLS through basal and peripheral 

absorption. The CLS absorption restricts the infiltration of moisture into the soil and 

reduces the free swelling. The swelling reduction for higher CLS dosages does not present 

a linear trend. 

The swelling pressure was determined as the pressure applied to the sample, after 

completing the free swell phase, that reduces the void ratio after swelling (es) to the initial 

void ratio before swelling (e0) (Figure 7). The swelling pressure of the Clay also 

decreased with the addition of CLS from 845 kPa to 240 kPa for Clay + 3% CLS and 

330 kPa for Clay + 5% CLS. The swelling pressure reduction was 70% for Clay + 3% 

CLS and 60% for Clay + 5% CLS.

The compressibility index (Cc  of the samples (Figure 7) was calculated as the ratio )

between the void ratio variation and the vertical stress variation on the virgin compression 

regime. Compressibility index (Cc  results show that the addition of CLS does not present )

a clear trend for the percentages studied. The compressibility of Clay + 3% CLS increased 

27% in comparison with Clay, while for Clay + 5% CLS it was reduced by 33%. These 

opposite modifications on samples’ compressibility and their similar free swell reduction 

are the reasons for finding a more significant reduction of the swelling pressure for the 

Clay + 3.0% CLS than Clay + 5.0% CLS. Therefore, considering the results for both free 

swell and swelling pressure for the Clay + CLS samples, it is possible to establish that 

both samples have similar swelling reduction potential but generate different mechanical 

properties variations over the Clay. As for engineering purposes, lesser compressible soils 

are convenient; therefore, the addition of 5% of CLS to Clay presents a more suitable 

modification. 
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During consolidation, the consolidation coefficient (Cv) and the permeability (k) were 

calculated. The results show a reduction of k and Cv for Clay with CLS addition. 

Therefore, the addition of CLS generated an admixture with lower porosity or less 

connected porous arrangement. Conventional one-dimensional consolidation tests were 

performed on specimens at full saturation with vertical stresses of 25, 112, 230 and 

460 kPa. The first consolidation time was calculated using the square root of time, and 

the results can be found in Table 6. 

The Cv of Clay and Clay + CLS decreased with increasing pressures. The general trend 

in Figure 8 shows that Clay has the higher Cv and Clay + 3% CLS has the lowest for each 

seating pressure, only in the last step Clay + 5% CLS has the lowest Cv. The results for 

Cv varied from 3.1 10-8 m2/s for Clay at 25 kPa to as low as 1.8 10-10 m2/s for Clay + 5.0% 

CLS at 460 kPa.

Cv registered a rapid initial settlement for the initial loading steps and then, for higher 

pressures, remained almost constant. For Clay, the first three loading steps showed a 

rather substantial reduction of Cv with a lower Cv variation at the last loading step. Clay 

+ 3.0% CLS showed a rapid initial settlement only in the first loading step, with an 

approximately constant Cv for the following steps. For Clay + 5.0% CLS, the behaviour 

showed almost a linear trend for all tested the loading steps. The obtained results for the 

Clay + 3% CLS sample for different loading pressures implies that after the initial short-

term settlement, the settlement for increasing pressures will remain approximately 

constant. The registered behaviour for Clay + 3% CLS does not represent typical clayey 

soil under increasing pressures, as it tends to an asymptotic settlement for increasing 

pressures. This behaviour was not found in the tested loading steps for Clay + 5% CLS.

Figure 8 shows that Clay + CLS has a permeability coefficient in the range of half of the 

Clay, which may be related with a less connected porous arrangement. The permeability 
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varied from 3.3 10-10 m/s for Clay at 25 kPa to 3.2 10-13 m/s for Clay + 5% CLS at 

460 kPa. As expected, the variation of k of the three samples presented very similar trends 

than those obtained for Cv. Permeability had a significant decrease for the first loading 

step and then became approximately constant for Clay + 3% CLS, the permeability of 

Clay + 5% CLS decreased linearly. This finding shows that CLS produced a slight 

reduction in permeability due to the decrease of macro-porosity observed in MIP. Similar 

results were observed by Alazigha et al. (2018).

