
Research Article

3
4
0

Received: 27 September 2010, Revised: 11 November 2010, Accepted: 11 January 2011, Published online in Wiley Online Library: 17 March 2011
(wileyonlinelibrary.com) DOI: 10.1002/cem.1383
Kohonen classification applying ‘missing
variables’ criterion to evaluate the
p-boronophenylalanine human-body-
concentration decreasing profile of boron
neutron capture therapy patients
Jorge Magallanesa*, Alejandro Garcı́a-Reiriza, Sara Lı́bermana

and Jure Zupanb
The irradiation dose in tumor and healthy tissue of a
J. Chemom
boron neutron capture therapy (BNCT) patient depends on the
boron concentration in blood. In most treatments, this concentration is experimentally determined before and after
irradiation but not while irradiation is being carried out because it is troublesome to take the blood samples when
the patient remains isolated in the irradiation room. A few models are used to predict the boron profile during that
period, which until now involves a biexponential decay. For the prediction of decay concentration profiles of the
p-boronophenylalanine (BPA) in the human body during BNCT treatment, a Kohonen-based neural networkmethod is
suggested. The results of various (20T 20T 40 Kohonen network) models based on different trainings on the data set
of 67 concentration sets (profiles) are described and discussed. The prediction ability and robustness of the modeling
method were tested by the leave-one-out procedure. The results show that the method is very robust and mostly
independent of small variations. It can yield predictions, root mean squared prediction error (RMSPE), with a
maximum of 3.30mggS1 for the present cases. In order to show the abilities and limitations of the method, the best
and the few worst results are discussed in detail. It should be emphasized that one of the main advantages of this
method is the automatic improvement in the prediction ability and robustness of the model by feeding it with an
increasing number of data. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION Profile no. 62 was then discarded (see text below). The con-
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In the boron neutron capture therapy (BNCT) [1], the mea-
surements of the concentration profile of the p-borono-
phenylalanine (BPA) are carried out in vivo. The period in which
the measurements should be carried out is variable, for instance
400min. Unfortunately, the complete profile concentration
measurement is not allowed due to the necessity of isolating
the patient in the radiation room. Therefore, it is usually stopped
between 40 and 60min after the peak concentration is reached in
order to prepare the patient for irradiation. The prediction of the
concentration profile of the BPA in blood after the last recorded
measurement is highly necessary because the radiation dose
depends on it. In the present work, the prediction of the
concentration profile during the blind period extended up to 4h is
worked out by modeling it with a method based on the Kohonen
neural network [2,3] employing the data (concentration profiles) of
various lengths recovered from previous treatments reported in
the literature [4–9]. The method is described and discussed.

2. DATA

The data set in the study consists originally of 68 concentration
profiles recorded at different (not equidistant) time intervals.
etrics 2011; 25: 340–347 Copyright � 2011 J
centration profiles consist of 13–33 points all starting with
zero time and zero concentration, but ending at a wide variety of
time recordings from 250min up to more than 1400min.
However, most of the profiles have concentrations up to at
least 400min. The distances between the concentration record-
ings vary considerably among the profiles as well as within
each profile; they depend on the readings made at different
institutions. An average profile has about five concentrations
between the zero point and the maximum one, with the
remaining 5–25 points extending over quite different time spans
until the final measurement.
ohn Wiley & Sons, Ltd.



