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A new second-order multivariate calibration model is presented which allows one to process matrix data
showing a non-linear relationship between signal and concentration, and achieving the important second-
order advantage. The latter property permits analyte quantitation even in the presence of unexpected
sample components, i.e., those not present in the calibration set. The model is based on a combination of
residual bilinearization, which provides the second-order advantage, and kernel partial least-squares of
unfolded data, a flexible non-linear version of partial least-squares. The latter one involves projection of the
measured data onto a non-linear space, which in the present case consists of a set of Gaussian radial basis
functions. Simulations concerning two ideal systems are analyzed: one where the signal–concentration
relation is quadratic with positive deviations from linearity, and another one where it is sigmoidal. The
results are favorably compared with those provided by several artificial neural network approaches. Two
experimental systems are also studied, involving the analysis of: 1) the lipid degradation product
malondialdehyde in olive oil samples, where the background oil provides a strong interferent signal, and 2)
the antibiotic amoxicillin in the presence of the anti-inflammatory salicylate as interferent. The results for
these experimental cases are also encouraging.
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1. Introduction

The processing of second- and higher-order data have attracted the
attention of chemometricians in recent years for a variety of reasons:
1) they are now abundantly produced by modern analytical instru-
ments, 2) they show peculiar mathematical characteristics which
distinguish them from first-order data, and 3) they provide analytical
chemists with the important second-order advantage, an intrinsic
property which permits analyte quantitation in the presence of
unexpected sample components (i.e., components not present in the
calibration set of samples) [1].

Several algorithms are available for the convenient processing of
second-order data, with specific characteristics which have been
reviewed in recent years [1–3]. When the relationship between signal
and concentration is linear, available algorithms achieving the second-
order advantage are based on: 1) calibration with latent variables, such
as unfolded partial least-squares (U-PLS) [4], where ‘unfolded’ refers to
workingwithpreviously vectorizeddatamatrices [5], andmulti-wayPLS
(N-PLS) [6], both combined with residual bilinearization (RBL) [7–10],
which is the procedure providing the second-order advantage to both of
these PLS versions, 2) alternating least-squares (ALS), such as parallel
factor analysis (PARAFAC) [11], some of its variants [12–14], and
multivariate curve resolution-alternating least-squares (MCR-ALS) [15],
3) direct least-squares, such as bilinear least-squares (BLLS) in its several
versions [16–18], also combined with RBL to obtain the second-order
advantage, and 4) eigenvector–eigenvalue techniques, such as the
generalized rank annihilation method (GRAM) [19].

Recently, the possibility of achieving the second-order advantage
from non-linear second-order data has been advanced [20], and soon
several hybrid algorithms combining unfolded-principal component
analysis (U-PCA), residual bilinearization and a number of artificial
neural networks (ANN) have been devised [21], and applied to both
second- [22,23] and higher-order [24] experimental data. In all of
these cases, neither U-PCA nor the different ANNs is able to achieve
the second-order advantage, since they process data whose two-
dimensional structure has been removed by the unfolding. The
second-order advantage is provided by the RBL procedure, a
genuinely matrix-based method which refolds the U-PCA residuals
into the original two-dimensional structure in order to remove the
contribution of the interferents from the test sample data.

The purpose of this work is to introduce a new technique, which
combines residual bilinearization with a flexible non-linear PLS
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method (i.e., kernel-PLS) [25–27]. The latter one is being increasingly
applied to process non-linear first-order instrumental data (mainly of
spectroscopic origin) [28–30]. In the present report, we show its
capability to handle non-linear second-order data, and, in combina-
tion with RBL, to quantitate the analytes in the presence of
unexpected sample constituents. Both simulations and experimental
examples show that the analytical figures of merit of the presently
described algorithm compare well with those provided by previously
discussed approaches, which were based on U-PCA/RBL processing
followed by: 1) multiple perceptron back-propagation ANN, 2) radial
basis functions and 3) support vector machines. Moreover, in the
simulated cases, where the functional relationship between signal and
concentration is known a priori, an analysis is made of the minimum
root-mean-squared error which can be expected in the presence of
non-linearities, concluding that the present approach provides a
satisfactory approximation to this limit.
2. Simulations

