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We study the properties of classical and quantum stable structures in a 3D parameter space
corresponding to the dissipative kicked top. This is a model system in quantum and classical chaos
that gives a starting point for many body examples. We are able to identify the influence of these
structures in the spectra and eigenstates of the corresponding (super)operators. This provides
with a complementary view with respect to the typical 2D parameter space systems found in the
literature. Many properties of the eigenstates, like its localization behaviour can be generalized
to this higher dimensional parameter space and spherical phase space topology. Moreover we find
a 3D phenomenon –generalizable to more dimensions– that we call the coalescence-separation of
(q)ISSs, whose main consequence is a marked enhancement of quantum localization. This could be
of relevance for systems which have attracted a lot of attention very recently.

PACS numbers: 05.45.Mt, 03.65.Yz, 05.45.a

I. INTRODUCTION

Dissipative systems play a central role in many areas
of physics. From the classical side the discovery of the
so called isoperiodic stable structures (ISSs) in the 2D
parameter space of the Hénon map [1] provided with a
new perspective for bifurcation phenomena and stability
properties. This important advance led to a vast amount
of work. One of the many possible applications is on
directed transport, where quantum dissipative ratchets
have been proposed [2]. This suggested the exploration
of the quantum counterparts of the ISSs (qISSs) [3] and
revealed many general quantum to classical correspon-
dence properties. These results have a wide range of
applicability like for example in recent aspects of super-
conducting qubits [4], cold atoms [5], and Bose-Einstein
condensates [6] experiments.

On the other hand, open many body systems have re-
ceived a lot of attention very recently. The case of the
rocked open Bose-Hubbard dimer has shown the corre-
spondence between the interactions and bifurcations in
the mean-field dynamics [7]. An important derivation of
this is the study of quantum bifurcation diagrams [8, 9].
Also, there is a renovated interest in the parameter space
properties of classical dissipative maps whose complexity
increases due to coupling [10]. This has direct conse-
quences in optimizing ratchet currents that can be af-
fected by temperature effects [11]. Finally, the study of
discrete time crystals poses new questions that could be
answered by means of an open quantum systems perspec-
tive [12]. All these developments motivate the study of
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more complicated parameter and phase spaces in order
to verify the validity of previous results in this context
and to discover new properties.

By means of analyzing paradigmatic classical and
quantum chaos models like the (modified) kicked rotator
map, the dissipative standard map, and a periodically
driven flux there have been many recent advances in our
knowledge about the properties of the corresponding su-
peroperators [3, 13, 14]. We have elucidated the funda-
mental role played by ISSs and qISSs. In fact, the invari-
ant states that belong to qISSs have the simple shape of
the limit cycles of ISSs only for exceptionally large regu-
lar structures. In the majority of the cases these invari-
ants look approximately the same as the quantum chaotic
attractors that are at the vicinity of the corresponding
ISS in the classical parameter space. Moreover, we have
proven that the sharp classical borders of these latter be-
come blurred at the quantum level, and neighboring areas
influence each other through quantum fluctuations (para-
metric tunneling). Also, the leading eigenstates which
rule the transitory behaviour have a phase space struc-
ture dominated by limit cycles of neighbouring ISSs, and
their eigenvalues have the same periodicity. This leads to
scarring (localization) [15] on the corresponding unstable
periodic orbits [16].

In this work we study the properties of the quantum
and classical 3D parameter space of the dissipative kicked
top, which also allows us to investigate a spherical phase
space. This is a paradigmatic model that has recently
been used to study quantum correlations as probes of
chaos [17], quantum to classical correspondence in the
vicinity of periodic orbits [18] (which could be extended
to the dissipative case), and that has also served as a
starting point for many body models [19]. By using
some of the tools developed for 2 parameter systems
we are able to characterize the morphology of the 3D
(q)ISSs. We find that some properties of the eigenvalues
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and eigenstates of the quantum superoperator are still
valid in this case, giving them a more generic nature. The
most prominent example is the localization behaviour
of the eigenstates. Moreover, we study the coalescence-
separation phenomenon present when having more than
2 parameters. The main quantum consequence is an en-
hancement of localization that could be of relevance for
the many areas of research previously mentioned.