Evaluation of the p-boronophenylalanine
To make the data comparable among themselves, the
concentration profiles of the analyzed samples were interpolated
to 41 points in 10-min intervals between zero and 400min. Due to
the fact that all profiles have the first point at zero time and zero
interval only the remaining 40 points were taken into account for
modeling and testing. The profiles that finish before 400min
were extrapolated by the slope of the last available concentration
interval recorded. So, the data for making the model consist of
the full 67� 40 data matrix. As input data for the predictions, the
same profiles with all points above the maximum plus 60-min
interval (six points) cut-offs are used (see flow chart in Figure 1).
Figure 2 shows the data for 67 profiles of the test profiles as

they enter the computer as ‘unknown profiles’ for the predictions.
The positions of the maximal values are marked in medium gray
and the 6-point difference from the maximal value in darker gray.
Figure 1. Flow chart of data preprocessing.
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The rest of each input profile is filled with the symbol NaN (Not a
Number), which are shown by a series of black points in Figure 2,
signaling to the computer that the rest of the values are missing.
In order to have a look at the ranges in which the concentration

profiles are recorded, the limiting cases are shown in Figure 3.
These are the two profiles with the lowest and highest recorded
peak concentrations—no. 62 and no. 55, respectively, and the
profiles with the shortest and longest time intervals between
the start of the drug administration and the time in which
the maximal concentration is reached—profile nos 35 and 10,
respectively. From now on, profile no. 62 will not be taken into
account for statistical purposes because it was obtained by
injecting only ½ of the drug concentration; it was initially
included to check only the capability of the program for extreme
cases.
As it can be seen from Figure 2, not all profiles have the same

number of points. Out of 67 profiles, 19 have less than 40 points,
with the shortest one extending only up to the 260min; i.e., it
contains 26 concentration points.

3. MODELING METHOD

Kohonen artificial neural network [2,3] was selected as the
model because in a special design [10] it can handle inputs of
variable lengths. The Kohonen network is an unsupervised
method, which means that no target values or target vectors
are needed for modeling. Kohonen network is, in principle, a
nonlinear two-dimensional clustering of m-dimensional objects
X¼ (x1, x2,. . ., xi,. . ., xm) onto the plane of N�N neurons. In our
case, the Kohonen network consists of 400 neurons distributed in
the 20� 20 plane. Each neuron has 40 weights, which means
that the network can be adapted to 40-dimensional objects,
or samples, or concentration profiles X¼ (x1, x2,. . ., xi,. . ., x40)
(Figure 4).
The additional feature of the used network is that it can handle

objects of different lengths, i.e. the profiles having less than 40
concentrations distributed in equidistant 10-min intervals. This
feature is achieved by substituting the criterion of the minimal
distance between the neurons for the determination of the
winning neuron in the Kohonen network with the criterion of the
minimal distance between the neurons per one weight [10].
If the input vector X¼ (x1, x2, xi,. . ., x40) has all 40 variable values

xi defined, then all the Euclidean distances between the vector X
and any neuron Wj are given by

d X;Wj

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX40
i¼1

xi�wji

� �2
vuut (1)

On the other hand, with only m� k out of m variables in
the object X being known, X¼ (x1, x2,. . .xm�k, NaN,. . ., NaN),
the distance between the X and any other neuron Wj can be
calculated as a distance per weight, and multiplied by the
number of all possible weights:

d X;Wj

� �
¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
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¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

for all k xi
that are
notmissed

i¼1

xi�wji

� �2
vuuut

1� k
m

(2)

If k¼ 0, Equation (1) yields exactly the same distances in the
Kohonen network as the distance per one weight in Equation (2).
ey & Sons, Ltd. wileyonlinelibrary.com/journal/cem
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Figure 2. 67 profiles data of the test profiles as they enter in the computer as ‘unknown profiles’ for the predictions. Light gray points: interpolated data.
Medium gray points: peak position. Black points: starting point for predictions. Black point series non-existing data (NaN).
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The difference between both distances is the factor (1–k/m),
which means that the search for the smallest distance (for the
excited neuron) will yield the same result in both cases even if k
is not equal to zero. If the input vector X has, let us say three
missing variables, like X¼ (x1, x2,. . .x37, NaN, NaN, NaN), then
the distance calculation between any X and all neurons Wj runs
only over 37 values and the winning neuron is determined
exactly in the same way with the determination of the smallest
distance by Equation (2) as it would be with Equation (1). The
sole reason for using Equations (1) or (2) is the determination
of the smallest distance between X and W vectors, without
regarding the actual length of X.
Figure 3. Limit cases in range concentration (profile nos 62 and 55) and

