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Abstract. We provide an almost characterization of the approximation classes

appearing when using adaptive finite elements of Lagrange type of any fixed
polynomial degree. The characterization is stated in terms of Besov regular-

ity, and requires the approximation within spaces with integrability indices

below one. This article generalizes to higher order finite elements the results
presented for linear finite elements by Binev et. al. [BDDP 2002].

1. Introduction

Adaptive finite element methods (AFEM) for the numerical solution of partial
differential equations are now widely used in scientific computation, with the pur-
pose of reducing the computational cost by yielding the automatic construction of a
sequence of meshes that would equidistribute, eventually, the approximation errors,
producing (quasi-)optimal meshes.

Recent articles [BDD 2004, S 2006, CKNS 2007, DX 2008, GM 2010] tackle the
issue of optimality of AFEM by proving results of the following type for different
stationary problems:

Let u denote the exact solution being approximated in the norm
‖ · ‖. Assume that there exists s > 0 and a constant C such that,
for each N ∈ N, there is a triangulation T obtained with at most
N bisections from the initial triangulation T0 such that

inf ‖u− vT ‖ ≤ CN−s = C
(
#T −#T0

)−s
,

where the infimum is taken over all finite element functions vT
over the mesh T . Then, the adaptive cycle generates a sequence
{(Tk, uk)}k∈N of meshes, and corresponding finite element approx-
imations such that

‖u− uk‖ ≤ Ĉ(#Tk −#T0)−s, k = 1, 2, . . . .

In other words, if the exact solution can be ideally approximated with complexity
O(N−s), then the AFEM generates a sequence of discrete solutions converging with
the same order.

The goal of this paper is to shed some light into the understanding of the ap-
proximation classes As of functions that can be approximated with complexity of
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order N−s, with Lagrange finite elements of arbitrary (but fixed) order r ∈ N on
domains of arbitrary dimension d. In [GM 2008] it is proven that the so-called op-
timal convergence O(N−r/d) when measuring the error in H1 is obtained whenever
the function to approximate can be decomposed as a sum of a regular part plus
a singular part with singularities around a finite number of points. This decom-
position is usual in regularity results of Partial Differential Equations in terms of
Sobolev norms. Nevertheless, Sobolev spaces are not sufficient to characterize these
approximation classes.

In [BDDP 2002] an almost characterization of these classes is obtained, for the
case of linear finite elements, in terms of Besov regularity. In this work we state
and prove analogous results for higher order finite elements. For the proofs we
follow the steps of [BDDP 2002], filling in all the details necessary for studying
the higher order case. In particular, it is necessary to work with Besov spaces
with integrability index below one (see Remark 2.4), requiring the definition of a
local polynomial approximation operator Πp,G and the study of best approximation
properties in Lp for 0 < p <∞, among others (see Definition 3.7 and Theorem 3.8);
this is a key novel result of this article.

We end this introduction noticing that some of the results presented in this article
are rather technical and others are known to researchers from approximation theory.
The former were necessary in order to obtain a rigorous proof of the main results,
the latter were included for two reasons. First, we could not find proofs of those
results under the precise assumptions necessary for our argument, they were proved
either for one-dimensional domains or for smooth or convex domains; we compare
our results with the existing ones along their presentation throughout the article.
Secondly, those results are not so familiar to the finite element community, and
including them here makes this article more self-contained and easier to read for a
wider audience.

In the next section we state precisely our main results, and at its end we outline
the organization of the rest of this article.

2. Main Results

In this section we state the main results of this article, and start by setting the
finite element framework. We consider an initial triangulation T0 of the polyhedral
domain Ω into simplices, and we let the admissible triangulations be those belonging
to the family T of all conforming partitions of Ω obtained from T0 by refinement
using the bisection rules from [M 1995, Tr 1997], considered in [S 2007]. These rules
coincide (after some re-labeling) with the newest-vertex bisection procedure in two
dimensions and the bisection procedure of Kossaczký in three dimensions [K 1994],
and yield a shape regular family T:

sup
T ∈T

sup
T∈T

diam(T )

ρT
=: κT <∞,

where diam(T ) is the diameter of T and ρT is the radius of the largest ball contained
in it. Throughout this article, we only consider meshes T that belong to the
family T, so the shape regularity of all of them is bounded by the uniform constant
κT which only depends on the initial triangulation T0 [SS 2005, S 2007]. Besides,
these bisection rules ensure that the extra refinement needed to keep conformity
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of the meshes is controlled by the number of elements marked for refinement (see
Theorem 6.1 below).

From now on, for any admissible triangulation T , we let VT denote the finite
element space of continuous piecewise polynomials of degree at most r, where r is
a fixed positive integer, i.e.,

VT =
{
v ∈ C(Ω) : v|T ∈ Pr for all T ∈ T

}
.

Throughout the paper we fix B0 = Bαp,p(Ω), 0 < p < ∞, 0 < α < 1 + 1
p or

B0 = Lp(Ω) if α = 0 and we recall that the Besov space B = Bα+s
τ,τ (Ω) (s > 0) is

compactly embedded in B0 if and only if [BDDP 2002]

1

τ
<
s

d
+

1

p
or δ :=

s

d
+

1

p
− 1

τ
> 0.

The positive number δ is called the discrepancy for B relative to B0. The constraint
α < 1 + 1

p is required to guarantee that VT ⊂ B0, because we are considering C0

finite elements (see Proposition 4.7).
One of the main results of this article is the existence of a quasi-interpolant QT

with properties that are fundamental for the construction of quasi-optimal meshes.
These properties involve local and global bounds for the interpolation error in terms
of Besov and broken Besov norms and are explicitly stated in the following.

Proposition 2.1. Let B0 = Bαp,p(Ω), 0 < p < ∞, 0 < α < min{r + 1, 1 + 1
p}

or B0 = Lp(Ω) if α = 0. If f ∈ B = Bα+s
τ,τ (Ω) with 1

τ < s
d + 1

p , s > 0, and

s + α ≤ r + 1
τ∗

, where τ∗ = min{1, τ}. Then, for any mesh T ∈ T there exists
an interpolant QT : B0 → VT , and constants C1, C2, C3 such that the following
inequalities hold:

‖f −QT (f)‖Lp(T ) ≤ C1|T |δ|f |B(ωT (T )),(2.1)

|f |B0(ωT (T )) ≤ C1|T |δ|f |B(ωT (T )) (α > 0),(2.2)

‖f −QT (f)‖pLp(Ω) ≤ C2

∑
T∈T
|f |pB0(ωT (T )),(2.3)

|f −QT (f)|pB0(Ω) ≤ C3

∑
T∈T
|f |pB0(ωT (T )) (α > 0).(2.4)

where δ = s
d + 1

p −
1
τ > 0 and C1 = C1(p, s, τ, d, r, κT), C2 = C2(p, ρ, α, d, r, κT) and

C3 = C3(p, ρ, α, d, r, diam(Ω), κT); hereafter ωT (T ) denotes the patch of elements
of T that have nonempty intersection with T , | · |B0(ω) is the Besov seminorm (4.7)
if α > 0 and | · |B0(ω) = ‖ · ‖Lp(ω) when α = 0.

The construction of the operator QT is presented in Section 3 for a generic
function f ∈ Lp(Ω), without assuming any extra regularity. The proof of Propo-
sition 2.1 is presented in Section 5, after the Besov spaces are introduced and its
properties are discussed in Section 4.

In the rest of this article, we will use the notation C = C(�) to emphasize the
dependence of the constant C upon the parameters �. For the sake of simplicity, the
notation . will be used to indicate that a ≤ Cb with C > 0 a constant depending
on the parameters defined in the corresponding theorems, lemmas or propositions,
also a ' b will indicate that a . b and b . a.

One of the main consequences of this interpolation operator and its properties
is an embedding theorem between the Besov space B and an approximation class,
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through the construction of optimal meshes using a greedy algorithm. In order to
define the approximation classes we introduce the notion of best approximation
error with complexity N ∈ N on a quasi-Banach space B0 of functions defined on
Ω, as follows:

σN (u)B0
= min
T ∈TN

inf
v∈VT

‖u− v‖B0
,

where TN := {T ∈ T : (#T − #T0) ≤ N} that is, the minimum over T is taken
over all admissible triangulations obtained with at most N bisections.

Next, we define, for s > 0 the approximation classes As(B0) containing the
functions that can be approximated with best approximation error of order N−s.
More precisely,

As(B0) =
{
v ∈ B0 : ∃C such that σN (v)B0

≤ CN−s,∀N ∈ N
}
.

Equivalently, we can define As(B0) through a semi-(quasi)norm as follows:

As(B0) =
{
v ∈ B0 : |v|As(B0) <∞

}
with |v|As(B0) := sup

N∈N
NsσN (v)B0

.

This definition is also equivalent to saying that v ∈ As(B0) if there is a constant C
such that for all ε > 0, there exists a mesh T that satisfies:

(2.5) inf
vT ∈VT

‖v − vT ‖B0
≤ ε and (#T −#T0) ≤ Cε− 1

s ,

and |v|As(B0) is equivalent to the infimum of all constants C that satisfy (2.5).
This scale of spaces can be extended adding a parameter 0 < q < ∞ in the

following way:

As,q(B0) :=
{
v ∈ B0 : |v|As,q(B0) <∞

}
with |v|As,q(B0) :=

(∑
n∈N

[σ2n (v)B0
2ns]q

) 1
q

.

This more general class will be useful for proving the inverse estimates. We identify
As,∞(B0) = As(B0).

An important consequence of Proposition 2.1 is that the optimal error with
complexity N decays as O(N−s/d) when a function being approximated in B0-
norm belongs to B, and the discrepancy δ = s

d + 1
p −

1
τ is positive. More precisely,

Theorem 2.2 (Direct Theorem). Let B0 = Bαp,p(Ω), 0 < p < ∞, 0 < α <

min{r + 1, 1 + 1
p} or B0 = Lp(Ω) if α = 0. If f ∈ B = Bα+s

τ,τ (Ω) with 1
τ <

s
d + 1

p ,

s > 0, and s+ α ≤ r + 1
τ∗

, where τ∗ = min{1, τ}, then

(2.6) σN (f)B0
≤ CN−s/d|f |B , N ≥ 1.

where C = C(p, α, s, r, τ, d,Ω, κT, T0).

In terms of approximation classes, Theorem 2.2 can be stated as follows:

Corollary 2.3. Under the assumptions of Theorem 2.2 we have:

(2.7)
Bα+s
τ,τ (Ω) ⊂ As/d(Bαp,p(Ω)) (α > 0),

Bsτ,τ (Ω) ⊂ As/d(Lp(Ω)) (α = 0).
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Remark 2.4. It is important to notice that the decay O(N−s/d) of the optimal
error with complexity N can be achieved if s + α ≤ r + 1

τ . Thus, in order to
take full advantage of the polynomial degree r we need τ to be strictly less than
1; when r ≥ 2, in fact we need to set τ = 1/r. In the case of linear polynomials,
taking τ = 1 was sufficient [BDDP 2002]. Now we need to cope with Besov spaces
with integration power less than one, and this poses an additional difficulty when
defining the best approximation, due to the lack of uniqueness implied by the non-
convexity of the balls. This is dealt with in Section 3, precisely in Definition 3.7
and in Theorem 3.8.