This paper is organized as follows, in Sec. II we explain
the details of the dissipative kicked top, together with
some of the techniques used to study it. In Sec. III
the results that allow to characterize the 3D (q)ISSs are
presented. In Sec. IV we give our conclusions.

II. THE DISSIPATIVE KICKED TOP

The quantum map for the dissipative kicked top has
the form:

ρ′ = Dτ FJρF
†
J ≡ $ρ, (1)

where FJ generates the unitary dynamics and Dτ is the
dissipation propagator obtained from the integration of
a master equation for the density matrix. The Floquet
operator FJ is given by:

FJ = exp[−i(k/2J)J2
z ] exp[−iβJy], (2)

where Ji are the components of the angular momentum
J. k is the torsion parameter and β the rotation param-
eter associated with the periodic kicking of the angular
momentum (~ = 1) [20]. Dissipation is modeled by the
following Lindblad equation:

d

dt
ρ(t) = γ{[J−, ρ(t)J+] + [J−ρ(t), J+]} ≡ Λρ(t), (3)

where J± are the usual raising and lowering operators
and γ the dissipation rate. A dimensionless parameter
τ = 2Jγt which gives the relaxation time between two ac-
tions of the unitary operator and thus fixes the strength
of the dissipation can be introduced [21]. In Ref.[22]
Eq.(3) has been integrated in the semiclassical limit. The
detailed form of the matrix elements of Dτ = exp(Λτ) is
given in Eq.(4.6) of Ref.[22]. The approximation based
on a saddle-point evaluation of the inverse Laplace trans-
formation is valid in a wide range of quantum numbers
and propagation times, with an error of order 1/J2. The
superoperator $ in Eq.(1) conserves J2 = j(j+1) and has
dimension (2j + 1)2 × (2j + 1)2. It will be diagonalized
in the basis |jm〉 of eigenstates of Jz with m = −j, ...., j.
The diagonalization of the quantum eΛ, is worked out by
using the Arnoldi method [23].

In the classical limit corresponding to j →∞ the phase
space is the surface of the unit sphere, with µ = cos θ
and φ as canonical variables, defining the orientation of
angular momentum J. The detailed expressions defining
the classical map taking (µ, φ) → (µ′, φ′) are given in

FIG. 1. (Color online) Participation ratio η in parameter
space (k, τ) for β = 2. The (green) light gray rectangle rep-
resents the window of parameters we focus in (see Fig. 2 d)
for a better resolution).

Appendix A of Ref. [24]. It consists of a rotation of the
angular momentum by an angle β around the y -axis :

µ′ = µ cosβ −
√

1− µ2 sinβ cosφ,

φ′ = (arcsin

(√
1− µ2

1− µ′2
sinφ

)
θ(x′) + (sign(φ)π −

arcsin

(√
1− µ2

1− µ′2
sinφ

)
θ(−x′)) mod 2π,

x′ =
√

1− µ2 cosφ cosβ + µ sinβ. (4)

followed by a torsion around the z-axis :

µ′ = µ,

φ′ = (φ+ kµ) mod 2π. (5)

In Eq. 4 x′ is the x component of the angular momentum
after rotation, θ(x) is the Heaviside theta-function and
sign(x) denotes the sign function. Finally the dissipative
part is given by:

µ′ =
µ− tanh τ

1− µ tanh τ
,

φ′ = φ. (6)

In order to perform the classical evolution we directly use
this map and obtain the asymptotic distributions which
we use to compare with some properties of the quantum
ones.

We have chosen to measure the chaoticity or simplic-
ity of the eigenstates by means of the participation ratio
η = (

∑
i P (m)2)−1, where P (m) is the probability of m.

This gives the number of basis elements that expand the
quantum state. We generalize this concept for the classi-
cal distributions by calculating η, with P (m) replaced by
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FIG. 2. (Color online) Participation ratio η in parameter
space (k, τ) for β = 1.25 and β = 1.5 (top left (a)) and right
(b)) panels) and β = 1.75 and β = 2 (bottom left (c)) and
right (d)) panels).