shortest and longest time interval between the start of the drug admin-

istration and the time in which the maximal concentration is reached
(profile nos 35 and 10). Abscissas show time in minutes, and ordinates

show boron concentration in mgg�1.
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In this way, the Kohonen network weights can be trained with
all data including those which have some missing variables. The
incomplete data profiles can be entered as the input either to
train the Kohonen network or as the unknown input in the case
when searching for the most similar neuron in the already trained
Kohonen network. In our case, we have used the incomplete data
for both events.
As shown in Figure 2, the data collection contains 19 profiles

that are not complete. The concentrations are not recorded up to
400min. For these nineteen profiles, the concentration values stop
in the range between 280 and 380min. One can simply exclude
such data out of the study; however, the remaining 49 curves seem
to be even less representative than the existing 67, which still form
a small group for building a very reliable model. To include such
incomplete data, we have tried two approaches for building the
models. In the first case, the concentration values beyond the last
actually recorded one were obtained by the extrapolation. The
extrapolation was made according to the slope between the last
two concentration points. In the second approach, the profiles
were entered to the training of the Kohonen network as they were
obtained up to the last point and themissing concentration values
up to 400min added with values of NaN. These values signaled
to the program of the Kohonen learning to do the distance
calculation according to Equation (2). In Section 4, the prediction
results obtained in both ways are compared.
It has to be kept in mind that in the Kohonen neural network all

weights in all neurons in the network are adapted and have
specific values depending on the entire neighborhood regardless
of whether the neurons were excited during the learning period
or not and even if they were excited the values of some specific
variables were not defined at all.
The 20� 20 Kohonen model has 400 neurons to adapt to 67

concentration profiles Xi, i¼ 1,. . .,39 (Figure 4). This was made in
1000 epochs of training, which means that all 67 profiles Xi were
Wiley & Sons, Ltd. J. Chemometrics 2011; 25: 340–347



Figure 4. Schematic diagram of the Kohonen network.
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sent through the network 1000 times and each profile Xi was
relocated each time according to weight corrections that
were constantly adapted to minimize the distance between
the inputted profile Xi and the selected neuron after its input.
3

4. THE RESULTS

In order to test models, the outputs of which were series of
concentrations (boron biodistributions) consisting of several
points xi (each time a different number of them) quantitatively,
we have to define a measure of agreement between the
sought and the actually predicted result. Taking a complete
concentration profile of 40 concentration values as an example
of a real case test, then the first, let us say, p points (points up
J. Chemometrics 2011; 25: 340–347 Copyright � 2011 John Wil
to 60min after overpassing the maximum) are fed into
the computer model as query input, while the remaining
40� p points are used for comparison with the predicted
data. The quality of the model prediction is the agreement
between the actual profile’s 40� p values (not input into the
computer) and the predicted 40� p values output by the com-
puter model.

d ¼

Pimax

i¼imin

xtargeti �wexcited
i

�� ��
imax�imin

¼

P40
i¼imin

xtargeti �wexcited
i

�� ��
40�imin

(3)

The summation in Equation (3) runs from the first point of
the predicted part of the profile which is 60min after overpassing
ey & Sons, Ltd. wileyonlinelibrary.com/journal/cem
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Figure 5. Extreme cases. Two very good cases (see text for details). Abscissas show time in minutes, and ordinates show boron concentration in mg g�1.
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the peak to the last point. In the case where the actually tested
profile Xtest

i has less points than 40, sum (3) stops before, i.e. to
imax< 40.
The main assumption, of course, is that the profile Xtest

i applied
in this test was not used for the generation of the model and can
thus be regarded as an ‘unknown’ to the computer.
To test the prediction ability of the proposed method, we have