When approximating the most studied case of second order elliptic problems, the
usual energy norm is equivalent to the Sobolev H1(Ω) norm. It is generally said
that an adaptive method with Lagrange finite elements of degree r for this class of
problems is quasi-optimal when the method converges with order N−r/d. This is the
order obtained when the solutions belong to Hr+1(Ω) and the meshes are refined
uniformly. The same order is often observed in practice when the solutions are
not so regular, and adaptive refinement is used. By inspection of the assumptions
of Theorem 2.2, and using the fact that H1(Ω) = B1

2,2(Ω) we conclude that it is

possible to approximate optimally a solution, whenever it belongs to Br+1
τ,τ (Ω) with

0 < 1
τ <

r
d + 1

2 , i.e., τ > 2d
2r+d . In order to illustrate better we provide some specific

examples of spaces included in Ar/d(H1(Ω)) in Table 1. These few examples in the

d = 2 d = 3

r = 1 B2
1+ε,1+ε(Ω) B2

6
5 +ε, 65 +ε

(Ω)

r = 2 B3
2
3 +ε, 23 +ε

(Ω) B3
6
7 +ε, 67 +ε

(Ω)

r = 3 B4
1
2 +ε, 12 +ε

(Ω) B4
6
9 +ε, 69 +ε

(Ω)

r = 4 B5
2
5 +ε, 25 +ε

(Ω) B5
6
11 +ε, 6

11 +ε
(Ω)

Table 1. Besov spaces contained in Ar/d(H1(Ω)) for d = 2, 3 and
r = 1, 2, 3, 4. These few examples show the need of using Besov
spaces with integrability index below one.

simplest and most widely studied case of second order elliptic problems show that,
in order to find the largest class of functions which can be approximated at optimal
rates, it is unavoidable to get involved with function spaces with integrability indices
below one.

The last main result is a kind of inverse result from the previous one and states
which generalized approximation classes are embedded into which generalized Besov
spaces (these generalized spaces are defined in Section 7):

Theorem 2.5 (Inverse Theorem). Let 0 < p < ∞, α ≥ 0, s > 0 and 1
τ = s

d + 1
p .

Then
A s
d ,τ

(B̂αp,p(Ω)) ⊂ B̂α+s
τ,τ (Ω) (α > 0),

A s
d ,τ

(Lp(Ω)) ⊂ B̂sτ,τ (Ω) (α = 0).

Remark 2.6. The generalized Besov spaces B̂αp,p(Ω) are an extension of the classical
Besov spaces using a multiscale norm that coincides with the norm of the classical
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Besov spaces Bαp,p(Ω) when α < 1 + 1
p . B̂αp,p strictly contains the classical Besov

space Bαp,p when α ≥ 1 + 1
p (see Section 7).

The rest of this article is organized as follows. In Section 3 we present the
construction of an interpolant that will satisfy the estimates of Proposition 2.1. This
construction is a key step of this article, and not obvious, since we are approximating
in spaces Lp with p < 1, which implies that the projections are not well defined in a
natural way. In Section 5 we prove that such an interpolant satisfies the properties
stated in Proposition 2.1. In order to do so, we use properties of Besov spaces which
are presented in Section 4, where we describe the Besov spaces in their classical
and multilevel form. In Section 6, we construct a mesh that allows us to prove
Theorem 2.2, whereas in Section 7 we prove the inverse estimates of Theorem 2.5.
Sections 6 and 7 are generalizations of the results from [BDDP 2002] and the proofs
follow the same lines; they are included here for the sake of completeness.

3. Finite Element Basis and Quasi-interpolant

In this section we will construct our interpolant QT and in Section 5 we will
prove Proposition 2.1, after having defined the Besov spaces and stated some of
their properties in Section 4. As usual, the construction does not make use of the
regularity of the function being approximated. We will follow the steps highlighted
in [BDDP 2002] generalizing them to the case of functions belonging to Lp(Ω) with
0 < p < 1 and Lagrange C0 finite elements of arbitrary polynomial degree. The
main contribution of this section are the constructive Definition 3.7 of a quasi-best
local polynomial approximation, and the proof of its properties in Theorem 3.8.

Let T ∈ T, recall that VT =
{
v ∈ C(Ω) : v|T ∈ Pr ∀T ∈ T

}
, and let

ΞT = {ν : ν is a node of VT }

denote the set of nodes, or location of the degrees of freedom of the finite element
space. We define, for each ν ∈ ΞT , the basis function φν as the only function of
VT with value 1 at the node ν and zero at the rest of the nodes. Then {φν}ν∈ΞT

is the nodal or canonical basis of VT .
By standard scaling arguments, if 0 < p <∞ and g =

∑
ν∈ΞT

aνφν ,

(3.1) ‖g‖Lp(Ω) '

(∑
ν∈ΞT

‖aνφν‖pLp(Ω)

) 1
p

where the equivalence constants depend only on p, the polynomial degree r and the
mesh regularity.

To construct a dual basis we restrict ourselves to an element T and there we
generate the biorthonormal dual basis {ςT,ν}ν∈T to {φν}ν∈T , where ςT,ν is the
polynomial of Pr defined in T such that

(3.2) 〈ςT,ν , φν′〉T :=

∫
T

ςT,ν φν′ |T = δν,ν′ , for all ν′ ∈ T.

Then, we define the dual basis
{
φ̃ν

}
ν∈ΞT

as follows:

(3.3) φ̃ν =
1

mν

∑
T∈T :ν∈T

ςT,ν χT ,
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where mν = # {T ∈ T : ν ∈ T} = # {T ∈ T : T ⊂ supp(φν)}. It is straightforward
to see that for this dual basis the following properties are valid:

(3.4) 〈φν , φ̃ν′〉 =

∫
Ω

φν φ̃ν′ = δν,ν′ ,

(3.5) θν := supp(φν) = supp(φ̃ν) =
⋃
T3ν

T,

and φ̃ν |T ∈ Pr for all T ∈ T , albeit in general φ̃ν is discontinuous.

Remark 3.1. The equivalence (3.1) is also true when we change {φν}ΞT by {φ̃ν}ΞT ,

and g =
∑
ν∈ΞT

aν φ̃ν .

It is easy to see that the linear operator QT : L1(Ω)→ VT defined as

(3.6) QT (f) :=
∑
ν∈ΞT

〈f, φ̃ν〉φν ,

is a projection mapping L1(Ω) into VT , i.e., if f ∈ VT , then QT (f) = f . And
moreover, if f = g χωT (T ), with g ∈ Pr, then QT (f)|T = g|T .

Note that this quasi-interpolant is not well defined for f ∈ Lp(Ω) when 0 < p < 1,

since fφ̃ν could be non-integrable in some cases. To overcome this difficulty we first
define (see Definition 3.11 below) a quasi-best polinomial approximation operator
Πp,T , which yields, for each f ∈ Lp(Ω), a (possibly discontinuous) piecewise poly-
nomial function Πp,T (f), and then apply QT to Πp,T (f).

Lemma 3.2. The linear projector QT has the following local stability properties:

(1) If 1 ≤ p <∞ and f ∈ Lp(Ω), then:

‖QT (f)‖Lp(T ) . ‖f‖Lp(ωT (T )) for all T ∈ T .

(2) If 0 < p <∞ and g =
∑
T∈T χT gT with gT ∈ Pr for each T ∈ T , then:

‖QT (g)‖Lp(T ) . ‖g‖Lp(ωT (T )) for all T ∈ T .

The constants involved in the previous bounds depend on p, r, and κT.

Proof. Let 1 ≤ p < ∞, and notice that using (3.3) and (3.4), and scaling to

a reference element
∥∥∥φ̃ν∥∥∥

Lp′ (Ω)
' |θν |1/p

′−1, ‖φν‖Lp(Ω) ' |θν |1/p with constants

depending only on p, r and κT. Then, for f ∈ Lp(Ω), recalling the definition (3.6)
of QT we obtain

‖QT (f)‖Lp(T ) ≤
∑
ν∈T
|〈f, φ̃ν〉| ‖φν‖Lp(T ) .

∑
ν∈T
‖f‖Lp(θν) . ‖f‖Lp(ωT (T )) ,

where the last inequality follows from the finite overlapping of the patches θν ⊂
ωT (T ), for ν ∈ T . Therefore, (1) is proved.

Notice that (2) for 1 ≤ p <∞ is a particular case of (1).
Let 0 < p < 1 and g =

∑
T∈T χT gT , with gT ∈ Pr. Recalling the definition (3.6)

of QT and the fact that for 0 < p < 1 the triangle inequality holds for ‖ · ‖pLp(T ) we

have

‖QT (g)‖pLp(T ) ≤
∑
ν∈T
|〈g, φ̃ν〉|p ‖φν‖pLp(T ) .
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On the other hand, by (3.2)

〈g, φ̃ν〉 =
∑
T ′⊂θν

〈g, φ̃ν〉T ′ =
1

mν

∑
T ′⊂θν

〈g, ςT ′,ν〉T ′ =
1

mν

∑
T ′⊂θν

gT ′(ν).

Therefore, using Lemma 3.3 below

|〈g, φ̃ν〉| .
∑
T ′⊂θν

‖gT ′‖L∞(T ′) .
∑
T ′⊂θν

|T ′|−1/p‖g‖Lp(T ′) . |T |−1/p‖g‖Lp(ωT (T )).

Since by scaling ‖φν‖pLp(T ) ' |T |, we obtain the desired estimate for (2). �

From now on, G will denote a subdomain of Ω composed of elements of an
admissible triangulation T ∈ T. More precisely, G will be assumed to be either a
patch formed by one element T ∈ T or a patch of neighboring elements ωT (T ) =
{T ′ ∈ T : T ∩ T ′ 6= ∅}. Standard scaling arguments can be used to prove the
following.

Lemma 3.3. Let T ∈ T, T ∈ T and G = T or G = ωT (T ). If 0 < p, q ≤ ∞ and
r ≥ 1, then

(3.7) ‖g‖Lq(G) ' |G|
1
q−

1
p ‖g‖Lp(G) ∀g ∈ Pr,

with equivalence constants depending only on p, q, r, κT, but independent of G.

Definition 3.4 (Best and near best approximation). Let G be any domain of Rd,
let 0 < p <∞, let r be a fixed polynomial degree, and let f ∈ Lp(G).

• The best approximation error in Lp(G) is defined as

E(f,G)p = inf
g∈Pr

‖f − g‖Lp(G).

• We say that g ∈ Pr is a near best Lp(G)-approximation of f with constant
A > 1 if

‖f − g‖Lp(G) ≤ AE(f,G)p.

It is easy to see that

Lemma 3.5. Let T ∈ T, T ∈ T and G = T or G = ωT (T ). If 0 < ρ ≤ p ≤ ∞
and g ∈ Pr is a near best Lρ(G)-approximation of f with constant A, then g a near
best Lp(G)-approximation of f with constant cA, where c depends on r, p, ρ and
κT, but is independent of f , g and the size of G.

Given these preliminary definitions and observations we are now in position
to construct a quasi-best local approximation operator Πp,G : Lp(G) → Pr for
0 < p < ∞. This approximation will have some properties desired for proving
Proposition 2.1. In particular, the linearity property (3.9) stated in Theorem 3.8
below cannot be guaranteed by the mere existence of a quasi-best approximation;
an explicit construction is needed. The case p > 1 is simple, because the projection
of Lp(G) onto Pr is linear, and thus (3.9) holds trivially. The main difficulty in
the case 0 < p < 1 is the lack of convexity of the balls in Lp(G), that implies
the possible existence of multiple best approximations. We propose the following
constructive definition, which requires the definition of barycenter of some class of
subsets of the space Pr .
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Definition 3.6. Let k = dim(Pr) and let W : Pr 7−→ Rk be the canonical linear
transformation that maps each polynomial in Pr to the vector of its coefficients
in a given fixed basis. For a nonempty open set S ⊂ Pr, let S̄ = W (S), which is
also nonempty and open. Utilizing the Lebesgue measure in Rk, we let Λ be the
barycenter of S̄, i.e.

Λi =
1

|S̄|

∫
S̄

xi dx, i = 1, 2, . . . , k,

where xi denotes the i-th component of x ∈ Rk. We define the barycenter of S
as W−1(Λ). Notice that since S̄ is a nonempty open set of Rk, |S| > 0 and the
barycenter is well defined.

For a unitary set S = {g} ⊂ Pr we define the barycenter of S as g.

Definition 3.7. Let G be a domain in Rd and let 0 < p < ∞, we define the
quasi-best local polynomial approximation operator Πp,G : Lp(G) → Pr as follows.
Given f ∈ Lp(G), we let Sf = {f} if E(f,G)p = 0, which happens only when
f ∈ Pr. Otherwise, let Sf = {g ∈ Pr : ‖f − g‖Lp(G) <

3
2E(f,G)p}, which is open

and nonempty. We define Πp,G(f) as the barycenter of Sf .