P (µ), which is a discretized limiting angular momentum
(z component) distribution. This distribution is obtained
after evolving 1000 time steps a bunch of 10000 uniformly
distributed random initial conditions on (µ, φ). We have
taken a number of 1000 bins, which will give enough res-
olution compared to the quantum cases considered.

III. PROPERTIES OF 3D STABLE
STRUCTURES IN PARAMETER SPACE

We begin our study of the dissipative kicked top by
exploring the classical parameter space. The results for
a cut of this 3D space (given by k, β, andτ) at β = 2 are
shown in Fig. 1. The first thing we notice is that this sys-
tem has the same richness as the 2 parameter dissipative
kicked rotor [16], i.e. we find a big regular region together
with large ISSs intertwined with smaller shrimp-like ones,
and all of them embedded in a chaotic background. We
observe the largest regular domain (black) at low k and
large τ . The second largest regular domain is a much
smaller ISS and lies at lower τ values. From now on we
focus our attention in the region of the parameter space
where these two domains are in close proximity, which we
have highlighted by means of a green (light gray) rectan-
gle.

This is precisely the range of k and τ shown in Fig.
2 for different values of β. Each panel corresponds to a
screenshot of the video (linear color scale) included in the
Supplemental Material that gives a better feeling of the
involved 3D ISSs that build up the dissipative kicked top
parameter space. We also show the logarithmic version of

this video which provides more details regarding the in-
ternal structure of the ISSs. In Fig. 2 a) the case β = 1.25
presents just one large regular region. At β = 1.5, shown
in Fig. 2 b), the large ISSs corresponding to the second
largest regular domain is separated from the largest one.
In Fig. 2 c) we display the situation for β = 1.75 where
the separation is larger but this latter ISS looks approxi-
mately the same as in the previous case, just slightly more
curved and displaced towards a larger k range. Finally,
in Fig. 2 d) new interactions with other ISSs become
evident giving rise to what we will call other coalescence-
separation smaller events, a phenomenon that can only
be present for parameter spaces of dimension higher than
2.

Now, we turn to analyze what is the quantum coun-
terpart of this dynamics in the parameter space. For
that purpose we select the cases β = 1.5 and β = 1.75
for which the separation is small and well developed, re-
spectively. We have calculated the η landscape for two
different values of j in order to also show the dependence
on its size, an indicator of the semiclassical behaviour.
Comparing Fig. 3 a) for β = 1.5 with Fig. 3 b) for
β = 1.75 (both for j = 100) we can see that the qISS re-
produces the regular behaviour much better in the first
case, though there is no significant difference at the clas-
sical level. This different behaviour persists as we go to
the semiclassical limit, as is evident from Figs. 3 c) and
d). However, the overall quantum to classical agreement
is better as expected. Then, why is there such a strik-
ing difference between the quantum behaviour at these
two β values for which the classical ISS is essentially the
same? In the following we will answer this question by
using some tools of our previously developed theory for
quantum 2D dissipative systems [13, 16].

We first determine if the separation of the ISS from
the main regular region is actually there at β = 1.5.
For that we show the quantum and classical normal-
ized participation ratio along three lines in the direc-
tion of the axes of the parameter space, intersecting at
(k, β, τ) = (4.5, 1.5, 0.18). In the top panel of Fig. 4 we
see that at approximately k = 3 there is a small (but
significant in terms of regular structures) rise of the clas-
sical participation ratio that clearly signals the separa-
tion of the ISS from the main regular region. At the
quantum level just the ISS is resolved and there is some
internal structure also. In the middle panel we notice
that although the quantum participation ratio is gener-
ally lower inside the boundaries of the classical ISS the
localization is not as strong as for the approximate inter-
val k ∈ [3.5; 4] (see top panel). However some internal
features are also present, in agreement with the previous
results. Finally, in the bottom panel we see that localiza-
tion monotonously increases as a function of τ , which is
something to be expected given the greater dissipation.
In all cases the differences due to the size of j are neg-
ligible indicating an extremely slow convergence to the
classical limit without any further ingredients [13].