cut off all 67 concentration profiles at the time point extending
60min over the time at which the maximal concentration
was reached, i.e. to the maximal point plus six further points.
This means that the truncated inputs have between 9 and 20
values, depending on the position of the maximal concentration.
The remaining descending concentration profile of 19–30 con-
centration values has to be predicted if the first part is input to
the model. The prediction is based on the winning neuron in the
Kohonen network which is excited by the input of the first
truncated part of the profile. Because all weights in all 400
neurons in the network are influenced and exposed to
the corrections caused by all 67 profiles, each neuron Wj

contains adapted or generated profile which is a result of the
completed training procedure in which the complete set of
67 profiles was sent through the Kohonen network several
hundred times.
Figure 6. Extreme cases. The three worst cases (see text for details). Abscissas

wileyonlinelibrary.com/journal/cem Copyright � 2011 John
Due to the fact that no two profiles are identical, each profile
can easily be identified by few first points’ (9–20) concentrations,
one value per 10min. Therefore, it is clear that the ANN prediction
of the second part of the profile (19–30) of remaining
concentration values is perfect if the profile, of which the first
part is used as the input query, was used at the same time for the
generation of the ANN model. Hence, this kind of test does not
provide the answer about the reliability of the predictions of real
cases.
To obtain the actual prediction ability, the cross-validation

leave-one-out [11,12] procedure was employed. To do this, 67
models were made with 66 actual profiles, leaving out of the
modeling procedure one of them each time. Each of these 67
models was tested by only one profile—the one that was left out
of the generation of the particular model. Three models with
different learning strategies were employed. Due to the fact
that all three strategies generate models that yield very similar
predictions only the results of the model obtained on the 20� 20
network and trained for 300 epochs will be discussed. First, let us
have a look at five extreme samples. Two of them, sample nos 4
and 51 (Figure 5), are very good, while the sample numbers 10, 48
and 56 are the worst ones (Figure 6). The first two samples that
show very good agreement between the predicted and actual
show time inminutes, and ordinates show boron concentration inmg g�1.
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Table I. Average concentration’s error for each profile at the time of 4 h after the beginning of the treatment for models obtained
with different number of epochs and absolute errors at the time of 180 minutes after the beginning

Case
no.