The following theorem is the main new result of this section, and essentially
states that the operator Πp,G is a quasi-best approximation in Lp(G) and it is
linear with respect to functions in Pr (but not necessarily linear in general for
p ≤ 1).

Theorem 3.8. The operator Πp,G has the following properties for 0 < p <∞:

(1) Πp,G is well defined in Lp(G), and for any f ∈ Lp(G), Πp,G(f) ∈ co(Sf ),
the convex hull of Sf , i.e.,

Πp,G(f) ∈ co(Sf ) =

{
n∑
i=1

λigi : gi ∈ Sf ,
n∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, . . . , n, n ∈ N

}
.

In particular, Πp,Gf = f if f ∈ Pr.
(2) For Ap,r = 3

2 (dim(Pr) + 1)
1−p
p if 0 < p ≤ 1, and Ap,r = 3

2 if 1 < p <∞,

(3.8) ‖f −Πp,G(f)‖Lp(G) ≤ Ap,rE(f,G)p, ∀f ∈ Lp(G),

and then Πp,G is a quasi-best approximation operator in Lp(G).
(3) Πp,G is a bounded operator in Lp(G) in the sense that

‖Πp,G(f)‖Lp(G) ≤ (Ap∗p,r + 1)1/p∗‖f‖Lp(G), ∀f ∈ Lp(G),

with p∗ = min{p, 1}, but it is not necessarily linear if 0 < p < 1.
(4) Πp,G is linear for functions in Pr, that is:

(3.9) Πp,G(f + g) = Πp,G(f) + g, ∀f ∈ Lp(G), ∀g ∈ Pr.

Proof. 1. The first assertion is trivial when E(f,G)p = 0 since in this case co(Sf ) =
Sf = {f} = {Πp,G(f)}. When E(f,G)p > 0, Sf is open and nonempty, and by
virtue of the separation theorem for convex sets [vT 1984, Ch. 3], the barycenter Λ
of S̄f belongs to co(S̄f ). Since W is linear, Πp,G(f) = W−1(Λ) ∈ W−1(co(S̄f )) =
co(Sf ).
2. The second assertion is trivial for 1 < p <∞. To prove it in the case 0 < p ≤ 1

we use the Carathéodory Fundamental Theorem [vT 1984, Ch. 4], which says that
each element of the convex hull co(S) of a set S on a space of finite dimension k, is
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a convex combination of at most k+1 elements of S. Then, since Πp,G(f) ∈ co(Sf )
there exists a set {gi}ki=0 ⊂ Sf , with k = dim(Pr) and a set of nonnegative real

numbers {λi}ki=0 with
∑k
i=0 λi = 1, such that Πp,G(f) =

∑k
i=0 λigi, and then

‖f −Πp,G(f)‖pLp(G) =

∥∥∥∥∥f −
k∑
i=0

λigi

∥∥∥∥∥
p

Lp(G)

=

∥∥∥∥∥
k∑
i=0

λi(f − gi)

∥∥∥∥∥
p

Lp(G)

≤
k∑
i=0

λpi ‖f − gi‖
p
Lp(G) <

(
3

2

)p k∑
i=0

λpiE(f,G)pp

=

(
3

2

)p( k∑
i=0

λpi

)
E(f,G)pp ≤

(
3

2

)p
(k + 1)1−pE(f,G)pp

where we have used that gi ∈ Sf yields ‖f − gi‖ < 3
2E(f,G)p for 0 ≤ i ≤ k.

3. The boundedness of the operator in Lp(G) follows from the previous item and
the triangle inequality:

‖Πp,G(f)‖p∗Lp(G) ≤ ‖f‖
p∗
Lp(G) + ‖f −Πp,G(f)‖p∗Lp(G)

≤ ‖f‖p∗Lp(G) +Ap∗p,rE(f,G)p∗p ≤ (Ap∗p,r + 1) ‖f‖p∗Lp(G) ,

since 0 ∈ Pr yields E(f,G)p ≤ ‖f‖Lp(G).

4 If f ∈ Lp(G) and g ∈ Pr, then clearly E(f + g,G)p = E(f,G)p and also

Sf+g = Sf + g. Since W is linear, Sf + g = S̄f + g, which readily implies that
Πp,G(f + g) = Πp,G(f) + g because the Lebesgue measure is translation invariant.

�

Remark 3.9. In order to understand the idea of the definition, some remarks are in
order:

• The minimum ming∈Pr ‖f − g‖Lp(G) = E(f,G)p is always realized because

the space Pr is finite dimensional. It is realized by exactly one polynomial
when p > 1 and it may be realized by multiple polynomials if 0 < p < 1.

• When f ∈ Pr, Sf = {f} and Πp,G(f) = f .
• When f /∈ Pr, Sf is the (nonempty) set of all elements of Pr at distance
< 3

2E(f,G)p of f ; i.e., Sf contains quasi-best approximants with a uniform

constant ( 3
2 ). The factor 3

2 can be replaced by any number greater than
one,

• Finally, Πf,G(f) is defined as the barycenter of Sf , which is also a quasi-best
approximation because it is the convex combination of at most dim(P r)+1
polynomials.

Remark 3.10. It is not clear to us if the operator Πp,G is continuous in Lp(G). Even
though it would be interesting to know more properties of Πp,G, we notice that the
bound (3.8) is sufficient for our purposes.

Definition 3.11. Given a triangulation T ∈ T, 0 < p < ∞ and f ∈ Lp(Ω) we
define

Πp,T (f) :=
∑
T∈T

χTΠp,T (f),

where χT is the characteristic function of T . Notice that Πp,T (f) is a piecewise
polynomial function over T , not necessarily continuous.
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The quasi-interpolant Qp,T : Lp(Ω)→ VT is then defined as:

(3.10) Qp,T (f) := QT (Πp,T (f))

for all f ∈ Lp(Ω), 0 < p <∞, where QT was defined in (3.6).

Remark 3.12. The quasi-best approximation estimate (3.8) of Πp,T implies that
Qp,T (g) = g whenever g ∈ VT , and the linearity property (3.9) implies that

(3.11) Qp,T (f −Qp,T (f)) = Qp,T (f)−Qp,T (Qp,T (f)) = Qp,T (f)−Qp,T (f) = 0,

for any f ∈ Lp(Ω).

Notice that even though QT (f) may be undefined for f ∈ Lp(Ω) if 0 < p <
1, (3.10) is always well defined, and moreover, we have the following best approxi-
mation bound.

Lemma 3.13. If f ∈ Lp(Ω) and 0 < ρ ≤ p < ∞, then there exists a constant c
such that:

(3.12) ‖f −Qρ,T (f)‖Lp(T ) ≤ cE(f, ωT (T ))p

where c depends only on p, ρ and the mesh regularity, that is, the approximation
interpolant in Lρ is a quasi-best aproximation locally in Lp(Ω) for p ≥ ρ.

Proof. Let P ∈ Pr such that E(f, ωT )p = ‖f − P‖Lp(ωT (T )), then:

‖f −Qρ,T (f)‖Lp(T ) . ‖f − P‖Lp(T ) + ‖P −Qρ,T (f)‖Lp(T )

= ‖f − P‖Lp(T ) + ‖QT (P −Πρ,T (f))‖Lp(T )

. ‖f − P‖Lp(T ) + ‖P −Πρ,T (f)‖Lp(ωT (T ))

= ‖f − P‖Lp(T ) + ‖P − f + f −Πρ,T (f)‖Lp(ωT (T ))

. ‖f − P‖Lp(ωT (T )) + ‖f −Πρ,T (f)‖Lp(ωT (T ))

. E(f, ωT )p

where we have used Lemmas 3.2 and 3.5. �

This quasi-interpolant, for an appriopriate choice of ρ is the quasi-interpolant
QT referred to in Proposition 2.1 (see (5.1) below).

4. Besov Spaces and Polynomial Approximation

In this section we define the Besov Spaces and give an equivalent multiscale norm
using a finite element multiscale decomposition of the functions, then we present
some classical results on polynomial and finite element approximation on Besov
Spaces.

4.1. Moduli of Smoothness and Polynomial Approximation. In the follow-
ing we will give different definitions of moduli of smoothness, based on difference
operators, and we will show some equivalences between the different definitions.
Some proofs are rather technical, but necessary to be able to prove Proposition 2.1
in Section 5.
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Let G be an open domain in Rd, and let f : G → R be a measurable function.
Let h ∈ Rd and k ∈ N, we will call h-difference of order k of f in G to the function
∆k
h(f, ·, G) : G→ R given by

∆k
h(f, x,G) :=


k∑
j=0

(−1)k+j

(
k

j

)
f(x+ jh), if [x, x+ k h] ⊂ G,

0, otherwise,

where [x, x+ k h] is the prism x+ [0, k h1]× · · · × [0, k hd]. It is easy to see that if
1 ≤ ` ≤ k − 1, then

∆k
h = ∆1

h(∆k−1
h ) = ∆`

h(∆k−`
h ),

and also

(4.1) ∆k
h(P, ·) ≡ 0, if P ∈ Pk−1.

Using these difference operators we define the modulus of smootheness of order
k in Lp(G) as:

ωk(f, t)p = ωk(f, t,G)p := sup
|h|≤t

∥∥∆k
h(f, · , G)

∥∥
Lp(G)

, t > 0,

which satisfies the basic property [DeL 1993]

(4.2) ωk(f, at)p ≤ (a+ 1)k ωk(f, t)p, for all a, t > 0.

For 0 < q <∞ the q-modulus of smootheness of order k in Lp(G) is defined as

wk(f, t)p,q = wk(f, t,G)p,q :=

[
1

(2t)d

∫
[−t,t]d

(∫
G

|∆k
h(f, x,G)|pdx

) q
p

dh

] 1
q

.

Note that if we extended the definition of wk(f, t)p,q to the case q = ∞ in a
standard manner, we would obtain wk(f, t)p,∞ = ωk(f, t)p.

The following lemma states that these moduli of smoothness are equivalent if the
domain satisfies an interior cone condition. Its proof for an interval (1d situation)
can be found in [DeL 1993]. We present here a proof valid in any dimension for
domains satisfying a cone condition.

Lemma 4.1. Let G ⊂ Rd be a bounded domain such that there exists a family
{Bj}Nj=0 = {B(xj , rj)}Nj=0 and a family of bounded cones {Cj}Nj=0 (all congruent to
a fixed bounded cone C) satisfying:

G ⊂ ∪Nj=0Bj and ∀x ∈ B(xj , 2rj) ∩G, x+ Cj ⊂ G.

Then for each 0 < p, q < ∞ there exist three constants Ci, i = 1, 2, 3 depending
only on k, the aspect ratio of C, p, q, N and min1≤j≤N{rj}, such that:

C1wk(f, t)p,q ≤ ωk(f, t)p ≤ C2wk(f, t)p,q, if 0 < t ≤ C3 diam(C),

for all measurable functions f defined on G.