Unconfined Compressive Strength

Unconfined compressive strength (UCS) was measured to characterise the unsaturated 

compressive strength of the different mixtures at the different initial moisture content (dry 

of optimum, optimum and wet of optimum). The stress-strain graphs of all the samples 

are plotted in Figure 9. Additionally, two lime treated samples (Clay + 3% Lime and 

Clay + 5% Lime) were included in at wet of optimum moisture content.

Results show an increase of the UCS for Clay + 5% CLS for the three compaction 

moisture contents. This increase when compaction moisture content was set at the dry of 

the optimum was 47%, at optimum 5% and at wet of the optimum 25%. In the case of 

Clay + 3% CLS, only when the initial moisture content was set at the dry of optimum, 

the UCS increased by approximately 21%. Clay + 3% CLS with the optimum and wet of 

optimum moisture content presented a decrease of UCS of 8% and 1%. These results 

suggest that Clay + 3.0% CLS does not improve the mechanical properties of the clay as 

expected, even though the decrease of the UCS is lower than 10%. 

Clay with CLS presented a more ductile behaviour, reaching the maximum compressive 

strength with lager axial strain. Both Clay + CLS samples compacted at dry of optimum 

moisture content registered an increase in the deformation at the failure of about 50%. 
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For optimum moisture content, the deformation at failure was equal to that of untreated 

Clay when CLS was added at 3.0% and increased by 50% when it was added at 5.0%. 

Finally, for samples compacted at wet of optimum moisture content, it increased 75% and 

150% for Clay + 3% CLS and Clay + 5% CLS respectively. However, comparing the 

UCS between the three moisture contents (wet, optimum and dry) for equal CLS content, 

a decrease in uniaxial strength is observed for the samples on the wet of optimum 

moisture content. Clay + CLS have smaller secant stiffness than Clay in all the cases but 

for Clay + 5% CLS with an initial moisture content set at the dry of optimum. S

Considering the results obtained from the Clay + 3% Lime and Clay + 5% in Figure 9c 

there is an expected difference in the UCS values. The increments of the resistance vary 

from six to seven times bigger. Considering the deformation at failure, these samples 

registered a deformation similar to the one obtained with the untreated clay and from 15% 

to 40% smaller than CLS treated samples. Differently from CLS treated samples the 

secant and initial stiffness modulus for both lime treated samples are similar to each other 

with variations in the order of 15% maximum.

The smaller stiffness was expected since the increase of the strength at failure is not the 

same as the increase of the strain at failure, and for most of the Clay + CLS samples, the 

ratio between strength and strain was smaller. The secant stiffness modulus, which is 

related to the strength and strain at failure, decreased 18% at dry of optimum moisture 

content, 9% at optimum moisture content and 44% at wet of optimum for Clay + 3.0% 

CLS. The secant modulus of Clay + 3.0% C increased 9% at dry of optimum moisture 

content but decreased 47% and 49% at optimum and wet of optimum moisture content 

respectively. Although there is an overall increase in the unconfined compressive strength 

for Clay + CLS, the stiffness is generally smaller. 
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Soil-Water Retention Curve

The water retention capacity of the unsaturated compacted samples of Clay and Clay + 

CLS were obtained using the filter paper method (ASTM D5298). This technique allows 

estimating the relationship between the degree of saturation and suction at equilibrium 

for compacted samples at a given density and different initial water content of Clay, Clay 

+ 3% CLS and Clay + 5% CLS. Experimental results are presented in Figure 10 in terms 

of suction and degree of saturation. The samples had an average dry density of 

12.4 kN/m3 (e = 1.130 - 1.250), except for Clay + 3% CLS - UNPSJB samples with 

slightly higher average densities (e = 0.750 - 0.940). Clay + CLS presented fairly scattered 

results for the same dry density. For a certain degree of saturation, it is observed that the 

estimated suctions of Clay with 3.0% and 5.0% of CLS are larger than Clay. However, 

the estimated suction increment with the increase in the CLS dosage is rather small. 