Data were simulated for multi-component mixtures having two
calibrated analytes, and a single potential interferent appearing in the
test samples along with the analytes. Noiseless profiles for the analytes
and the potential interferent are shown in Fig. 1A and B in both data
dimensions, leading to data matrices of size 50×40 data points. They
may be viewed as mimicking experimental systems such as fluores-
cence excitation–emission matrices, UV–visible-chromatographic re-
tention time matrices, etc. Using the analyte profiles shown in Fig. 1, a
calibration set of 25 samples was built having random concentrations
Fig. 1. Noiseless profiles employed for the simulations, in the first (A) and second
(B) dimension. In both cases, the solid line corresponds to analyte 1, the dashed line to
analyte 2, and the dash-dotted line to the potential interferent.
(both analyte concentrations were taken as random numbers, distrib-
utedwith equal probability in the range 0–1). The relationship between
signal and concentration for analyte 1 was considered to take two
alternative non-linear forms: a quadratic function with a positive
deviation from linearity (system S1) and a sigmoidal function (system
S2). These specific functional forms were chosen because they mimic
the signal–concentration behavior in both of the experimental systems
which will be described below.

In system S1, the signal–concentration relationship for analyte 1 is
governed by the following quadratic equation:

X1 = S1ðy1 + ay21Þ ð1Þ

where X1 is the matrix signal at concentration y1, a is a parameter
controlling the deviations from the ideal linearity (in our case a=0.8)
and S1 is a pure-analyte bilinear matrix given by the product of the
corresponding spectral profiles in each dimension:

S1 = b1c
T
1 ð2Þ

where b1 and c1 are the (J×1) and (K×1) profiles in dimension 1 and
2 respectively, (J and K are the number of channels in each dimension)
and the superscript ‘T’ indicates matrix transposition. The profiles b1

and c1 are shown in Fig. 1A and B and were both normalized to unit
length. Hence the Frobenius norm of the matrix S1 is unity, a fact
which will be employed below in connection with the estimation of
figures of merit for the present model.

In system S2, on the other hand, the non-linear relationship
between analyte signal and concentration is sigmoidal:

X1 = S1
1

1 + expðb−cy1Þ
− 1

1 + expðbÞ
� �

ð3Þ

where b=1.5 and c=3, and X1 and S1 have the same meaning as in
Eq. (1).

In both simulated systems, the signal for analyte 2 is considered to
be linearly related to its concentration:

X2 = S2y2 ð4Þ

with S2 given as a bilinear product analogous to Eq. (2). The profiles
for analyte 2 (Fig. 1A and B) were also normalized to unit length.

To produce the calibration data, the signal for a typical sample was
given by the sum of the contributions of both analytes. For the 500 test
samples, on the other hand, both analytes were considered to be
present at concentrations which were also taken at random from the
range 0–1, but different from the calibration values. These test
samples did also contain the potential interferent, at concentrations
taken at random from the range 0.5–1.5 (to ensure that a significant
amount of interferent is always present), and having a signal X3 given
by an equation analogous to Eq. (4). Hence these synthetic data
require the second-order advantage to be achieved in order to
adequately predict the analyte concentration in the test samples. The
corresponding profiles (Fig. 1A and B) were normalized to unit length.

Once the noiseless calibration and test matrices were built,
Gaussian noise was added to all signals. The standard deviation
varied between 0.001 and 0.01 units (see below). These extremes
represent 0.25% and 2.5% respectively with respect to the maximum
calibration signal in the quadratic system, and 0.5% and 5% in the
sigmoidal system. The data matrices were then processed using
several non-linear second-order multivariate calibration methods.
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3. Experimental

3.1. Apparatus

Fluorescence spectral measurements were performed on a fast-
scanning Varian Cary Eclipse fluorescence spectrophotometer,
equipped with two Czerny–Turner monochromators and a xenon
flash lamp, and connected to a PC microcomputer via an IEEE 488
(GPIB) serial interface. Excitation–emissionmatrices were recorded in
a 10 mm quartz cell. For the experimental system involving the
analyte amoxicillin, the cell was thermostated at 80 °C for system E1
and at 15 °C for system E2.

3.2. Experimental system E1: analyte malondialdedyde

Aqueous malonaldehyde (1.00×10−3 M) was prepared from
1,1,3,3,-tetraethoxypropane (TEP, Sigma-Aldrich, Steinheim, Ger-
many): to 20.0 µL of TEP (ca. 0.0200 g), 10 mL of HCl 0.01 M were
added, and the mixture was heated at 50 °C during 60 min. The
solution was then neutralized with NaOH, diluting with water to
100.00 mL. A methylamine solution (0.1 M) was prepared by
dissolving a suitable amount of reagent (Fluka, Steinheim, Germany)
in water.