Proof. 1 The left-hand inequality is trivial using (4.2) and that∥∥∆k
h(f, · , G)

∥∥
Lp
≤ ωk(f, t)p,

for all t > 0 and all |h| ≤ t.
2 To prove the right hand inequality suppose that diam(G) = 1, the other cases

follow from this one by standard scaling arguments.
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3 Consider first the case q = 1. For a given v ∈ Rd we define Gv = {x ∈ G :
x+ v ∈ G}. Note that if h, s ∈ Rd:

k∑
`=0

(−1)k+`

(
k

`

)
∆k
h+`s(f, x)

=

k∑
`=0

(−1)k+`

(
k

`

) k∑
j=0

(−1)k+j

(
k

j

)
f(x+ j(h+ `s))

=

k∑
j=0

(−1)k+j

(
k

j

) k∑
`=0

(−1)k+`

(
k

`

)
f(x+ jh+ j`s)

=

k∑
j=1

(−1)k+j

(
k

j

)
∆k
js(f, x+ jh).

whenever all the arguments of f appearing in the last expression belong to G, i.e.,
if x ∈ Gkh ∩ Gkh+k2s. The term corresponding to ` = 0 in the left hand side is
(−1)k∆k

h(f, x), and then we obtain:

(4.3) ∆k
h(f, x) =

k∑
`=1

(−1)`
(
k

`

)
[∆k

`s(f, x+ `h)−∆k
h+`s(f, x)],

for all x ∈ Gkh ∩Gkh+k2s.
We now consider the family {Gj}Nj=1 = {G ∩ Bj}Nj=1, which is by assumption a

covering of G.
Let % = min{min1≤j≤N{rj},diam(C)}, note that if t ≤ %

k2 , h ∈ Rd, 0 ≤ |h| ≤ t

and s ∈ Ctj = {x : xt ∈ Cj}, then x ∈ Gj ∩Gkh implies that x+ `h ∈ Gk`s and thus

x ∈ G`(h+`s), for all 1 ≤ ` ≤ k. Then taking Lp(Gj)-norm in (4.3) we obtain, for
all s ∈ Ctj :∥∥∆k

h(f, · )
∥∥
Lp(Gj∩Gkh)

=
∥∥∆k

h(f, · )
∥∥
Lp(Gj)

≤ 2
1
p

k∑
`=1

(
k

`

)[∥∥∆k
`s(f, ·+ `h)

∥∥
Lp(Gk`s)

+
∥∥∆k

h+`s(f, · )
∥∥
Lp(Gk(h+`s))

]
.

Averaging on s ∈ Ctj , a change of variables gives us:∥∥∆k
h(f, · )

∥∥
Lp(Gj)

.
1

|Ctj |

k∑
`=1

[∫
C`tj

∥∥∆k
u(f, · )

∥∥
Lp(G)

du+

∫
h+C`tj

∥∥∆k
u(f, · )

∥∥
Lp(G)

du

]

.
1

td

∫
[−(k+1)t,(k+1)t]d

∥∥∆k
u(f)

∥∥
Lp(G)

du = (2k + 2)dwk(f, (k + 1)t)p,1,

Where the constants involved depend on k and the aspect ratio of C. Adding over
j = 1, 2, . . . , N we obtain∥∥∆k

h(f)
∥∥
Lp(G)

. wk(f, (k + 1)t)p,1, for all t ≤ %

k2
and |h| ≤ t,

where the constant involved depends also on N . Taking supremum over |h| ≤ t we
obtain

ωk(f, t)p . wk(f, (k + 1)t)p,1,
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and using the basic property (4.2), we obtain that for 0 < t ≤ %
k2 :

ωk(f, (k + 1)t)p ≤ (k + 2)kωk(f, t)p . wk(f, (k + 1)t)p,1 . ωk(f, (k + 1)t)p.

The result is thus proved for q = 1. The cases 0 < q < 1 and 1 < q < ∞ are
consequences of this first case q = 1.
4 When 1 < q <∞ we use Hölder’s inequality to obtain:

wk(f, t)p,1 =
1

(2t)d

∫
[−t,t]d

∥∥∆k
u(f)

∥∥
Lp(Gku)

du

≤ 1

(2t)d

(∫
[−t,t]d

∥∥∆k
u(f)

∥∥q
Lp(Gku)

du

) 1
q
(∫

[−t,t]d
du

)1− 1
q

=

(
1

(2t)d

∫
[−t,t]d

∥∥∆k
u(f)

∥∥q
Lp(Gku)

du

) 1
q

= wk(f, t)p,q.

When 0 < q < 1 we bound
∥∥∆k

u(f)
∥∥
Lp(Gku)

≤ ωk(f,
√
d t)p and obtain, using

again (4.2) that

wk(f, t)p,1 =
1

(2t)d

∫
[−t,t]d

∥∥∆k
u(f)

∥∥
Lp(Gku)

du

≤ 1

(2t)d

∫
[−t,t]d

∥∥∆k
u(f)

∥∥q
Lp(Gku)

ωk(f,
√
d t)1−q

p du

≤ (
√
d+ 1)k(1−q)ωk(f, t)1−q

p

1

(2t)d

∫
[−t,t]d

∥∥∆k
u(f)

∥∥q
Lp(Gku)

du

. wk(f, t)1−q
p,1

(
1

(2t)d

∫
[−t,t]d

∥∥∆k
u(f)

∥∥q
Lp(Gku)

du

)
= wk(f, t)1−q

p,1 wk(f, t)qp,q,

where in the last inequality we have used the proved the case q = 1, whence:

(4.4) wk(f, t)p,1 . wk(f, t)p,q,

and the result is proved for 0 < q < 1. �

Thanks to the characterization given in [Sh 1983, Theorem 1], any Lipschitz do-
main satisfies the assumptions of Lemma 4.1, and we thus obtain the same equiv-
alence of moduli of smoothness on Lipschitz domains.

Corollary 4.2. If G is a Lipschitz domain, for any 0 < p, q < ∞ there exist
constants Ci = Ci(p, q, k,G), i = 1, 2, 3 such that:

C1wk(f, t)p,q ≤ ωk(f, t)p ≤ C2wk(f, t)p,q

for all measurable functions f defined on G and all t ≤ C3.

The next corollary states that given a triangulation T of Ω and T ∈ T , if G = T
or G = ωT (T ) = {T ′ ∈ T : T ∩ T ′ 6= ∅}, then the equivalence constants of the
moduli of smoothness from Lemma 4.1 do not depend on the domain G directly,
but through the regularity constant κT .
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Corollary 4.3. Given an admissible triangulation T of a Lipschitz domain Ω, and
0 < p, q < ∞, there exist three constants Ci = Ci(p, q, k, κT ,Ω), i = 1, 2, 3 such
that: If T ∈ T and G = T or G = ωT (T ) then

(4.5) C1wk(f, t)p,q ≤ ωk(f, t)p ≤ C2wk(f, t)p,q, if 0 < t ≤ C3 diam(T )

for all measurable functions f defined on G.

Proof. The proof consists in defining a covering {Bj}Nj=1 and corresponding cones

{Cj}Nj=1, all congruent to a fixed bounded cone C independent of T ∈ T , satisfying

the assumptions of Lemma 4.1. Let {xj}`j=1 be the set of vertices of G, let

R = sup{r ∈ R : B(xj , s) ∩G is connected for all j = 1, 2, . . . `, and all 0 < s < r}
and α = min{α1, α2}, where α1 = 1

2 arctan( 1
κT

) and α2 is the maximum angle for

which the cone condition holds for all x ∈ ∂Ω. Now take h = min{minE⊂G{hE}, R},
where the minimum is taken over all the edges of T included in G, and let us define

C a cone with angle α and height h sin(α)
8 , from the choice of α and h it follows that

for each x ∈ G there exists a rotation Tx such that Tx(C) + x ⊂ G.
Now, for each vertex {xj}`j=1, take Bj = B(xj ,

h
4 ) and assign to each Bj the cone

Cj = Txj (C). To complete the covering let n =
⌊ 16H

h sin(α)

⌋
with H = maxE⊂G hE

and let {yi}mi=1 ⊂ G be the set of all Lagrange nodes of degree n such that
B(yi,

h sinα
16 ) ∩ (G \ ∪Nj=1Bj) 6= ∅. Now, define B`+i = B(yi,

h sinα
16 ), 1 ≤ i ≤ m

and assign to each B`+i a cone in the following way:

• if ∃j, 1 ≤ j ≤ ` such that B(yi,
h sinα

4 ) ∩Bj 6= ∅ let C`+i = Cj ;
• if B(yi,

h sinα
4 ) ∩ Bj = ∅ for all j = 1, 2, . . . , `, but B(yi,

h sinα
4 ) intersects

some faces then let C`+i = Cj for any xj that belongs to the intersection
of those faces (by the definition of R and α, it is clear that the set of such
vertices is non empty);

• for any other case assign C`+i = C.
By construction {Bj}`+mj=1 is a covering of G, which satisfies the conditions of

Lemma 4.1 with N = ` + m ≤ c1(κT ) + c2(κT ,Ω) 1
(sinα)d

, and the aspect ratio

of C depending on κT and the Lipschitz constant of Ω. Using Lemma 4.1 we con-
clude that (4.5) holds for all t ≤ C3 diam(G) and C1, C2, C3 depending only on p,
q, k, κT and Ω. �

The following lemma, known as Whitney’s Lemma, is proved in [DL 2004] for
convex domains G. It thus holds directly for G = T , we sketch the proof for
G = ωT (T ), which follows the steps of [DL 2004].

Lemma 4.4 (Whitney’s Lemma, [DL 2004]). Let T be an admissible mesh, T ∈ T
and G = T or G = ωT (T ) = {T ′ ∈ T : T ∩ T ′ 6= ∅}. If 0 < p <∞ and r ≥ 1, then

(4.6) E(f,G)p ≤ Cωr+1(f,G)p, for all f ∈ Lp(G),

where C = C(p, r, d) if G = T , and C = C(p, r, d, κT) if G = ωT (T ), but is
independent of f and the size of G.

Remark 4.5. It is worth noticing that in general, the constant C from the previous
lemma depends on the minimal head-angle condition of the cones associated with
the boundary, and it can be difficult to control in general. Moreover, it can be shown
that the constant blows up for some sequence of domains (see [DL 2004]). The result
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that we prove holds true with a uniform constant because we are considering only
a small family of Lipschitz sets, either elements T of T or stars ωT (T ), for T ∈ T.

Sketch of the proof of Lemma 4.4. The result for G = T is proved in [DL 2004],
because T is convex.

Let G = ωT (T ), and notice that there exist a finite number of reference stars
such that for every star ωT (T ), with T ∈ T, there exists an affine map AT ,T
(more precisely the composition of a rotation, a translation and a dilation such
that AT ,T (ωT (T )) is a reference star. By dilation and translation of the reference
stars we may ask that the maximal interior ball of AT ,T (T ) is B(0, 1). Observe also
that for f ∈ Lp(G)

E(f ◦A−1
T ,T , AT ,T (G))p = |G|1/pE(f,G)p,

ωr+1(f ◦A−1
T ,T , AT ,T (G)) = |G|1/pωr+1(f,G)p,

and it is thus sufficient to prove the result in each of the reference stars, which are
all Lipschitz domains.

The case p ≥ 1 is proved in [JS 1977]. For the case 0 < p < 1 we should follow
the steps in [DL 2004]:
1 Let Gref be one of the reference stars, and let R > 0 be such that B(0, 1) ⊂
Gref ⊂ B(0, R).
2 The same proof of [DL 2004, Corollary 2.7] yields the existence of a constant C,

depending only on mesh regularity, d, R and p, such that, if f ∈ Lp(Gref),

‖f − c‖Lp(Gref) ≤ Cω1(f,Gref)p, for some c ∈ R.

3 The construction of the step function ϕ given in [DL 2004, Lemma 2.8] still
works in our case, since B(0, 1) ⊂ Gref ⊂ B(0, R). The constant C(d, p) from that
lemma will now depend on R and the Lipschitz constant of Gref.
4 The Proof of Theorem 1.4 for the case 0 < p < 1 from [DL 2004, pag. 359] now

holds because it is based on the previously mentioned results. Moreover, in our
case the domain is fixed so there is no need to consider a sequence of domains in
the contradiction argument. �

4.2. Besov Spaces and Classical Results. Given s > 0 and 0 < q, p ≤ ∞, for
any r ∈ N such that s < r + max{1, 1

p} = r + 1
p∗

for p∗ = min{1, p}, the Besov

space Bsp,q(Ω), is the set of all functions f ∈ Lp(Ω) such that the semi-(quasi)norm
|f |Bsp,q(Ω) is finite, with

(4.7) |f |Bsp,q(Ω) :=


(∫ ∞

0

[t−sωr+1(f, t)p]
q dt

t

) 1
q

, if 0 < q <∞

sup
t>0

t−sωr+1(f, t)p, if q =∞.

The (quasi)norm of Bsp,q(Ω) is defined by:

(4.8) ‖f‖Bsp,q(Ω) = ‖f‖Lp(Ω) + |f |Bsp,q(Ω).