Average
error

20� 20
9999 epochs

Average
error

20� 20
1000 epochs

Average
error

20� 20
300 epochs

Concentration at
180min of the
original profile

Error at
180min
20� 20

9999 epochs

Error at
180min
20� 20

1000 epochs

Error at
180min
20� 20

300 epochs

1 3.29 3.34 2.38 14.40 4.71 4.79 3.64
2 0.33 0.48 0.79 13.24 0.25 0.63 0.91
3 3.33 0.46 0.74 13.29 2.86 0.54 0.97
4 0.45 0.49 0.50 10.07 0.63 0.61 0.62
5 1.01 1.20 1.18 19.26 0.98 1.00 1.13
6 0.30 0.90 0.48 13.30 0.05 0.31 0.14
7 1.01 1.03 0.80 18.28 0.98 0.52 0.19
8 0.28 0.28 0.34 13.59 0.12 0.12 0.37
9 1.77 1.77 0.91 12.61 1.76 1.87 0.68
10 2.08 1.74 1.70 15.28 1.71 1.20 1.29
11 0.90 1.40 1.23 14.75 0.49 0.65 0.33
12 0.50 0.93 1.58 16.44 0.04 2.47 0.50
13 0.55 0.55 0.54 12.41 0.31 0.31 0.27
14 2.33 2.27 2.47 16.41 0.53 2.14 1.28
15 1.63 1.77 1.57 13.24 1.50 1.78 1.66
16 2.47 1.15 1.26 16.06 2.40 1.86 1.67
17 0.81 1.60 0.50 10.60 0.06 0.81 0.16
18 2.34 2.16 0.51 10.49 3.91 3.59 0.92
19 3.31 2.03 2.71 9.61 4.60 3.42 3.72
20 1.85 3.90 0.97 14.62 1.89 3.20 1.11
21 0.23 0.36 0.34 9.53 0.04 0.39 0.09
22 1.36 1.78 0.51 10.78 1.08 1.62 0.56
23 0.30 0.30 0.26 12.40 0.25 0.25 0.21
24 2.20 2.81 0.84 13.46 1.81 1.82 0.67
25 0.25 1.00 0.97 16.60 0.20 0.43 0.23
26 0.12 0.10 0.14 15.63 0.12 0.12 0.07
29 1.90 0.68 0.74 13.94 0.27 0.29 0.07
30 0.59 0.69 0.64 10.87 0.27 0.27 0.25
31 1.72 1.71 2.01 13.63 0.61 0.48 0.11
32 0.76 2.47 1.35 10.52 0.92 3.29 0.80
33 1.45 1.80 1.78 11.38 2.36 2.29 2.31
34 0.20 0.21 0.21 9.55 0.26 0.25 0.22
35 2.27 2.74 2.70 9.02 3.25 3.30 3.26
36 1.16 0.72 1.25 9.07 1.09 0.70 1.15
37 0.58 0.69 0.41 11.48 1.05 0.70 0.29
38 0.75 0.89 0.85 9.56 0.96 0.96 0.92
39 0.23 0.45 0.50 9.30 0.50 0.69 0.88
40 2.65 2.65 1.97 14.07 3.56 3.56 3.17
42 1.21 2.45 1.76 15.11 0.64 1.35 0.14
43 1.69 1.85 1.25 13.02 2.35 2.55 2.22
44 2.77 2.47 2.76 22.51 6.49 5.98 6.14
45 0.95 2.05 1.45 11.97 0.55 0.30 0.72
46 2.10 2.23 1.59 13.37 1.33 1.18 0.64
47 1.81 1.02 1.28 16.72 0.61 1.50 2.62
48 2.85 3.41 3.17 15.25 3.94 6.54 5.76
49 3.25 1.78 2.59 13.45 3.15 1.56 2.55
50 0.62 0.84 0.88 16.47 0.01 0.04 0.07
51 0.33 0.35 0.31 12.15 0.26 0.30 0.26
52 2.34 2.36 1.72 11.89 1.56 1.64 1.59
53 5.40 4.70 4.82 21.15 5.13 5.79 5.72
54 1.00 1.23 2.23 10.88 3.76 5.57 4.18

(Continues)
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Table I. (Continued)

Case
no.

Average
error

20� 20
9999 epochs

Average
error

20� 20
1000 epochs

Average
error

20� 20
300 epochs

Concentration at
180min of the
original profile

Error at
180min
20� 20

9999 epochs

Error at
180min
20� 20

1000 epochs

Error at
180min
20� 20

300 epochs

55 1.58 1.29 1.29 13.28 2.53 2.31 2.43
56 2.13 2.13 2.03 17.87 3.28 3.28 3.04
57 1.29 1.79 1.93 17.08 1.57 2.25 2.93
58 2.29 1.46 1.86 16.75 1.24 2.77 1.59
59 0.12 0.10 0.07 15.51 0.12 0.12 0.13
60 4.25 5.61 5.71 12.43 3.76 3.87 3.81
61 2.23 1.96 1.89 4.13 2.06 2.11 2.02
62 2.75 2.76 2.61 1.27 2.85 2.84 2.67
63 1.98 1.86 1.86 2.67 2.35 2.11 2.16
64 4.00 4.42 4.28 16.13 3.25 3.90 3.77
65 0.79 0.57 0.53 12.10 0.91 0.41 0.60
66 1.27 1.49 1.27 13.63 1.45 1.73 1.47
67 1.18 0.97 0.38 16.36 0.61 0.77 0.48
68 1.72 1.35 1.58 15.42 2.09 0.77 1.53
69 2.75 5.04 5.03 17.78 1.98 4.71 4.37
70 1.73 1.62 1.66 15.67 1.22 0.56 0.48
71 1.81 0.31 0.39 16.16 1.38 0.26 0.21
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concentration values indicate how good Kohonen model can
be if enough data that cover the entire concentration/time space
are available. This means that the first two examples show the
potential ability of the model. Sample 56 shows that even for a
relatively weak agreement between the input query (circular
points) and the neuron (rhomboidal points) considerably good
predictions can still be obtained.
On the other hand, the two samples, 48 and 10, show different