A twenty one-sample calibration set with malonaldehyde in seven
triplicate concentration levels (0.00, 0.30, 0.60, 0.90, 1.20, 1.79 and
2.39 mg L−1, concentrations correspond to the measuring cell).
Adequate volumes of malonaldehyde 1.00×10−3 M were placed in
a 10.00 mL volumetric flask, adding 3 mL of isopropanol, 2.5 ml of
sodium acetate/acetic acid buffer (1 M, pH=3.8), 1 mL of methyl-
amine 0.1 M, and completing to the mark with water. Spiked olive oils
samples were prepared as follows: known volumes (0.500 mL) of
different olive oils were artificially added with malonaldehyde, in
order to contain the analyte in the range 5.00–20.0 μg. Blank, analyte-
free oil samples were also studied. Each sample was mixed with
10.0 mL of hexane, placed in an extraction flask and extracted with
10.0 mL of a solution prepared by mixing 2.9 mL of sodium acetate/
acetic acid buffer solution (1 M, pH=3.8) and 3.5 mL of isopropanol.
Then 8.50 mL of the aqueous phase were transferred to a 10.00 mL
volumetric flask, 1.0 mL of methylamine solution was added, and the
flask was completed to the mark with distilled water. In this manner,
the final analyte concentrations in the spiked oils were within the
calibration range (they were however different than those employed
for model training).

All excitation–emission fluorescence matrices were recorded in
the following ranges: excitation, 385–424 nm each 3 nm, emission
448–487 nm each 4 nm, after a reaction time of 30 min. The data
arrays were thus of size 14×11, making a total of 154 data points. This
analytical system has already been analyzed using third-order data,
including the time dimension of the reaction of the analyte with
methylamine [24]. In the present paper, the time reaction has been
fixed at its optimum (30 min) in order to analyze the corresponding
second-order data.

3.3. Experimental system E2: analyte amoxicillin

UV-induced fluorescence excitation–emission matrices were mea-
sured for the determination of the antibiotic amoxicillin in the presence
of salicylate. Amoxicillin (LLCM Laboratory, Santa Fe, Argentina),
potassium periodate (Fluka, Buchs, Switzerland) and potassium
dihydrogen phosphate (Merck, Darmstadt, Germany) were employed.
A stock solution of amoxicillin (0.130 g L−1)wasprepared by dissolving
an appropriate amount of amoxicillin standard in water and sonicating
during 15 min. Amoxicillin solutions were prepared every two weeks
and stored in a refrigerator at 4 °C. The calibration set had seven
duplicate concentration levels of amoxicillin in the range from 0.00
to 6.30 mg L−1. They also contained a phosphate buffer (0.8 mol L−1,
pH=5.84) and potassium periodate (0.007 mol L−1). The test set
contained five samples having amoxicillin at concentrations different
than those employed in the training phase. They also contained
salicylate as a fluorescent interferent, in concentrations ranging from
0.002 to 0.009 mg L−1. All samples were subjected to photo-activated
reaction during 30 min, by irradiating themwith a 125Whigh pressure
mercury lamp.

All fluorescence excitation–emission matrices were read in the
excitation range 300–360 each 4 nm, and emission range 370–470
each 4 nm, i.e., the size of each data matrix was 16×26=416 data
points per sample. This analytical system has already been studied
using artificial neural networks combined with residual bilineariza-
tion [21], and is included here for comparison of present and previous
results.

4. Theory

The essentials of residual bilinearizationhavealreadybeendiscussed
in Refs. [7,9]. The important outcomeof the RBL procedure, as applied to
a given array of test sample data, is a vector of sample scoreswhich have
been freed from the effect of the potential interferents, permitting the
reconstruction of the portion of the test sample data which can be
explained by the calibration model. This important step provides the
second-order advantage to the whole scheme.

For non-linear U-PLS calibration with second-order data, we
propose to first unfold them, and then to apply the kernel-PLS
method described in Ref. [25]. Briefly, it consists of building the kernel
matrixK, whose individual elements are given by the projection of the
measured data onto a non-linear Gaussian space:

Kði; i′Þ = expð−‖ vecðXcal; iÞ− vecðXcal; i′Þ‖ = σÞ ð5Þ

where vec() indicates the unfolding operation, Xcal,i and Xcal,i′ are
the second-order data matrices for two calibration samples, ∥ ∥ is the
norm of a vector, and σ is the width of the Gaussian transformation.
As can be seen, thematrix K is of size Ical× Ical, where Ical is the number
of calibration samples.

The next step is to build a PLS model between the matrix K and
the analyte concentrations contained in the vector y, using a certain
number of latent variables, a procedure which will provide a vector of
regression coefficients β, of size Ical×1.