Remark 4.6. The condition s < r + 1
p∗

with p∗ = min{1, p} follows from the fact

that if s ≥ r+ 1
p∗

and |f |Bsp,q (Ω) <∞, then ωr+1(f, t) = 0, for all 0 < t <∞, which

in turn implies that f ∈ Pr. Besides, if s < r + 1
p∗

, there exist nontrivial functions
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in Lp(Ω) with |f |Bsp,q (Ω) < ∞. This is a consequence of the following inequality

which holds for 0 < p <∞ and f ∈ Lp(Ω):

(4.9) ωr+1(f, t)p ≥ Crωr+1(f, 1)p t
r+max{1, 1p}, 0 < t < 1.

This inequality is proved in [DeL 1993, pag. 370] as a consequence of the oper-
ator identities in [DeL 1993, Ch. 12, Lemma 5.1], and the triangle inequality for

‖ · ‖min{1,p}
Lp(Ω) . It is interesting to notice that the operator identities are independent

on the dimension d, and as a consequence, also (4.9) is independent of the dimen-
sion d of the underlying space. In the case p > 1 the condition reads s < r + 1.

Inequality (4.9) guarantees that ωr+1(f, t)p = O(tr+max{1, 1p}) for nontrivial func-
tions f ∈ Lp(Ω). Notice that the constraint s < r + 1

p∗
should not be seen as a

restriction on s but rather as a way to choose r for the correct definition of Bsp,q(Ω).

In order to shed some light into the understanding of Besov spaces, we compute
ωr+1(φν , t) for a basis function φν of VT and determine for which values of α and
p it is true that VT ⊂ Bαp,p(Ω).

Proposition 4.7. Let φν be a basis function of VT for some triangulation T ∈ T
with support θν . Then,

(4.10) ωr+1(φν , t) .

{
|θν |

d−1−p
dp t1+ 1

p , if 0 < t ≤ |θν |
1
d ,

|θν |, if t > |θν |
1
d .

As an immediate consequence, VT ⊂ Bαp,p(Ω) if 0 < α < 1 + 1
p .

Proof. Since ‖φν‖∞ = 1 and φν is Lipschitz continuous with Lipschitz constant

' |θν |−
1
d , we have that, for all t > 0,

|∆r+1
h φν | . max{1, t

|θν |
1
d

}, for all |h| ≤ t.

Due to the fact that ∆r+1
h P = 0 for all P ∈ Pr, we have that ∆r+1

h φν(x) = 0 if x
is at a distance bigger than (r+ 1)|h| of the skeleton of θν , that is, the union of the
sides of the mesh that touch θν . Therefore, for |h| ≤ t, the support of ∆r+1

h φν is
contained in a neighbourhood of radius (r + 1)t of the skeleton of θν , and

| supp(∆r+1
h φν)| . max{|θν |, |θν |

d−1
d t},

Using the two previous inequalities and integrating, we obtain the following bound
for the moduli of smoothness of φν

ωr+1(φν , t)
p
p = sup

|h|≤t
‖∆r+1

h φν‖pLp(Ω) . |θν |
d−1−p
d t1+p

if 0 < t ≤ |θν |
1
d . �

Remark 4.8. The definition of Bsp,q(Ω) is independent of r in the sense that if

r is replaced by r′ ∈ N with s < r′ + max{1, 1
p}, then the resulting space is

the same with equivalent (quasi)norms. This is a consequence of the fact that
ωr+1(f, t)p ≤ 2ωr(f, t) and the Marchaud inequality [D 1988]:

ωr(f, t)p ≤ Ctr
(
‖f‖p∗p +

∫ ∞
t

(u−rωr+1(f, u)p)
p∗
du

u

) 1
p∗



18 FERNANDO D. GASPOZ AND PEDRO MORIN

where p∗ := min{1, p} and the constant C depends on the Lipschitz constant of the
domain and r.

Remark 4.9. It is important to observe that the full (quasi)norms (4.8) of Bsp,q
are equivalent for different values of r > s − max{1, 1

p}, but the corresponding

semi-(quasi)norms | · |Bsp,q are not. A simple example is the following. Denote

momentarily with |f |Bs,r+1
p,q (G) the seminorm (4.7) with r replaced by r+1, consider

s = r+ 1 and let 0 < p < 1. Then, for f ∈ Pr+1 we have |f |Br+1,r+1
p,q (G) = 0 because

ωr+2(f, t)p = 0 for all 0 < t < ∞, whereas |f |Br+1
p,p (G) 6= 0 unless f ∈ Pr ( Pr+1.

Throughout this article, we consider r ≥ 1 fixed as the polynomial degree of the
finite element spaces VT , and always use the semi-norm (4.7), since we only consider
Besov spaces Bsp,q with differentiability indices s < r + max{1, 1

p}.

If we split the integral in (4.7) in diadic intervals, we obtain a very helpful
equivalent semi-(quasi)norms when 0 < q <∞. In fact

(4.11) |f |qBsp,q(Ω) =
∑
m∈Z

∫ 2−m

2−m−1

t−sqωr+1(f, t)qp
dt

t
'
∑
m∈Z

2msqωr+1(f, 2−m)qp,

where we have used that ωr+1(f, t)p and t−s are both monotone functions; the con-
stants involved in the equivalence depend on s and q but are otherwise independent
of f , r and p.

Another equivalent semi-(quasi)norm in Bsp,p(Ω) (0 < p = q <∞) can be estab-
lished using Lemma 4.1, from where we have:
(4.12)

|f |Bsp,p(Ω) ' |f |wBsp,p(Ω) :=

(∫
Ω

∫ ∞
0

∫
[0,t]d

|∆r+1
h (f, x,Ω)|pt−sp−d−1 dh dt dx

) 1
p

with equivalence constants that depend only on p, r and the Lipschitz constant of
the domain.

As a consequence of the equivalence (4.12) the following sub-additivity result for
Besov norms follows.

Lemma 4.10. Let 0 < p < ∞, α > 0, f ∈ Bαp,p(Ω), and let {Ti}Ni=1 be a finite
collection of non-overlapping elements such that Ti ∈ Ti ∈ T, i = 1, 2, . . . , N . Then

N∑
i=1

|f |pBαp,p(Ti)
. |f |p

Bαp,p(∪Ni=1Ti)

and

N∑
i=1

|f |pBαp,p(ωTi (Ti))
. |f |p

Bαp,p(∪Ni=1ωTi (Ti))
. |f |pBαp,p(Ω)

where the constants involved depend on p, α, d and κT.

The following embedding results for Besov spaces, can be found in [Pe 1976,
T 1978, T 2002].

Theorem 4.11. Let Ω be a Lipschitz domain, 0 < β < α <∞, 0 < p, q, τ, t ≤ ∞.
Then the following embedding

(4.13) Bαp,q(Ω) ⊂ Bβτ,t(Ω)

is true with continuity if one of the following cases occur:
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(1) p > τ ;
(2) p ≤ τ and α− β > d( 1

p −
1
τ );

(3) p ≤ τ , α− β = d( 1
p −

1
τ ) and q ≥ t.

Another important embedding result is the following [Pe 1976, T 1978].

Lemma 4.12. Let Ω be a Lipschitz domain, 0 < α <∞, 0 < p, τ ≤ ∞. Then the
following embedding

Bατ,τ (Ω) ⊂ Lp(Ω)

is true with continuity if
1

τ
≤ s

d
+

1

p
.

We end this section recalling a few classical results in order to clarify the “loca-
tion” of the Besov spaces in comparison with Sobolev spaces:

Bsp,q(Ω) ⊂W s
p (Ω), if q > 2, p ≥ 1 and s > 0,

Bsp,q(Ω) ⊃W s
p (Ω), if q < 2, p ≥ 1 and s > 0,

but it is not true in general that W s
p (Ω) = Bsp,2(Ω). This result holds only when

p = 2, which means that the only equalities between Besov spaces and Sobolev
spaces are:

(4.14) Bs2,2(Ω) = W s
2 (Ω), s > 0.

4.3. Besov Spaces and Multiscale Decomposition. Let T0 be an initial tri-
angulation of a polygonal (polyhedral) Lipschitz domain Ω and assume that T0

satisfies condition (b) of Section 4 in [S 2007]1. We define inductively the sequence
{Tm}∞m=0 of nested triangulations of T0, by letting Tm+1 be the mesh obtained by
d uniform refinements of Tm, using the algorithm from [S 2007]. A uniform re-
finement of a triangulation T is obtained by bisecting all the elements of T , and
according to [S 2007, Theorem 4.3] any uniform refinement of T0 is conforming.
Therefore Tm ∈ T and if T ∈ Tm+1, T ′ ∈ Tm with T ⊂ T ′, then |T | = |T ′|/2d. We
let

VTm =
{
v ∈ C(Ω) : v|T ∈ Pr ∀T ∈ Tm

}
,

and denote with Ξm := ΞTm the set of all the nodes of the space VTm over the mesh
Tm and let Ξ := {(ν,m) : ν ∈ Ξm,m = 0, 1, 2, . . . } be the set of all the nodes of the
sequence of meshes {Tm}∞m=0 with their corresponding level, this definition takes
into account the fact that a node ν can belong to many levels (each time that ν is
a vertex of a mesh it will be also a vertex of all the following meshes). For the rest
of this work we will not mention the level and we will write ν to indicate (ν,m),
and the corresponding basis functions will be denoted by φν .

In [O 1994, Theorem 6 on p. 38], it is proved that, whenever 1 ≤ p, q ≤ ∞,
0 < s < min{r + 1, 1 + 1

p}, the norm of Bsp,q is equivalent to the norm

‖f‖∗∗∗Bsp,q(Ω) :=

( ∞∑
m=0

2msq ‖(Rm −Rm−1)f‖qLp(Ω)

) 1
q

,

1Notice that if the initial triangulation cannot be labeled to satisfy this condition, it can be
refined globally with a simple procedure so that a labeling of vertices and edges satisfying this

condition is easily obtained [S 2007, Appendix A].
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if {Rm} is a sequence of uniformly Lp(Ω)-bounded linear projectors onto VTm and
R−1 = 0. We prove a weaker result for 0 < p, q < ∞ which is sufficient for our
purposes.

Taking 0 < ρ ≤ p < ∞ we denote the operator Qρ,Tm from Definition 3.11 by
Qm for m = 0, 1, . . . and define qm = Qm −Qm−1, with Q−1 = 0. Since ∪∞m=0VTm
is dense in Lp(Ω), ‖f −Qm(f)‖Lp(Ω) → 0 when m→∞ and then:

(4.15) f =

∞∑
m=0

qm(f) with convergence in Lp(Ω).

Moreover, we have the following result.

Theorem 4.13. Let 0 < ρ ≤ p < ∞ be given, and let Ω, {Tm}, {Qm}, {qm =
Qm − Qm−1} be as in the previous paragraph. For 0 < α < min{r + 1, 1 + 1

p}
consider the following norm

‖f‖QBαp,q(Ω) :=

( ∞∑
m=0

2mαq ‖qmf‖qLp(Ω)

) 1
q

.

Then
‖f‖QBαp,q(Ω) . ‖f‖Bαp,q(Ω) .

with a constant depending only on ρ, p, q, α and the regularity of T0.

Using (3.1) and the fact that |θν | ' 2−md for ν ∈ Ξm, we have the following
corollary for the particular case p = q.

Corollary 4.14. Under the assumptions of Theorem 4.13, for f ∈ Lp(Ω) let
{bν(f)}ν∈Ξm be the set of coefficients of qm(f) ∈ VTm in the canonical basis of
VTm , that is

(4.16) bν(f) = 〈qm, φ̃ν〉, ν ∈ Ξm, and qm(f) =
∑
ν∈Ξm

bν(f)φν .

Then

(4.17) ‖f‖B̂αp,p(Ω) :=

(∑
ν∈Ξ

|θν |−
αp
d ‖bν(f)φν‖pLp(Ω)

) 1
p

' ‖f‖QBαp,p(Ω) . ‖f‖Bαp,p(Ω) .