Results were modelled with the van Genuchten equation (van Genuchten, 1980). 

Equation (1) describes the soil-water retention curve. This equation relates the matric 

suction  and the degree of saturation of the sample . The effective degree (ua ― uw) (Sr)

of saturation  varies from 0 to 1. It equals unity when samples are saturated, even for (Se)

matric suctions bigger than 1. The value of suction in which desaturation begins is called 

air-entry value suction .  equals zero when the residual degree of saturation  (Sae) Se (Sres)

is reached.  is the approximately constant value of the degree of saturation regardless Sres

of the increasing matric suction. This residual water content is trapped in the 

microstructure of the soil. Therefore, residual degree of saturation or residual water 

content is related to the microporosity of the sample obtained within mercury intrusion 

porosimetry (MIP) (Romero, 1999). Finally,  is a fitting parameter that considers the λ

pore size distribution of the soils. For more aggregated or coarse-grained soils,  is λ

expected to be higher.
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𝑆𝑒 =
𝑆𝑟 ― 𝑆𝑟𝑒𝑠

𝑆𝑠𝑎𝑡 ― 𝑆𝑟𝑒𝑠
= {1 + [𝑢𝑎 ― 𝑢𝑤

𝑆𝑎𝑒 ]1/1 ― 𝜆}
―𝜆 (1)

The water retention curves fitted with the experimental data and the van Genuchten 

parameters are shown in Figure10. The results of the calibration suggest that CLS change 

the air entry value (Sae) from 300 kPa to 600 kPa when 5% of CLS is added to Clay. This 

value is related to the suction that air must exceed to enter the pores of the soil, leading 

to the beginning of desaturation. MIP results showed that the addition of 5% of CLS to 

Clay reduced the frequency of large pores with an overall reduction of macro void ratio, 

which is consistent with the increment of the air-entry value  of Clay + 5% CLS. (Sae)

There is a slight decrease of λ (van Genuchten pore distribution parameter) with the 

addition of CLS, which agrees with the reduction in porosity observed in MIP performed 

on samples with an initial degree of saturation of 45%. 

Romero (1999) related the residual water content (or the residual degree of saturation) to 

the difference between the void ratio measured through the intrusion of mercury during 

MIP test and the overall soil void ratio obtained from the compaction characteristics (dry 

density and water content). This difference would be the non-intruded void ratio eni. The 

residual water content is . 100 ⋅ Δeni/𝐺𝑠

Figure 11 shows MIP results as a function of water content and suction together with the 

discrete results obtained by the filter paper technique. The residual water content obtained 

with MIP for the three samples analysed (Clay, Clay + 3% CLS, Clay + 5% CLS) varies 

from 20.0% to 21.3%. It is observed that the residual water content is not affected by the 

addition of CLS. The degree of residual saturation associated with these water contents 

and their respective void ratios vary between 44% and 48%. These results appear to be 

high, assuming that soils that contain a significant fraction of smectite cannot be fully 

intruded by mercury at 200 MPa (Lloret et al., 2003, Castelblanco et al., 2012). This 
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circumstance is directly related to the fact that the evolution of the void ratio curve 

maintains a slope in the area of the smallest pores (Figure 4). Therefore, there is a 

difference between the intruded void ratio and the overall soil void ratio. In this case, the 

smallest value reached with the MIP at 200 MPa is 7.4 nm (74 Å). Since the basic 

constituent of Clay is the elementary clay layer (9.6 Å thick for smectite), it can be 

implied that there might be several pores that were not intruded by the mercury (Delage 

et al., 2006). 

In literature, there is some controversy when considering the residual saturation degree 

as a physical parameter (e.g. Luckner et al., 1989) or a calibration parameter (e.g. 