If there were no potential interferents in the unknown sample data
matrix Xunk, the latter would be projected as in Eq. (5):

kuðiÞ = expð−‖ vecðXcal; iÞ− vecðXunkÞ‖ = σÞ ð6Þ

providing a kernel vector ku for the unknown sample, which renders
the analyte concentration yu from:

yu = βT
ku ð7Þ

When unexpected components are present in a test sample,
however, Eq. (6) can no longer be employed to compute the test
kernel vector. Nevertheless, successful analyte prediction is still
possible, provided Xunk is replaced in Eq. (6) by the reconstructed
portion of the unknown data matrix which can be explained using the
calibration model. This is provided by the above commented RBL
procedure. The entire process is outlined in Fig. 2.

The RBL method is usually implemented using U-PCA to filter the
test sample data from the contribution of unexpected components, as
described in detail in Ref. [9]. In practice, it is convenient to employ
both calibration and test sample scores instead of vectorized data
matrices in the kernel-PLS procedure. This implies building the
Kernels by replacing vec(Xcal,i) in Eqs. (5) and (6) by the vector of
calibration scores for the ith sample tcal (size Acal×1, where Acal is the
number of principal components required to describe the variability



Fig. 2. Scheme outlining the entire kernel U-PLS/RBL procedure. The gray rectangle highlights the activities involved in the RBL procedure which provides the second-order
advantage to the combined algorithm. The sizes of the different vector and matrices involved in the scheme are indicated.
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in the unfolded calibration data). Likewise, vec(Xunk) is replaced in
Eq. (6) by the test sample scores tunk. The latter is directly provided by
the RBL procedure.

From the above discussion it is clear that two parameters should be
tuned before calibration and prediction: the width σ and the number
of latent PLS variables N. We propose to estimate both values in a
single procedure using leave-one-out cross-validation. In order to be
conservative in the number of latent variables, we conduct cross-
validation for a range of values of σ and N. Then a comparison is
made between the concentrations predicted by the model for all pairs
of (σ,N) values and those at the absolute minimum of the predicted
error sum of squares (PRESS). We employed a suitable statistical test
for this purpose, selecting N as the lowest value which provides a
certain probability for the comparison of its PRESS with the minimum
PRESS. This helps to avoid overfitting, and does not require and
independent set of samples for tuning σ and N.

5. Software

The presently discussed RBL/kernel U-PLS model was applied
using an in-house MATLAB 7.0 routine [31]. It will be incorporated
into a graphical interface for second-order multivariate calibration,
and made available through the internet at http://www.chemometry.
com/Index/Links%20and%20downloads/Programs.html.
Multiple perceptron networks were applied in the Bayesian
regularization mode [32,33], which does not require an independent
monitoring set for estimating the trainingparameters, as implemented
in the MATLAB 7.0 Neural Network Toolbox. RBF networks were
implemented using the forward selection method described by Orr in
Ref. [34] and available at http://www.anc.ed.ac.uk/rbf/rbf.html. SVM
were implemented using the LS-SVM lab toolbox (MATLAB/C Toolbox
for Least-Squares Support Vector Machines) available at http://www.
esat.kuleuven.ac.be/sista/lssvmlab/, and described in the accompa-
nying manual [35]. All programs were run on an IBM-compatible
microcomputer with an Intel core duo T7100, 1.80 GHz microproces-
sor and 2.00 GB of RAM.

6. Results and discussion

6.1. Simulated systems

We first concentrate in the quadratic non-linear system S1 with
positive deviations from linearity, whose behavior with respect to the
concentration of the analyte of interest is described by Eq. (1). The 25
calibration data matrices were subjected to estimation of the
important parameters σ and N. Fig. 3A shows a three-dimensional
plot of the obtained PRESS values when the signal noise level was
equal to 0.003 units. It is customary to analyze the PRESS values for

http://www.chemometry.com/Index/Links%20and%20downloads/Programs.html
http://www.chemometry.com/Index/Links%20and%20downloads/Programs.html
http://www.anc.ed.ac.uk/rbf/rbf.html
http://www.esat.kuleuven.ac.be/sista/lssvmlab/
http://www.esat.kuleuven.ac.be/sista/lssvmlab/