Proof of Theorem 4.13. Recall that qm = Qm − Qm−1 and Qm = Qρ,Tm for 0 <
ρ ≤ p, so that Lemma 3.13 yields ‖f−Qmf‖Lp(T ) . E(f, ωTm(T ))p for any T ∈ Tm.
Therefore, for T ∈ Tm−1,

‖qmf‖pLp(T ) ≤ ‖f −Qmf‖
p
Lp(T ) + ‖f −Qm−1f‖pLp(T ) . E(f, ωTm−1

(T )).

By Whitney’s Lemma 4.4 E(f, ωTm−1(T )) . ωr+1(f, 2−m, ωTm−1(T ))p, and thanks
to Corollary 4.3

‖qmf‖pLp(Ω) .
∑

T∈Tm−1

ωr+1(f, 2−m, ωTm−1
(T ))pp . ωr+1(f, 2−m,Ω)pp.

Finally, (4.11) implies that( ∞∑
m=0

2mαq ‖qmf‖qLp(Ω)

) 1
q

.

( ∞∑
m=0

2mαqωr+1(f, 2−m,Ω)qp

)
. |f |Bαp,q(Ω).

which is the desired assertion. �
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4.4. Besov Spaces and Approximation Results. If we consider all the trans-

formations Gref = |G|− 1
dG =

{
|G|− 1

dx : x ∈ G
}

for sets G = T and G = ωT (T ),

with T ∈ T and for all T ∈ T, we obtain a finite family (up to translations) of
reference sets Gref with |Gref| ' 1. The scaling of the Besov seminorms for β > 0,
0 < p, q <∞ and f ∈ Bβp,q(G) is given by:

(4.18)

|f |Bβp,q(G) =

(∫ ∞
0

(
t−βωr+1(f, t,G)p

)q
dt

t

) 1
q

' |G|
1
p

(∫ ∞
0

(
t−βωr+1(f ref,

t

|G| 1d
, Gref)p

)q
dt

t

) 1
q

= |G|
1
p−

β
d

(∫ ∞
0

(
s−βωr+1(f ref, s,Gref)p

)q
ds

s

) 1
q

= |G|
1
p−

β
d |f ref|Bβp,q(Gref) = (|G| 1d )

d
p−β |f ref|Bβp,q(Gref),

where f ref : Gref → R is defined by f ref(x) = f(|G| 1dx), for x ∈ Gref.

Lemma 4.15. Let T ∈ T and T ∈ T . Let 0 < p < ∞, s > 0, 0 < 1
τ ≤

s
d + 1

p ,

δ = s
d + 1

p −
1
τ . If G = T or G = ωT (T ), then for s < r + 1

τ∗
, with τ∗ = min{1, τ},

we have that:

(4.19) E(f,G)p ≤ C|G|δ|f |Bsτ,τ (G), for all f ∈ Bsτ,τ (G),

where C = C(p, s, τ, d, r, κT). Alternatively, if hT = diam(T ), we have

E(f,G)p ≤ C h
s+ d

p−
d
τ

T |f |Bsτ,τ (G), for all f ∈ Bsτ,τ (G).

Remark 4.16. At first sight, it looks surprising that inequality (4.19) holds for
s > r + 1, when τ < 1. It is important to mention here that in the definition
of |f |Bsτ,τ (G) given by (4.7) we are considering r fixed, equal to the polynomial

degree that takes place in the definition of E(f,G)p = infg∈Pr ‖f − g‖Lp(G), so

that |f |Bsτ,τ (G) = 0 only if f ∈ Pr. See also Remark 4.9.

Proof of Lemma 4.15. Suppose first that G = Gref and thus |G| ' 1. Let f ∈
Bsτ,τ (G), by (4.6) and (4.11) we have:

E(f,G)τ . ωr+1(f, 1, G)τ ≤

(∑
k∈Z

2ksτωr+1(f, 2−k, G)ττ

) 1
τ

' |f |Bsτ,τ (G) .

For any polynomial P ∈ Pr, Theorem 4.11 yields

E(f,G)p ≤ ‖f − P‖Lp(G) . ‖f − P‖Lτ (G) + |f − P |Bsτ,τ (G)

= ‖f − P‖Lτ (G) + |f |Bsτ,τ (G) ,

due to (4.1). Choosing P ∈ Pr a best approximation for f in Lτ (G) we thus obtain

E(f,G)p . E(f,G)τ + |f |Bsτ,τ (G) . |f |Bsτ,τ (G) ,

which is the desired result for reference domains G.
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The general case follows using (4.18) in the proved case, more precisely:

E(f,G)p . |G|
1
pE(f ref, Gref)p

. |G|
1
p

∣∣f ref
∣∣
Bsτ,τ (Gref)

. |G|
1
p |G|− 1

τ + s
d |f |Bsτ,τ (G) = |G|δ |f |Bsτ,τ (G) ,

and the result is proved. �

Lemma 4.17. Let T ∈ T and T ∈ T . Let 0 < p <∞, 0 < α < min{r + 1, 1 + 1
p},

0 < 1
τ < s

d + 1
p , s > 0, and α + s < r + 1

τ∗
, with τ∗ = min{1, τ}. If G = T or

G = ωT (T ) we have that:

(4.20) |f |Bαp,p(G) ≤ C|T |δ|f |Bα+s
τ,τ (G), for all f ∈ Bα+s

τ,τ (Ω),

where C = C(p, s, τ, d, r, ρ, κT) and δ = s
d + 1

p −
1
τ > 0.

Proof. We first prove the following bound assuming G is a reference patch, i.e.,
|G| ' 1:

(4.21) |f |Bαp,p(G) . |f |Bα+s
τ,τ (G), for all f ∈ Bα+s

τ,τ (G).

In order to prove this bound we observe that Theorem 4.13 implies that for all
P ∈ Pr(G) due to Theorem 4.11, we have that:

|f |Bαp,p(G) = |f − P |Bαp,p(G) ≤ ‖f − P‖Bαp,p(G) . ‖f − P‖Lτ (G) + |f − P |Bα+s
τ,τ (G),

and choosing P ∈ Pr such that ‖f − P‖Lτ (G) = E(f,G)τ we obtain by Lemma 4.15,

|f |Bαp,p(G) . |f − P |Bα+s
τ,τ (G) = |f |Bα+s

τ,τ (G), for all f ∈ Bα+s
τ,τ (G),

whence the bound (4.21) holds on reference patches. Scaling (4.21) and making use
of (4.18) we obtain the desired assertion. �

Remark 4.18. Notice that we use the definition of the Besov seminorms with r
fixed, equal to the polynomial degree. This lemma is not true if we use different
values of r at the left and right-hand side of (4.20).

5. Proof of Proposition 2.1

In this section we present the proof of Proposition 2.1 making use of the inter-
polant defined in (3.10).

Proof of Proposition 2.1. 1 Let ρ be any number satisfying 0 < ρ < min{p, τ},
and let

(5.1) QT = Qρ,T ,

with Qρ,T from Definition 3.11.
2 Let us consider first the case α = 0, with B0 = Lp. The first bound (2.1) follows

directly from Lemma 4.15 and (3.12). The other two bounds (2.3), (2.4) coincide
and are a consequence of the finite overlapping of elements in T .
3 Consider now α > 0 and B0 = Bαp,p. Inequality (2.2) coincides with (4.20), the

assertion of Lemma 4.17.
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The estimate (2.3) follows from (3.13) and (4.19) using that

‖f −QT (f)‖pLp(Ω) ≤
∑
T∈T
‖f −QT (f)‖pLp(T ) .

∑
T∈T

E(f, ωT (T ))pp

.
∑
T∈T
|T |

αp
d |f |pBαp,p(ωT (T )) .

∑
T∈T
|f |pBαp,p(ωT (T )).

4 In order to prove (2.4) we will make use of the multilevel decomposition and the
norm defined in Theorem 4.13. We consider T as the initial mesh T0 of a sequence
{Tm}∞m=0 of uniform refinements as described at the beginning of Section 4.3. Then,
with convergence in Lp(Ω),

f −QT (f) = f − q0(f) =

∞∑
m=1

qm(f) =

∞∑
m=1

( ∑
ν∈Ξm

bν(f)φν

)
,

where qm = QTm − QTm−1
, m = 1, 2, . . . , q0 = QT0 = QT , and {bν(f)}ν are the

coefficients defined in (4.16).
Recalling from Section 4.3 that Ξ denotes the set of all the nodes of the sequence

of triangulations {Tm}∞m=0, and θν is the support of the canonical basis function

φν corresponding to ν ∈ Ξ, we define Ψj = {ν ∈ Ξ : 2−j−1 < |θν |
1
d ≤ 2−j} and

gj =
∑
ν∈Ψj bν(f)φν . Then f −QT (f) =

∑
j∈Z gj is a multiscale decomposition of

f −QT (f). Recall that we want to estimate |f −QT (f)|B0(Ω) which satisfies

(5.2) |f −QT (f)|B0(Ω) '

(∑
m∈Z

2mspωr+1(f −QT (f), 2−m)pp

) 1
p

,

due to (4.11). Taking p∗ = min{p, 1}, the triangle inequality yields,

(5.3) ωr+1(f −QT (f), 2−m)p∗p ≤
∑
j∈Z

ωr+1(gj , 2
−m)p∗p , for each m ∈ Z,

and we are thus lead to estimating ωr+1(gj , t)p, for t > 0 and j ∈ Z.
5 On the one hand, since the mesh is generated by bisection, there exists a constant
c, that depends only on d and mesh regularity, such that at most c patches θν with
ν ∈ Ψj overlap, which leads us to:

(5.4) ωr+1(gj , t)
p
p . ‖gj‖

p
Lp(Ω) .

∑
ν∈Ψj

‖bν(f)φν‖pLp(Ω) , for all t > 0.

On the other hand, using the finite overlapping of θν for ν ∈ Ψj , we obtain:

ωr+1(gj , 2
−m)pp .

∑
ν∈Ψj

ωr+1(bν(f)φν , 2
−m)pp ≤ |bν(f)|ωr+1(φν , 2

−m)pp,

and if j < m, Proposition 4.7 implies that

(5.5)

ωr+1(gj , 2
−m)pp . 2−m(1+p)2−j(d−1−p)

∑
ν∈Ψj

|bν(f)|p

' 2−(m−j)(1+p)
∑
ν∈Ψj

‖bν(f)φν‖pLp(Ω) ,

where we have used that ‖φν‖pLp(Ω) ' |θν | ' 2−jd if ν ∈ Ψj .
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The bounds (5.4) y (5.5) can be summarized as

(5.6) ωr+1(gj , 2
−m)pp .

{∑
ν∈Ψj ‖bν(f)φν‖pLp(Ω) , if j > m,

2−(m−j)(1+p)
∑
ν∈Ψj ‖bν(f)φν‖pLp(Ω) , if j ≤ m.

6 Inserting this bound into (5.3) we obtain that

ωr+1(f−QT (f), 2−m)p∗p ≤
∞∑

j=−∞
ωr+1(gj , 2

−m)p∗p

.
∞∑

j=m+1

∑
ν∈Ψj

‖bν(f)φν‖pLp(Ω)


p∗
p

+

m∑
j=−∞

2−(m−j)(1+p) p∗p

∑
ν∈Ψj

‖bν(f)φν‖pLp(Ω)


p∗
p

'
∞∑

j=m+1

2−jαp∗

∑
ν∈Ψj

|θν |−
αp
d ‖bν(f)φν‖pLp(Ω)


p∗
p

+

m∑
j=−∞

2−(m−j)(1+p) p∗p 2−jαp∗

∑
ν∈Ψj

|θν |−
αp
d ‖bν(f)φν‖pLp(Ω)


p∗
p

.