Fredlund & Xing 1994, Manzanal et al., 2010, 2011). In this work, the value was adopted 

according to the results obtained with MIP studying the work of Romero (1999) and using 

the calibration of the experimental results obtained by the filter paper method. Figure 10 

shows the experimental results with the van Genutchen model with the residual saturation 

degree for all samples equal to 30%. The samples used for the calibration of the van 

Genuchten model had a void ratio varying from e = 1.130 - 1.250

CONCLUSIONS

The present work studied the efficiency of calcium lignosulfonate (CLS) as a stabiliser 

of highly expansive clay. The interaction of clayey soil and CLS was examined by a series 

of tests for characterising the physical, hydraulic and mechanical properties of the three 

mixtures: a natural clay (Clay), the natural clay with 3% and 5% of CLS. Results showed 

significant changes in the physical and engineering properties. The following conclusions 

can be highlighted: 

 The addition of CLS increased the liquid and the shrinkage limits of Clay, 

approximately 50% and 24%, respectively. The variation on the plastic limit was 



21

less significant (8%). The results are similar for the two percentages of CLS 

studied. Atterberg Limits increment may be interpreted as a contradiction to the 

positive effect of CLS in terms of reducing the swell potential of the Clay. This 

contradiction may present an incompatibility when using these admixtures and 

trying to classify them with traditional classification methods. However, when the 

specific surface (Se) and cation exchange capacity (CEC) of untreated and CLS-

treated samples were analysed, a substantial reduction of Se and CEC was 

observed with the increasing CLS percentages. These can be explained by the 

bonding formation between the clay minerals and lignosulfonate obtained by 

FTIR.

 The high Expansion Potential (EP) for Clay is reduced to “medium” for Clay + 

3.0% CLS and to “low” for Clay + 5.0% CLS. The swelling capacity of Clay was 

reduced as well. This was demonstrated with the decrease of the free swelling of 

Clay with the addition of 3.0% and 5.0% of CLS, from 32.0% to 19.6% and 

17.8%, respectively. In addition, the swelling pressure was reduced by 70% for 

Clay + 3.0% CLS and by 60% for Clay + 5.0% CLS. The compressibility of Clay 

+ 3.0% CLS increased by about 30%, while the opposite occurred for Clay + 5.0% 

CLS, which decreased by about 30%. Hydraulic conductivity and the coefficient 

of consolidation of Clay decreased with the addition of CLS. Therefore, the 

addition of CLS generated an admixture with lower porosity or with a less 

connected porous arrangement. These results have been confirmed by mercury 

intrusion porosimetry, that registered a reduction of intruded void ratio with the 

addition of CLS. For the dry of optimum moisture content, CLS improved the 

UCS of the Clay. Only for Clay + 5.0% CLS this improvement was reported 

within the three tested moisture contents. For the samples compacted at the wet 
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of optimum and optimum moisture content, the increment of UCS was less 

significant. Clay + 3.0% CLS presented a lower UCS than the untreated clay. In 

terms of ductility, Clay + CLS reached the failure at higher deformations, 

increasing it up 150% for the wet of optimum moisture content in Clay + 5.0% 

CLS. Additionally, the stiffness of these samples dropped up to 50% due to the 

non-linear increase of strength-strain ratio.

 The addition of CLS increased the estimated suction for a given degree of 

saturation. However, the increment of suction with CLS dosage increase is rather 

small. Results suggested that the addition of 5% of CLS changes the air entry 

value (Sae) of the van Genuchten model from 300 kPa to 600 kPa. This increment, 

which is consistent with the MIP results, showed that the addition of 5% of CLS 

reduced the frequency of large pores with an overall reduction of macro void ratio. 

The parameter λ from the van Genuchten model slightly decreased with the 

addition of CLS due to the reduction of the pore size distribution is reduced, as 

the MIP results showed. The CLS addition does not influence the residual degree 

of saturation evaluated within MIP. 