Fig. 3. A) Three-dimensional plot of leave-one-out cross-validation PRESS (predicted
error sum of squares) as a function of the logarithm of σ and the number of latent PLS
variables N. The values correspond to the simulated quadratic system S1 when the
noise in signals was 0.003 units. B) Contour plot of the PRESS values of plot A) cut to a
maximum equal to (F0.75,25,25×minimum PRESS). The position of the absolute
minimum PRESS is indicated. The colored bar at the right shows the contour heights.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 4. Predicted vs. nominal concentrations for the simulated quadratic system S1
when the noise in signals was 0.003 units. A) kernel U-PLS analysis of the raw data, i.e.,
without RBL to model the interferents, B) RBL followed by normal PLS regression of
unfolded data, C) RBL combined with kernel U-PLS regression. In all cases the open
circles indicate the individual predictions and the solid line the ideal fit.
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selecting the number of latent variables using Haaland's criterion [36],
i.e., choosing N as the lowest number for which the F ratio between
the PRESS values and the absolute minimum PRESS does not exceed a
probability of 0.75 (considering that the degrees of freedom are the
number of calibration samples). When the values of PRESS are cut at
the absolute minimum of Fig. 3A times F0.75,25,25 (equal to 1.96), the
corresponding contour plot is shown in Fig. 3B, with the position of
the minimum indicated [σ=316, log(σ)=2.50, N=9]. A rather
shallow region is obtained around the absolute minimum (Fig. 3B),
with many values of PRESS seemingly equivalent from a statistical
point of view. A conservative criterion thus suggests that N=8 is a
reasonable choice. Subsequent analysis of the PRESS values for N=8
and different values of σ gives σ=316 as the optimum for this
specific N. Hence σ=316, N=8 were selected for further data
processing.

Using these tuned parameters, predictions can be made for the
analyte of interest (component no. 1) in the test samples. This
requires to perform RBL for each of the 500 test samples, employing
two principal components to model the calibration data and one
principal component to model the contribution of the unexpected
component to the signal. These numbers of PCs stem from the known
composition of the calibration and test samples (two analytes and
a single interferent), but in a general case further statistical con-
siderations may be required, to be detailed below for the experi-
mental systems. Once the sample signals were freed from the
interferent effects, prediction proceeded as described in the theory
section [Eq. (7)]. For the sake of comparison, results will be shown
for processing the data under the following three conditions: 1)
kernel U-PLS of raw test sample data, 2) kernel U-PLS of RBL-filtered
test data, and 3) regular U-PLS (i.e., U-PLS not using the non-linear
approach) of RBL-filtered data. This comparison is made in order to
appreciate the need of combining both RBL and kernel U-PLS for
obtaining reasonable predictions in this non-linear second-order
system in the presence of interferents.

Fig. 4 plots the corresponding predictions in the above commented
three different scenarios. It is apparent that the best approach is the
presently discussed RBL/kernel U-PLS procedure. The plot of predicted
values when no RBL is applied (Fig. 4A) shows the expected lack of
accuracy (a systematic bias is observed) when unexpected sample
components are not taken into account in the second-order model. On
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the other hand, even when RBL is applied (Fig. 4B), the use of a linear
model predicts concentration valueswith a large positive deviation, as
expected from the known behavior of this non-linear system [Eq. (1)].
Although visual inspection is evidently favoring the present approach
(Fig. 4C), root-mean-square errors of prediction (RMSEP) speak by
themselves: 0.12 concentration units for the raw data, 0.068 for RBL
with normal U-PLS, and 0.0053 for RBL with kernel U-PLS.

The sigmoidal system S2 leads to similar results to those
commented above for the quadratic system S1, except that the
figures of merit are poorer because of the lower sensitivity provided
by Eq. (2) in comparison with Eq. (1). In fact, predictions lead to the
following RMSEP values: 1) 0.30 concentration units for processing
the raw data, 2) 0.28 for RBL followed by normal U-PLS, and 3) 0.019
for RBL with kernel U-PLS. Comparing the best RMSEP for both
systems, the sigmoidal best RMSEP is more than 3 times larger than
the best quadratic RMSEP, in agreementwith the higher sensitivity for
system S1 with respect to system S2.

It is interesting towonder if the achieved figures ofmerit with RBL/
kernel U-PLS are indeed satisfactory. This question can be answered
by comparing the results from the presently discussed procedure with
those already described in the literature, which are known to produce
acceptable results, i.e., U-PCA/RBL followed by different artificial
neural network approaches, as discussed in Ref. [21]. Table 1 shows
such results, which point to a good agreement among the different
techniques. Details for the implementation of the ANN approaches can
be found in Ref. [21].