Defining Kν = |θν |−
αp
d ‖bν(f)φν‖pLp(Ω), by (5.2) the previous bound yields:

|f −QT (f)|pBαp,p(Ω) .
∑
m∈Z

2mαp

 ∞∑
j=m+1

2−jαp∗

∑
ν∈Ψj

Kν


p∗
p


p
p∗

+
∑
m∈Z

2mαp

 m∑
j=−∞

2−(m−j)(1+p) p∗p 2−jαp∗

∑
ν∈Ψj

Kν


p∗
p


p
p∗

.
∑
m∈Z

 ∞∑
j=m+1

2−(j−m)αp∗

∑
ν∈Ψj

Kν


p∗
p


p
p∗

+
∑
m∈Z

 m∑
j=−∞

2−(m−j)(1+p−αp) p∗p

∑
ν∈Ψj

Kν


p∗
p


p
p∗

.

7 By assumption, 0 < α < 1 + 1
p , so that 1 + p−αp > 0. Using Hardy’s inequality

(see Lemma 5.1 below) with

aj = 2−jα(
∑
ν∈Ψj

Kν)
1
p and zm =

( ∞∑
j=m+1

(
2−jα(

∑
ν∈Ψj

Kν)
1
p

︸ ︷︷ ︸
aj

)p∗) 1
p∗
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in the first summation, and

aj = 2−j
(1+p−αp)

p

( ∑
ν∈Ψ−j

Kν

) 1
p

and zm =

( −m∑
j=−∞

(
2−j

(1+p−αp)
p

( ∑
ν∈Ψ−j

Kν

) 1
p

︸ ︷︷ ︸
aj

)p∗) 1
p∗

in the second summation, we obtain:

(5.7) |f −QT (f)|pBαp,p(Ω) .
∑
j∈Z

∑
ν∈Ψj

Kν =
∑
ν∈Ξ

|θν |−
αp
d ‖bν(f)φν‖pLp(Ω) .

8 It remains to bound ‖bν(f)φν‖pLp(Ω). Let m ∈ N, ν ∈ Ξm and let T ∈ Tm be

such that T ⊂ θν (or ν ∈ T ). We will denote with T ′ the ancestor of T in Tm−1

(i.e., T ′ is the only element in Tm−1 such that T ⊂ T ′). Due to (3.12) we then
obtain

‖bν(f)φν‖Lp(Ω) . ‖qm(f)‖Lp(T )

. ‖f −QTm(f)‖Lp(T ) +
∥∥f −QTm−1

(f)
∥∥
Lp(T ′)

. E(f, T̂ )p + E(f, T̂ ′)p,

with T̂ , T̂ ′ denoting, respectively ωTm(T ), ωTm−1
(T ′). This bound, and (5.7) yield

|f −QT (f)|pBαp,p(Ω) .
∑
T∈H
|T |−

αp
d E(f, T̂ )pp

where H = ∪∞m=0Tm. Recalling that T0 = T , the previous bound reads

|f −QT (f)|pBαp,p(Ω) .
∑
T∗∈T

∑
T∈H:T̂⊂T̂∗

|T |−
αp
d E(f, T̂ )pp

.
∑
T∗∈T

∑
T∈H:T̂⊂T̂∗

|T |−
αp
d ωr+1(f, T̂ )pp

due to (4.6).

For each T ∗ ∈ T we call IT∗j = {T ∈ H : T̂ ⊂ T̂ ∗ and 2−j−1 < |T | 1d ≤ 2−j}, and

(5.8) |f −QT (f)|pBαp,p(Ω) .
∑
T∗∈T

∑
j∈Z

2jαp
∑

T∈IT∗j

ωr+1(f, T̂ )pp.

9 Thanks to Corollary 4.3, which shows the equivalence between ωr+1(f, T̂ )p and

wr+1(f, 2−j , T̂ )p,p we obtain the estimate:∑
T∈IT∗j

ωr+1(f, T̂ )pp .
∑

T∈IT∗j

wr+1(f, 2−j , T̂ )pp,p

.
∑

T∈IT∗j

(
1

2−jd

∫
[−2−j ,2−j ]d

∫
T̂

|∆k
h(f, x, T̂ )|pdxdh

)

.
1

2−jd

∫
[−2−j ,2−j ]d

∫
T̂∗
|∆k

h(f, x, T̂ )|pdxdh

. wr+1(f, 2−j , T̂ ∗)pp,p . ωr+1(f, 2−j , T̂ ∗)pp,
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where we have used that at most c patches T̂ for T ∈ IT∗j can overlap. Inserting
this last bound into (5.8) we obtain

(5.9) |f −QT (f)|pBαp,p(Ω) .
∑
T∗∈T

∑
j∈Z

2jαpωr+1(f, 2−j , T̂ ∗)pp .
∑
T∗∈T

|f |p
Bαp,p(T̂∗)

,

where we have used the equivalent definition (4.11) one last time. �

In the proof we have used the following well known inequality, whose proof can
be found in [DeL 1993].

Lemma 5.1 (Discrete Hardy’s Inequality, [DeL 1993]). Let {am}m∈Z and {zm}m∈Z
be two sequences of positive real numbers such that for some C0 > 0 and µ > 0, we
have the inequality:

(5.10) zm ≤ C0

( ∞∑
j=m

aµj

) 1
µ

, for all m ∈ Z.

Then for all α > 0 and p > 0, there exists C = C(α, p) such that:(∑
m∈Z

(
2mαzm

)p) 1
p ≤ CC0

(∑
m∈Z

(
2mαam

)p) 1
p

.

6. Proof of Direct Theorem

In this section we present the main ideas for proving the desired rate of conver-
gence necessary to obtain the direct theorem (Theorem 2.2). The main step of the
proof is the construction of optimal meshes that will imply (2.7). This construction
is based on the interpolation estimates of Proposition 2.1.

6.1. Construction of Optimal Meshes. We start this section presenting a com-
plexity result for the bisection rules considered here. The following theorem was
proved for d = 2 in [BDD 2004] and for d ≥ 2 in [S 2007], and it is crucial for
controlling the extra refinements necesary to keep the partitions admissible and
shape-regular. The theorem is based on the existence of an algorithm

T∗ ← REFINE(T ,M)

which, given an admissible mesh T , and a setM⊂ T of marked elements, bisects all
elements in M least once, and outputs the smallest conforming refinement T∗ ∈ T
of T with T∗ ∩M = ∅. Such an algorithm exists provided T0 satisfies condition (b)
of Section 4 in [S 2007], or Assumption 1 in [NSV 2009, Ch. 4]. A further discussion
of the results by Stevenson [S 2007] can be found in [NSV 2009, Ch. 4], including
practical recursive and iterative implementations.

Theorem 6.1. Let T0 be an initial admissible partition of a polygonal (polyhe-
dral) domain Ω in R2 (Rd) and assume that T0 satisfies condition (b) of Section 4
in [S 2007]. If the sequence {T`}`≥1 is obtained by repeating the step:

T`+1 ← REFINE(T`,M`),

with M` any subset of T`, then for k ≥ 1 we have that

#Tk −#T0 ≤ C
( k∑
`=1

M`

)
,

where C only depends on T0.
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The proof of Theorem 2.2 is based mostly in the following constructive re-
sult, called greedy algorithm that was presented initially in [BDDP 2002, Proposi-
tion 5.2], making use of a result analogous to Proposition 2.1 for linear finite ele-
ments. In [NSV 2009, Section 5.4] this construction is used to prove that W 2,p(Ω) ⊂
A1/2

(
H1(Ω)

)
for any p > 1 when Ω is a two dimensional domain. We include this

construction in order to illustrate the use of the bounds of Proposition 2.1 and thus
make the article more self-contained:

Proposition 6.2. Suppose that the assumptions of Theorem 2.2 hold, then for all
ε > 0 there exists an admissible mesh T ∈ T, such that:

(6.1) ‖f −QT (f)‖B0
≤ C4 (#T )

1
p ε

with

(6.2) #T −#T0 ≤ C5 (ε−1|Ω|δ|f |B)
τ

1+δτ

where δ = s
d + 1

p −
1
τ and Ci = Ci(p, s, τ, d, diam(Ω), κT), i = 1, 2.

Proof. Given an admissible mesh T ∈ T and T ∈ T we define the local error as:

(6.3) e(T, T ) := |T |δ|f |B(ωT (T )),

where ωT (T ) is the patch of elements of T having nonempty intersection with T .
To construct the desired mesh we fix the tolerance ε > 0 and generate recursively

the sequence of meshes {Tk}k≥0 with the following algorithm:
k = 0
Mk = {T ∈ Tk : e(T, Tk) > ε}
while Mk 6= ∅
Tk+1 ← REFINE(Tk,Mk)
k ← k + 1
Mk = {T ∈ Tk : e(T, Tk) > ε}

end while

The procedure ends in a finite number of steps because Proposition 2.1 implies
that

e(T, T ) = |T |δ|f |B(ωT (T )) ≤ |T |δ|f |B
and |T | is halved when T is refined.

Let T be the final mesh Tk. By the definition of Mk in each case, we have that
T ∈ T satisfies e(T, T ) ≤ ε and then, again by Proposition 2.1

‖f −QT (f)‖pB0(Ω) .
∑
T∈T
|f |pB0(ωT (T )) .

∑
T∈T
|T |δ|f |pB(ωT (T )) . (#T ) εp

where the constants involved depend on p, s, d, diam(Ω) and κT. This is the first
assertion of the proposition.

To prove the second inequality, we will bound the cardinality of the setM of all
the elements marked in the process to obtain T . More precisely, letM = ∪k`=0M`,
noticing that the sets M`, ` = 0, 1, . . . , k are pairwise disjoint, and for each j ∈ Z
define Γj = {T ∈ M : 2−j−1 ≤ |T | < 2−j}. If j0 is the smallest integer such that
2j0 > |Ω|, then M = ∪∞j=−j0Γj .

We now obtain two different upper bounds for #Γj . The first bound comes
from observing that the elements in Γj do not overlap, and thus #Γj 2−j−1 ≤∑
T∈Γj

|T | ≤ |Ω| which leads to

(6.4) #Γj ≤ 2j+1|Ω|, for each j ≥ −j0.
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To obtain the second bound for #Γj we observe that each T ∈ Γj belongs to M`

for only one ` ∈ {0, 1, 2, . . . , k} and setting T̂ = ωT`(T ) we see that

ε < e(T, T`) = |T |δ|f |B(T̂ ) ≤ 2−jδ|f |B(T̂ ).

Since the elements of Γj are pairwise disjoint and of comparable size, each x ∈ Ω

belongs to at most c sets T̂ with T ∈ Γj (with c depending only on mesh regularity),
and thus

#Γjε
τ ≤ Cτ1 2−jδτ

∑
T∈Γj

|f |τ
B(T̂ )

. 2−jδτ |f |τB , for each j ≥ −j0,

where in the last inequality we have used Lemma 4.10.
Therefore, for each j ≥ −j0

#Γj . min{2j |Ω|, ε−τ2−jδτ |f |τB}

and

#M =

∞∑
j=−j0

#Γj .
∞∑

j=−j0

min{2j |Ω|, ε−τ2−jδτ |f |τB}.

Notice that the two terms inside min{·, ·} correspond to geometric series, one in-
creasing and the other decreasing. The sum is then bounded (up to a constant) by
the size of the terms when they are of comparable size. More precisely, if we let k
be the biggest integer such that 2k|Ω| ≤ ε−τ2−kδτ |f |τB , then

#M . ε−τ2−kδτ |f |τB ,

and also 2k '
(
|Ω|−1ε−τ |f |τB

) 1
1+δτ .

Finally,

#M . ε−τ2−kδτ |f |τB . ε−τ |f |τB
[(
|Ω|−1ε−τ |f |τB

) 1
1+δτ

]−δτ
=
(
ε−1|f |B |Ω|δ

) τ
1+δτ ,

and using Theorem 6.1 we obtain:

(6.5) #T −#T0 . (ε−1|f |B |Ω|δ)
τ

1+δτ ,

which is the second and last assertion of the proposition. �

6.2. Proof of Direct Theorem. The proof of the Direct Theorem 2.2 is now an
almost immediate consequence of the construction by the greedy algorithm given
in Proposition 6.2.