Results showed that CLS yield acceptable performance as a soil stabiliser, particularly in 

reducing the natural Clay’s swell potential even with no curing time. Further research is 

required to ensure its effectiveness on long-term behaviour, particularly after cyclic 

wetting-drying and cyclic freeze-thaw and the impact on longer curing times in 

experimental results. Moreover, the environmental impact (leachability) should be tested. 

Finally, constructability and cost-efficiency comparison is encouraged between CLS and 

traditional additives, bearing in mind the environmental costs of each additive.
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wet side of Optimum Proctor moisture content and results for Clay + 3% Lime and Clay + 5% 
Lime.

Figure 10: Relation of suction and degree of saturation using the filter paper technique and van 
Genuchten model for water retention curve for the three mixtures: Clay, Clay + 3% CLS and Clay 
+ 5% CLS. 
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Figure 11: Comparison of gravimetric water content and degree of saturation using the filter 
paper technique with MIP results for the three mixtures: Clay, Clay + 3% CLS and Clay + 5% 
CLS. 
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TABLES

Table 1: Chemical and Physical properties of Clay.

Test Unit Clay Test Unit Clay

SiO2 [%] 58.7 LL [%] 80

Al2O3 [%] 16.5 PL [%] 39

Na2O [%] 3.8 PI [%] 41

CaO [%] 2.4 SL [%] 24.7

Fe2O3 [%] 6.0 Gs [-] 2.70

MgO [%] 2.4 γd max [kN/m3] 13.0

K2O [%] 1.4 ωopt [%] 31.0C
he

m
ic

al
 c

om
po

si
tio

ns

LOI [%] 5.5 Se [m2/g] 563

SO-
4 [ppm] 3608

         pH     [-] 8.51 #200 [%] 96.0

CEC [meq/100g] 74.4 Sand [%] 4.0

Na [meq/100g] 28.5 Silt [%] 17.0

K [meq/100g]  7.8

Ph
ys

ic
al

 p
ro

pe
rti

es

Clay [%] 79.0

Ca [meq/100g] 16.2

Ex
ch

an
ge

ab
le

 C
at

io
n

Mg [meq/100g]  1.5

Table 2: Technical report. CLS composition.

Analysis description Unity Technical 
specification

Typical 
values

pH (10% solution) [%] 3.0-4.5 3.8
Moisture (at 105°C) [%] Max. 8.0 6.0

Ashes (at 800°C) [%] Max. 10.0 7.7

Calcium (as Ca) [%] 1.5 – 2.4 1.8

Magnesium (as Mg) [%] 1.4 – 2.2 1.8

Iron (as Fe) [%] Max. 0.1 0.04

Sulphur (as S) [%] Max. 8.0 6.0

Reductive substances Max. 25.0 22.0

Colour - Brown Brown

Water-insoluble [%] Max. 0.20 0.15

Density [g/cm3] 0.37 – 0.41 0.40
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Table 3: Proctor Standard results.

Clay Clay + 3% 
CLS

Clay + 5% 
CLS

dmax [kN/m3] 13.0 12.4 12.5

d95% [kN/m3] 12.4 11.8 11.9

dry [%] 18.0 28.0 27.0

opt [%] 31.0 34.0 35.0

C
om

pa
ct

io
n 

pr
op

er
tie

s

wet [%] 37.0 40.0 44.0

Table 4: Atterberg Limits, Specific Surface and Cationic Exchange results.

Clay Clay + 3% 
CLS

Clay + 5% 
CLS

LL [%] 80.0 122.0 123.0

PL [%] 39.0 42.0 41.0

SL [%] 24.2 16.1 18.4

Se [m2/g] 306.0 73.0 31.0

Ph
ys

ic
al

 p
ro

pe
rti

es

CEC [meq/100g] 77.4 65.1 7.8

Table 5: Expansion Index results.

Clay Clay + 3% 
CLS

Clay + 5% 
CLS

Sr [%] 43 46 44

EI [-] 114 71 40

Ex
pa

ns
io

n 
In

de
x

Potential 
expansion
ASTM D4829

[-] High Medium Low
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Table 6: Permeability and coefficient of consolidation for each mixture1. 