Further insight into the comparison of the above non-linear
approaches involves the estimation of the expected concentration
uncertainties. Using an approach which has already been found to be
useful in linear systems [37], one can estimate the lowest uncertainty
which could be expected for the predicted concentrations, knowing
the level of instrumental noise introduced in the simulated systems,
the degree of spectral overlapping among the component profiles, and
the functional relationship between signal and concentration for
analyte 1. In cases of linear signal–concentration relationship, the
RMSEP has been found to be similar to the estimated concentration
uncertainty [37].

It has already been shown that when two analytes and one
interferent occur, such as in the present study, the sensitivity is given
(in the linear case) by the following expression [38]:

Sn = snf½ðBT
expPb;unxBexpÞ⁎ðCT

expPc;unxCexpÞ�−1g−1 = 2
nn = snOf ð8Þ

where sn is the integrated total signal for component n at unit
concentration, and the overlapping factor Of is computed from the
Table 1
Prediction results on the 500 test sample set using the present approach and several
neural network models.a

System Figure of merit RBL/MPb RBL/RBFc RBL/SVMd RBL/kernel U-PLSe

Quadratic RMSEP 0.0050 0.0048 0.0050 0.0053
Bias 0.0040 0.0040 0.0041 0.0043
bSD(y)N 0.0030 0.0027 0.0030 0.0031

Sigmoidal RMSEP 0.020 0.018 0.017 0.019
Bias 0.014 0.013 0.013 0.014
bSD(y)N 0.014 0.012 0.011 0.012

a The signal noise employed in the simulations was 0.003 units. In all cases, the
number of unexpected RBL components was 1, and the number of input nodes was 2
(corresponding to two analytes in the calibration set).

b MP=multipleperceptron,hiddenneurons, 5 (both systems),Bayesian regularization,
training epochs=413 (quadratic) and 234 (sigmoidal), effective number of parameters/
total parameters=10/21 (quadratic) and 7/21 (sigmoidal).

c RBF = radial basis functions, hidden neurons=22 (quadratic) and 7 (sigmoidal),
Gaussian width=1 (quadratic) and 5 (sigmoidal).

d SVM = support vector machines, γ=3.93×106, σ=60.7 (quadratic) and
γ=1.19×107, σ=93.0 (sigmoidal).

e N=8, σ=360 (quadratic) and N=4, σ=3.2×105 (sigmoidal).
matrices Bexp and Cexp containing the profiles for all expected
components in each dimension [i.e., those present in the calibration
sample set, with ‘nn’ implying the selection of the (n,n) element
corresponding to the nth analyte of interest], and from two projection
matrices which are orthogonal to the space spanned by the
unexpected components in each of the data modes:

Pb;unx = I−BunxðBunxÞþ ð9Þ

Pc;unx = I−CunxðCunxÞþ ð10Þ

where Bunx and Cunx contain the profiles for the unexpected
components as columns, I is an appropriately dimensioned unit
matrix, and ‘+’ stands for the pseudo-inverse.

In a non-linear system, an appropriate correction to Eq. (8) is to
replace sn by the derivative of pure-analyte signal vs. concentration,
i.e., by:

ðd‖X1‖ = dyÞ = ‖S1‖ð1−2ay1Þ ð11Þ

in the quadratic system, and by

ðd‖X1‖ = dyÞ = ‖S1‖
c expðb−cyÞ

½1 + expðb−cyÞ�2 ð12Þ

in the sigmoidal system. Recall that ∥S1∥=1 in both cases (∥ ∥
represents the Frobenius norm of a matrix), as discussed above when
describing the data simulations. Both Eqs. (11) and (12) predict a
sensitivity parameter which will vary with the analyte concentration,
and hence one should strictly speak of average figures of merit for a
non-linear analytical system.

The average uncertainty in predicted concentrations is expected to
be given by the ratio of signal noise to average sensitivity bSnN [37]:

〈SDðyÞ〉 = SDðXÞ
〈Sn〉

=
SDðXÞ

〈ðd‖X1‖ = dyÞ〉Of
ð13Þ

where (d∥X1∥/dy) is computed as the average of either Eqs. (11) or
(12) over the range of analyte concentrations. The average derivative
is easily computed as:

ðd‖X1‖ = dyÞ =
∫1

0
ðd‖X1‖ = dyÞdy

∫1

0
dy

= ‖X1ðyÞ‖ j10 = ‖X1ð1Þ‖ ð14Þ

In the present case, ∥X1(1)∥ are 1.8 and 0.635 for the quadratic and
sigmoidal system respectively. The overlapping factor Of, on the other
hand, is equal to 0.55 for both systems [as computed from Eq. (8) and
the noiseless component profiles shown in Fig. 1]. These figures justify
the higher average sensitivity of system S1 with respect to S2 by a
factor of (1.8/0.635)=2.8.