problems that can occur using Kohonen ANN for prediction. In
the sample no. 48, one can see extra peaks in the curve which is
C tð Þ ¼ I0f

V1 l1�l2ð Þ t2�t1ð Þ
l1�k21
l1

1�el1t
� �

þ k21�l2

l2
1�e�l2t�1
� �� �

; 0 < t � T0

C tð Þ ¼ I0f

V1 l1�l2ð Þ t2�t1ð Þ
l1�k21
l1

1�el1T0
� �

e�l1ðt�T0Þ þ k21�l2

l2
1�e�l2T0
� �

e�l2ðt�T0Þ
� �

; t > T0

9>>>>=
>>>>;

(4)
extremely hard to predict unless the extra peak is an actual
reaction for a real pool of patients. Sample no. 10 is an example
for a frequent situation when the prediction of the concentration
decrease does not match the actual one—it is either too slow or
too fast. The problem that in spite of the fact that the input points
match the neuron’s beginning, a different continuation slope is
obtained can be solved only by taking as input as many points as
possible for the query. The last sample shows the problem of
extrapolation for prediction.
The average root mean squared prediction error (RMSPE) of

the 67 CV models is about 3.36mg g�1. Table I shows the exact
average error/concentration point for each profile and the error
at the time of 4 h after the beginning of the treatment for models
obtained with different number of epochs. Due to the fact that in
a 400 (¼ 20� 20) neurons Kohonen network which is trained by
67 profiles, at least 333 neurons are empty, i.e. not being excited
wileyonlinelibrary.com/journal/cem Copyright � 2011 John
by a single profile during the training; the excited neuron in the
test phase can very probably be one of the empty or not-excited
neuron of the network. Such a neuron is result of a dynamic
average created by weight adapting process during the training
influenced by all incoming profiles. In such a manner, the
resulting excited neuron by a truncated input shows a good
compromise between all known profiles.
Predictions obtained with this model have been compared

against a previous model based on the following bi-exponential
algorithm [13].
where CðtÞ is the BNCT-F concentration at time t, I0 is the BPA-F
infusion constant rate, T0 is the length of the infusion, V1 is the
volume of body distribution and l1, l2 and k21 are fitting
parameters.
This last model has been used until now to fit the complete

curve, up and down parts of it, but there were no predictions of
the decreasing side using the points from the starting time until
those which scarcely overshoot the peak. Being the prediction of
the decreasing side of the curve the most important aspect of the
modeling in order to work out the radiation’s dose of BNCT, we
proceeded to recalculate algorithm (4) using the same concept
applied for ANN. The error was calculated for each of the original
experimental points of the curves located after passing 60min of
the peak’s time, using the previous points to calculate the
parameters of algorithm (4). The comparisons of the RMSPEs of
both methods are shown in Table II.
Wiley & Sons, Ltd. J. Chemometrics 2011; 25: 340–347



Table II. Comparisons of the root mean squared prediction
errors.