Proof of Theorem 2.2. Given N ≥ #T0, we let T be the mesh given by Proposi-
tion 6.2, with

(6.6) ε = |Ω|δ|f |BN−
1+δτ
τ C

1+δτ
τ

5 = |Ω|δ|f |BN−
1
τ−δC

1
τ +δ
5 ,

and C5 from (6.2). Then (6.2) implies that #T −#T0 ≤ N and (6.1) now yields

(6.7) σN (f)B0
≤ ‖f −QT (f)‖B0

. (#T )1/pε ≤ (N + #T0)
1
p ε ≤ (2N)1/pε,

where we have used that N ≥ #T0. Using (6.6) and the fact that δ = s
d + 1

p −
1
τ ,

we have that

σN (f)B0 . N
−s/d|f |B .

The result for all N > 0 follows easily from the case N ≥ #T0. �
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7. Proof of Inverse Theorem

The main goal of this section is to prove Theorem 2.5, which is a kind of in-
verse result of Theorem 2.2 in the sense that it states that if a function can be
approximated with rate N−s/d then it belongs to certain smoothness spaces. It
is important to note that if u ∈ VT for an admissible mesh T , then u ∈ As,q
for all s > 0 and q > 0, since σN (u) = 0 for all N ≥ #T . On the other hand,
the spaces VT only guarantee C0 regularity (continuity), and are not contained in
Besov spaces with smooth index s ≥ 1 + 1

p (see Proposition 4.7). Thus an exact

recyprocal to Theorem 2.2 is not possible. For this reason we define the generalized
Besov space using the multiscale norm defined in (4.17) in the following way

Definition 7.1. The generalized Besov space B̂sp,p(Ω) for 0 < p <∞ and s > 0, is
defined as the set of functions f ∈ Lp(Ω) such that the norm

(7.1) ‖f‖B̂sp,p(Ω) :=

(∑
ν∈Ξ

|θν |−
sq
d ‖bν(f)φν‖pLp(Ω)

) 1
p

is finite, where the coefficients bν(f) are defined in (4.16).

Remark 7.2. It is important to note that due to Theorem 4.13 each space B̂sp,p(Ω)
contains the corresponding Besov space Bsp,p(Ω), and also all the functions of VT
for any admissible mesh T . If the parameter s is big, this implies necessarily that

Bsp,p(Ω) ( B̂sp,p(Ω), since we only consider C0 finite elements.

The following theorem gives us an inverse inequality where the strongest norm
of discrete functions is bounded by a weaker norm, a fundamental tool for proving
Theorem 2.5.

Theorem 7.3 (Inverse Inequalities). Let 0 < p <∞, α > 0, s > 0, 1
τ = s

d+ 1
p .Then

for all V ∈ VT , T ∈ TN , N ∈ N

‖V ‖B̂s+ατ,τ (Ω) ≤ CN
s
d ‖V ‖B̂αp,p(Ω) , (α > 0)(7.2)

‖V ‖B̂sτ,τ (Ω) ≤ CN
s
d ‖V ‖Lp(Ω) , (α = 0)(7.3)

where C = C(p, α, s, d, κT,#T0).

Proof. It is sufficient to prove the assertions for N ∈ N, N ≥ #T0. Let T ∈ TN and
V ∈ VT , using the multiscale decomposition from the initial mesh T0 we obtain:

V =
∑
m≥0

∑
ν∈Ξm

bν(V )φν =
∑
ν∈M

bν(V )φν

where M⊂ Ξ is the set of all nodes ν such that the coefficient bν(V ) 6= 0.
The next step consists in counting how many coefficients are not zero in the

previous representation, that is, finding #M. Consider the tree TT from the con-
struction of T from T0 by bisection. Since the polynomial degree of the finite
element space is fixed, the number of nodes ν ∈ Ξ for which bν 6= 0 is bounded by
the total number of nodes in all the elements T ∈ TT , whence #M . #TT . Since
each bisection increases in one the number of leaf elements (#T ) and in two the
total number of elements (#TT ) we thus obtain

#M . #TT . N + #T0 . N.
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Since |θν |−
s
d ‖φν‖Lτ (Ω) ' ‖φν‖Lp(Ω) we have

‖V ‖B̂s+ατ,τ (Ω) =

(∑
ν∈M

|θν |−
(α+s)τ

d ‖bν(V )φν‖τLτ (Ω)

) 1
τ

'

(∑
ν∈M

(
|θν |−

α
d ‖bν(V )φν‖Lp(Ω)

)τ) 1
τ

. (#M)
1− τ

p
τ

(∑
ν∈M

(
|θν |−

α
d ‖bν(V )φν‖Lp(Ω)

)p) 1
p

. N
s
d ‖V ‖B̂αp,p(Ω) ,

due to Hölder’s inequality. This concludes the proof of the first assertion of the
theorem; the second assertion is analogous. �

In order to state the last tool that we will use for proving Theorem 2.5 we need
to introduce the K-functional.

Definition 7.4. For two function spaces F2 ⊂ F1, the K-functional of F1, F2, for
f ∈ F1 is defined as:

K(f, t,F1,F2) := inf
g∈F2

{‖f − g‖F1
+ t‖g‖F2

}, t > 0.

Then, the K-method of real interpolation consists in defining, for 0 < θ < 1 and
0 < q < ∞, the interpolation space [F1,F2]θ,q as the set of all f ∈ F1 such that
‖f‖[F1,F2]θ,q <∞, where

‖f‖q[F1,F2]θ,q
:=

∫ ∞
0

t−θqK(f, t,F1,F2)q
dt

t
,

and due to the fact that K(f, t,F1,F2) is increasing as a function of t,

(7.4) ‖f‖q[F1,F2]θ,q
'
∞∑
n=0

[
anθK(f, a−n,F1,F2)

]q
,

with equivalence constant depending on a > 1.
The following bound for the K-functional is the last tool that we need for proving

Theorem 2.5.

Lemma 7.5. Let 0 < p <∞, α > 0, s > 0 and 1
τ = s

d + 1
p . There exists a constant

C = C(p, α, d, s, τ,Ω) such that for τ∗ = min{τ, 1}:

(1) If α > 0 for f ∈ B̂αp,p(Ω) and all n ∈ N we have:

K
(
f, 2−

sn
d , B̂αp,p(Ω), B̂α+s

τ,τ (Ω))

≤ C2−
sn
d

( n∑
k=0

(2
sk
d σ2k(f)B̂αp,p(Ω))

τ∗

) 1
τ∗

+ ‖f‖B̂αp,p(Ω)

 .
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(2) If α = 0 for f ∈ Lp(Ω) and all n ∈ N we have:

K
(
f, 2−

sn
d , Lp(Ω), B̂sτ,τ (Ω))

≤ C2−
sn
d

( n∑
k=0

(2
sk
d σ2k(f)Lp(Ω))

τ∗

) 1
τ∗

+ ‖f‖Lp(Ω)

 .
Proof. We prove here the first assertion of the lemma. The second one is analogous

and we thus omit it. Let f ∈ B̂αp,p(Ω), and for each k ∈ N, let T̂k ∈ T2k and
fk ∈ VT̂k be such that ‖f − fk‖B̂αp,p(Ω) = σ2k(f)B̂αp,p(Ω). Then if gk = fk − fk−1 for

k ∈ N with f−1 = 0, we obtain:

2
sn
d K(f, 2−

sn
d , B̂αp,p(Ω), B̂α+s

τ,τ (Ω)) ≤ ‖fn‖B̂α+s
τ,τ

+ 2
sn
d ‖f − fn‖B̂αp,p(Ω)

=

∥∥∥∥∥
n∑
k=0

gk

∥∥∥∥∥
B̂α+s
τ,τ (Ω)

+ 2
sn
d ‖f − fn‖B̂αp,p(Ω)

≤

(
n∑
k=0

‖gk‖τ∗B̂α+s
τ,τ (Ω)

+ 2
snτ∗
d ‖f − fn‖τ∗B̂αp,p(Ω)

) 1
τ∗

,

for τ∗ = min{τ, 1}. Using (7.2) we have

2
sn
d K

(
f, 2−

sn
d , B̂αp,p(Ω), B̂α+s

τ,τ (Ω)
)

.

(
n∑
k=0

2
skτ∗
d ‖gk‖τ∗B̂αp,p(Ω)

+ 2
snτ∗
d ‖f − fn‖τ∗B̂αp,p(Ω)

) 1
τ∗

.

(
n∑
k=0

2
skτ∗
d

[
σ2k(f)τ∗

B̂αp,p(Ω)
+ σ2k−1(f)τ∗

B̂αp,p(Ω)

]
+ 2

snτ∗
d σ2n(f)τ∗

B̂αp,p(Ω)

) 1
τ∗

.

(
n∑
k=0

2
skτ∗
d σ2k(f)τ∗

B̂αp,p(Ω)

) 1
τ∗

+ ‖f‖B̂αp,p(Ω) ,

and the lemma is proved. �

We proceed now with the proof of the final result:

Proof of Theorem 2.5. As before, we prove the first assertion, since the second one
is analogous. Suppose that the assumptions of Theorem 2.5 hold with α > 0. Let
s1 and τ1 be such that s1 > s and 1

τ1
= s1

d + 1
p , and τ1 ≥ 1 if τ > 1. We claim that

B̂α+s
τ,τ (Ω) =

[
B̂αp,p(Ω), B̂α+s1

τ1,τ1 (Ω)
]
s
s1
,τ

and

(7.5) ‖f‖B̂α+s
τ,τ (Ω) ' ‖f‖[B̂αp,p(Ω),B̂

α+s1
τ1,τ1

(Ω)] s
s1
,τ

.

This last observation is due to the fact that

S : B̂γζ,ζ(Ω)→ `γζ (Lζ(Ω)) defined by S(f) = {qm(f)}∞m=0
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is a corretraction operator and

R : `γζ (Lζ(Ω))→ B̂γζ,ζ(Ω) defined by R({fj}∞j=0) =

∞∑
j=0

fj

is its correspondent retraction operator, and using that[
`pα(Lp(Ω)), `τ1α+s1(Lτ1(Ω))

]
s
s1
,τ

= `τα+s(L
τ (Ω))

(see [Pe 1976]) and Theorem (1.18.2) of [T 1978].

Therefore, using (7.5) and (7.4) with a = 2
s1
d ,

(7.6) ‖f‖B̂α+s
τ,τ (Ω) '

( ∞∑
n=0

[
2
sn
d K(f, 2−

s1n
d , B̂αp,p(Ω), B̂α+s1

τ1,τ1 (Ω))
]τ) 1

τ

,

and Lemma 7.5 implies that

(7.7) K(f, 2−
s1n
d , B̂αp,p(Ω), B̂α+s1

τ1,τ1 (Ω))

. 2−
s1n
d

(
n∑
k=0

(
2
s1k
d σ2k(f)B̂αp,p(Ω)

)τ∗) 1
τ∗

+ 2−
s1n
d ‖f‖B̂αp,p(Ω) .

Relations (7.6) and (7.7) yield

‖f‖τB̂α+s
τ,τ (Ω) .

∞∑
n=0

2
(s−s1)nτ

d

(
n∑
k=0

(
2
s1k
d σ2k(f)B̂αp,p(Ω)

)τ∗) τ
τ∗

+

∞∑
n=0

(2
(s−s1)n

d ‖f‖B̂αp,p(Ω))
τ

Using that ‖f‖B̂αp,p(Ω) ≤ ‖f‖Ars
d
,τ

(B̂αp,p(Ω)) and Hardy’s inequality (Lemma 5.1) on

the first sum with µ = τ∗,

aj :=

{
2−

s1j
d σ2−j (f)B̂αp,p(Ω), if j ≤ 0,

0, if j > 0,

and

zm :=

( ∞∑
j=m

aτ∗j

) 1
τ∗

=


(−m∑
k=0

(
2
s1k
d σ2k(f)B̂αp,p(Ω)

)τ∗) 1
τ∗

, if m ≤ 0,

0, if m > 0,

we obtain:

‖f‖B̂α+s
τ,τ (Ω) . ‖f‖Ars

d
,τ

(B̂αp,p(Ω)) ,

and the proof is thus complete. �
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