Clay Clay + 3% CLS Clay + 5% CLS
’v Cv k Cv k Cv k

 [kPa] [m2/s] [m/s] [m2/s] [m/s] [m2/s] [m/s]

25 3.1 10-8 3.3 10-10 7.8 10-9 1.0 10-10 1.4 10-8 1.3 10-10

112 1.1 10-8 1.2 10-10 2.2 10-9 1.9 10-11 5.0 10-9 4.4 10-11

230 4.3 10-9 2.8 10-11 1.5 10-9 1.1 10-11 1.7 10-9 9.9 10-12

C
on

so
lid

at
io

n 
ch

ar
ac

te
ris

tic
s

460 3.9 10-9 1.3 10-11 2.2 10-9 9.4 10-12 1.8 10-10 3.2 10-13

1 Compaction characteristics in Figure 6 and Figure 7. 
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FIGURES
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Figure 1: X-Ray Diffraction Clay by three methods: glyconized, natural and calcined. 

4000 3000 2000 1000 0

6

5

4

3

2

1

0

80
0

13
40

16
40

36
38

Clay

Clay
+3%CLS

CLS

Clay
+5%CLS 14

20
14

60

29
40

10
30

11
60

15
10

16
00

34
20

Tr
an

sm
ita

nc
e

[a
.u

.]

Wavenumber [cm-1]
Figure 2: Infrared spectrum of CLS, Clay and Clay + 3% CLS and Clay + 5% CLS.



33

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100 1000 10000 100000

Po
re

si
ze

de
ns

ity
fu

nc
ito

n,
e

/
lo

g
d)

[1
/n

m
]

Pore size diameter, d [nm]

Clay

Clay + 3% CLS

Clay + 5% CLS

Figure 3: Pore size density distribution for the three mixtures obtained by MIP for Clay, Clay 
+ 3% CLS and Clay + 5% CLS compacted samples at dry of optimum water content (Sr 
= 41% - 46%) and a given dry density (e = 1.18-1.23).
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Figure 4: Evolution of intruded void ratio obtained by MIP for the three mixtures: Clay, Clay + 
3% CLS and Clay + 5% CLS compacted samples at dry of optimum water content (Sr = 41% - 
46%) and a given dry density (e = 1.18-1.23).
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Figure 6: Free swell evolution with time for the three mixtures: Clay, Clay + 3% CLS and Clay 
+ 5% CLS compacted samples at a given dry density (e = 1.18-1.23). 
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Figure 7: Results of swelling pressure and compressibility index obtained from evolution of the 
void ratio during free swell and Oedometer test for the three mixture: Clay, Clay + 3% CLS and 
Clay + 5% CLS compacted samples at a given dry density (e = 1.11-1.18). 
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Figure 8: Evolution of consolidation and permeability parameter obtained from loading steps in 
Oedometer test for the three mixtures. 
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Figure 9: Unconfined Compressive test for the three mixtures: Clay, Clay + 3% CLS and Clay + 
5% CLS compacted samples at a given dry density (d = 11.0-12.3kN/m3) and the moisture 
content: A) dry side of Optimum Proctor moisture content, B) optimum Proctor moisture content 
and C) wet side of Optimum Proctor moisture content and results for Clay + 3% Lime and Clay 
+ 5% Lime.
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Figure 10: Relation of suction and degree of saturation using the filter paper technique and van 
Genuchten model for water retention curve for the three mixtures: Clay, Clay + 3% CLS and Clay 
+ 5% CLS. 
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Graphical Abstract
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Highlights

This study analyses the efficiency of calcium lignosulfonate (CLS) as an 
expansible soil stabilization agent. 

The evolution of micro and macro porosity of the clayey soil and CLS was 
analyzed with mercury intrusion porosimeter (MIP) and scanning electronic 
microscope (SEM). 

Effect of the CLS on the hydro-mechanical behavior on compacted samples of 
Clay-CLS is evaluated.   