The expected value of bSD(y)N for the quadratic system is thus
computed as 0.003 concentration units, using SD(X)=0.003 in
Eq. (13). Although the estimated uncertainty is lower than the
RMSEP values quoted in Table 1, it should be remembered that the
latter values contain a mixture of random uncertainty and systematic
bias [39]. The latter may arise from a slight misfit of the kernel U-PLS
method of the non-linearity introduced to the system. The bias is
difficult to be precisely determined, although an approximation can
be obtained by the average value of the absolute bias |(ypred−ynom)|,
where ‘pred’ stands for predicted and ‘nom’ for nominal. This allows
one to obtain an approximation to the value of bSD(y)N as [40]:

〈SDðyÞ〉 = ðRMSEP2−Bias2Þ1=2 ð15Þ

Table 1 shows that all biases are similar for the different non-linear
approaches. Moreover, the expected concentration uncertainty
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[0.003, Eq. (13)] appears to be comparable to the average bSD(y)N
value (0.0033) provided by Eq. (15) from the simulation study.

If the above calculations are repeated for different values of the
signal noise SD(X), different uncertainties in concentration are
obtained. Fig. 5 shows the expected values of SD(y) as a function of
signal noise SD(X) as provided by Eq. (13) (straight lines), with circles
indicating the values obtained on simulation using Eq. (15). Also
included in Fig. 5 are the results for the sigmoidal system, which
shows correspondingly larger uncertainties because of its lower
intrinsic sensitivity. All results are stimulating and provide support for
the accuracy and precision of the presently discussed approach based
on kernel U-PLS processing of RBL-filtered second-order data (the
latter allowing to achieve the important second-order advantage).
Fig. 6. Fluorescence intensity (AFU = arbitrary fluorescence units) as a function of
analyte concentration for both experimental systems: A) system E1, B) system E2. In
both cases, open circles indicate the averages of duplicate measurements, while the
bars represent the corresponding standard deviation.
6.2. Experimental systems

Fig. 6 shows the variation of fluorescent signal at fixed wave-
lengths (excitation and emission maxima) for both experimental
systems in their corresponding analytical dynamic ranges. As can be
appreciated, the malondialdehyde system E1 (Fig. 6A) shows positive
deviations from linearity which were mimicked by the quadratic
simulated system S1 described in the simulations. On the other hand,
the changes in signal vs. concentration which are shown in Fig. 6B for
the amoxicillin system E2 are visually described as sigmoidal. The
behavior is similar to that described by the sigmoidal expression (2)
employed during simulations of system S2.

First system E1 was analyzed using regular U-PLS for calibrating
the model (using three latent variables as suggested by leave-one-out
cross-validation), and RBL for modeling the interferent contribution
(using a single RBL component). The results provided poor figures of
merit (Table 2). Moreover, a plot of U-PLS calibration scores vs.
analyte concentration shows a clear non-linear behavior for the first
score (Fig. 7A) and hints on non-linearity for the remaining two scores
(Fig. 7B and C). All these results clearly point to the need of a model
which adequately covers the non-linearity of the system.

When system E1 was studied using the presently proposed model,
the first issuewas to assess optimal calibration values forN andσ. Using
the same cross-validation methodology described for the simulated
data, theywere estimated as4 and42 respectively. The next activitywas
the estimation of the number principal components to be employed in
the modeling of the calibration data and in the RBL modeling of the
interferent signal. The first number was estimated by leave-one-out
cross-validation, as described in detail in Ref. [41]. Briefly, for each left-
Fig. 5. Open circles (quadratic system S1) and triangles (sigmoidal system S2): average
concentration uncertainty bSD(y)N [Eq. (15)] as a function of noise in signal for the
simulated systems. The lines correspond to the theoretical expectations of concentra-
tion uncertainty as a function of signal noise [Eq. (13)]: solid line, quadratic system S1,
dashed line, sigmoidal system S2.
out sample, U-PCA is performed on the remaining training samples,
and the unfolded signal for the left sample is predicted using its scores
and the U-PCA loadings. The squared prediction error is then saved
and summed to those corresponding to each of the remaining samples,
leading to the LORSS (left-out residual sum of squares). These
calculations are repeated for a number of PCs from 1 to a certain
maximum (10 in our case). The values of LORSS using (Acal+1) PCs
Table 2
Predictions and statistical analysis for malondialdehyde.a