Kohonen Biexponential Model

Case RMSPE %RMSPE RMSPE %RMSPE

1 1.101 7.79 4.86 36.92
2 0.993 8.16 1.71 14.85
3 0.721 5.58 1.26 10.12
4 0.607 5.70 1.12 11.59
5 0.998 6.11 0.12 0.76
6 0.724 5.98 3.03 26.27
7 0.941 6.14 0 0.01
8 0.333 2.83 2.35 19.99
9 0.735 5.66 0.82 6.32
10 0.776 5.83 0.84 6.44
11 0.970 7.72 2.42 19.24
12 0.317 2.02 8.86 59.37
13 0.023 0.21 3.61 32.51
14 2.713 22.52 6.9 67.31
15 1.680 13.06 1.47 11.41
16 2.489 13.21 1.41 8.22
17 1.060 9.33 3.8 35.7
18 0.609 5.48 2.82 27.06
19 3.021 28.70 4.4 44.43
20 1.850 13.63 1.53 11.6
21 0.334 3.16 1.77 19.57
22 0.326 2.99 2.24 20.58
23 0.897 7.60 1.24 10.61
24 0.476 4.23 2.77 24.65
25 0.518 3.17 1.42 8.69
26 0.382 2.44 2.62 17.77
29 0.419 3.00 1.17 8.96
30 0.059 0.46 0.81 8.36
31 3.000 NA 12.02 118.94
32 1.179 9.64 5.54 45.32
33 1.783 14.15 13.78 109.39
34 0.564 5.58 2.28 23.47
35 0.000 0.00 0.93 9.09
36 3.295 0.00 1.68 18.04
37 0.641 5.24 0.42 3.66
38 0.974 8.12 0.98 9.1
39 0.385 4.15 0.7 7.53
40 1.409 10.21 2.6 20.22
42 0.879 6.08 2.49 18.61
43 1.112 7.64 1.89 12.99
44 2.390 12.20 2.17 11.83
45 1.181 9.97 3.06 25.79
46 1.334 8.46 6.88 46.39
47 2.200 12.55 2.74 16.56
48 3.364 21.68 3.06 21.32
49 0.998 7.75 5.07 42.02
50 0.337 2.08 1.02 6.45
51 0.374 3.24 1.13 9.91
52 0.819 6.84 4.06 34.95
53 0.820 4.31 3.74 19.99
54 3.121 23.78 3.54 28.19
55 2.628 18.37 5.14 35.94

(Continues)

Table II. (Continued)

Kohonen Biexponential Model

Case RMSPE %RMSPE RMSPE %RMSPE

56 1.676 9.05 8.62 46.58
57 2.528 13.45 3.77 20.52
58 1.852 12.00 14.1 106.65
59 0.273 1.76 4.36 29.16
60 1.007 8.26 1.13 10.2
61 0.775 19.08 1.06 27.52
62 1.353 45.09 0.51 19.11
63 1.495 8.68 1.47 9.7
64 0.395 3.08 1.94 15.1
65 1.721 11.80 1.27 8.72
66 0.060 0.34 0.28 1.81
67 2.871 17.50 5.63 42.17
68 0.300 1.70 7.88 43.38
69 0.818 5.14 1.04 6.56
70 0.595 3.67 2.4 14.81

%RMSPE ¼ RMSPE
C

� 100 C : Average concentration range.

J. Chemometrics 2011; 25: 340–347 Copyright � 2011 John Wil

Evaluation of the p-boronophenylalanine
5. CONCLUSIONS

Until now, standard modeling techniques require, in advance, the
knowledge of a mathematical analytical function, the parameters
of which are determined on the basis of the best agreement
between the experimental and estimated data [4,14,15]. Now, for
this model we took advantage of the ANN property of not
requiring that knowledge to adapt the relationship between the
experimental and estimated data. Then, any experimental
deviation of the analytical function shape selected by the
previous methods could be successfully traced.
Additionally, in the present work it was shown that the

Kohonen neural network model is able to reproduce complex
curves from the truncated ones. With the leave-one-out
procedure an estimate of the reliability of such model was
obtained. Another real advantage of the models of this type is
that it could be constantly improved by adding new data to the
training matrix.
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