Sample Malondialdehyde/mg L−1

Nominal RBL/U-PLS RBL/RBF RBL/kernel U-PLS

1 0.00 0.28 0.19 0.10
2 0.00 0.26 0.17 0.07
3 0.48 0.44 0.56 0.63
4 0.48 0.46 0.54 0.55
5 0.96 1.03 1.09 0.88
6 0.96 0.83 0.81 0.76
7 1.44 1.06 1.31 1.20
8 1.91 0.95 1.74 1.72
RMSEP/mg L−1 0.42 0.14 0.15
REP/% 41 12 12

a All samples were prepared from different olive oils, spiked with the analyte.
Subsequent dilution led to the quoted concentrations in the measuring cell. For both
chemometric approaches, number of calibration components=3, number of unex-
pected components=1. For RBF, input neurons=3, hidden neurons=19, Gaussian
width=1. For RBL/kernel U-PLS, N=4, σ=42.



Fig. 7. Plots of U-PLS calibration scores as a function of analyte concentration for both experimental systems. Plots A), B) and C) show the first, second and third scores for the
experimental system E1, while plots D), E) and F) show the analogous plots for system E2.

Table 3
Predictions and statistical analysis for amoxicillin.a

Sample Amoxicillin/mg L−1

Nominal RBL/U-PLS RBL/SVM RBL/kernel U-PLS

1 1.98 1.80 1.88 1.70
2 3.24 3.05 3.23 3.16
3 4.49 4.24 4.39 4.31
4 5.74 5.30 5.88 5.79
5 6.47 6.10 6.14 6.13
RMSEP/mg L−1 0.30 0.17 0.20
REP/% 8.0 4.0 5.3

a In both cases, number of calibration principal components=3, and number of
unexpected components=1. For SVM, input nodes, 3, γ=6×104, σ 2=5×104. For
RBL/kernel U-PLS, N=6, σ=8.
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were compared to the APRSS values usingAcal PCs (APRSS, where APRSS
indicates the autopredicted residual sumof squares). If the latter error is
larger, then the extra PCs are modeling noise and are not significant.
Usually, the ratio LORSS(Acal)/APRSS(Acal−1) is computed, and if this
exceeds 1, (Acal−1) PCs are employed to model the data [41]. This
analysis led to the conclusion that three principal components were
enough to account for the variability in the training data. Finally, the
number of unexpected components in the RBL analysis can be assessed
by comparing the final residuals of the RBLmodelwith the instrumental
noise level, as already described [42].

Using three principal components for modeling the calibration data
and a single unexpected component for RBL, the RBL/kernel U-PLS
methodology can be applied to the test samples, all consisting of olive
oils spikedwith the analyte in controlled concentrations. The prediction
results are compared in Table 2with those provided by a combination of
RBL (which provides the second-order advantage) and the artificial
neural network approach which provided the best analytical results, in
this case the RBF approach. As can be seen, the results point to
comparable predicting abilities of both employed combination of
techniques.

In the case of the experimental system E2, normal U-PLS using
three latent variables, followed by RBL for interferent modeling with a
single RBL component yielded the results shown in Table 3. They are
disappointing regarding analyte prediction. As with system E1, all
plots of U-PLS calibration scores vs. analyte concentration are non-
linear (Fig. 7D, E and F). This implies that a suitable non-linear model
is required to account for this behavior.

For applying the presently discussed non-linear model to system
E2, a similar approach was employed in what concerns the estimation
of the parameters N and σ, and the numbers of principal components
used to model the calibration data and the contribution of the
interferent to the test sample signals. They are reported in Table 3,
along with the specific prediction results. The comparison is now
made with the best of the previously applied approaches to this same
system, i.e., RBL (giving the second-order advantage) and support
vector machines (Table 3). The results indicate that the present
combined approach presents a comparable predictive ability.
7. Conclusions and outlook

A new non-linear second-order model achieving the second-order
advantage has been described, combining residual bilinearization
(which provides the second-order advantage) and kernel partial
least-squares regression of unfolded data (which adequately models
non-linear data). Its analytical ability is comparable to already
discussed non-linear models combining residual bilinearization and
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artificial neural networks, based on the study of two simulated and
two experimental systems. Its implementation, however, is signifi-
cantly simpler. Since the latent variable approach employed to model
the calibration data is able to handle non-bilinear data, the present
combination of algorithms represents a highly flexible technique for
the processing of second-order instrumental data. The only important
restriction is that the matrix signal from the interferent should have a
bilinear form and could be adequately modeled using a few principal
components during the residual bilinearization procedure.
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