We now characterize the qISS at these two β values
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FIG. 3. (Color online) Quantum participation ratio η in pa-
rameter space (k, τ) corresponding to β = 1.5 and β = 1.75,
for j = 100 (top left (a)) and right (b)) panels), and for
j = 160 (bottom left (c)) and right (d)) panels).

by comparing the spectral and eigenstates behaviour at
them. It is worth noticing that for the eigenstates rep-
resentation we use the Wigner function on the sphere.
For a system of total angular momentum j, the density
matrix ρ̂ can be expressed in the Dicke representation as
ρmm′ = 〈jm|ρ̂|jm′〉. Alternatively, we can consider the
coupled total angular momentum representation, where

ρkq =

j∑
m=−j

j∑
m′=−j

ρmm′tjmm
′

kq , (7)

with

ρmm′ = 〈jm|ρ̂|jm′〉 =

2j∑
k=0

k∑
q=−k

ρkqt
jmm′

kq , (8)

and the Clebsch-Gordan transformation coefficients [25]
given by

tjmm
′

kq = (−1)j−m−q〈j,m; j,m′|k, q〉. (9)

These latter are nonzero only if q = m −m′. Both rep-
resentations contain the same information and are com-
pletely interchangeable. While the Dicke representation
is more common, the coupled total angular momentum
representation allows expressing the Wigner function on
the Bloch sphere. The Wigner function [26] is a function

on a sphere of radius
√
j(j + 1), represented in terms of

orthonormal Laplace spherical harmonics as [25]

W (θ, φ) =

2j∑
k=0

k∑
q=−k

ρkqYkq(θ, φ), (10)

FIG. 4. (Color online) Normalized participation ratio η/N ,
with N = 1000 for the classical case (black lines), and N =
2j + 1 for the quantum ones (j = 100 ((red) gray dashed
lines) and j = 160 ((blue) gray lines)), as a function of k (top
panel), β (middle panel), and τ (bottom panel). Parameter
other than the axis one, takes the fixed value k = 4.5, β = 1.5
or τ = 0.18 (dashed (green) gray vertical lines).

where θ is the polar angle measured from the z axis, and
φ is the azimuthal angle around the z-axis. This Wigner
function contains the same information as the density
matrix for any spin-j system. The marginals of the spher-
ical Wigner function are the projection quantum number
distributions along all quantization axes [27]. In the fol-
lowing we will take the previously mentioned rescaled
variable µ = cos θ instead of just θ.

The spectra are displayed in Fig. 5, in the left column
for β = 1.5, and in the right one for β = 1.75. Three
different k values have been considered in each case (al-
ways with j = 160 and τ = 0.18). The corresponding
invariant and leading eigenstates are shown in Figs. 6
and 7, respectively (again, the left columns correspond
to the lower β value, and the rows respect the k order-
ing of Fig. 5). The top panels of Fig. 5 both show a
leading real eigenvalue extremely close to the invariant
one. This is a typical feature of large qISS whose in-
variant and leading eigenstates are localized around the
corresponding classical limit cycle, within quantum un-
certainty [16]. This is clearly noticed by looking at Figs.
6 and 7 top panels. With crosses we mark the classi-
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FIG. 5. (Color online) Quantum superoperator spectra in
the complex plane. Eigenvalues with largest moduli for β =
1.5 and β = 1.75 are shown in the left and right columns,
respectively. From top to bottom k = 4.5, k = 5, and k = 5.5
on the left; k = 4.5, k = 5.5, and k = 6.5 on the right. We fix
j = 160 and τ = 0.18 in all cases.

cal period 1 orbit that characterizes the large ISS and
dominates the dynamics in this region of the parameter
space. Moreover, when we move to larger k values, but
stay around the borders of the ISS the behaviour changes
and the invariant eigenstates become chaotic for both β
values, as shown in the middle panels of Fig. 6. However,
the leading eigenstates are localized around the same re-
gion of phase space corresponding to the limit cycle that
belongs to the ISS, as can be seen in the middle panels
of Fig. 7. The leading eigenvalues have moduli of 0.85
approximately, indicating a still long decay towards the
invariant. Finally, when moving farther away from the
ISS we find chaotic invariant and leading eigenstates as
can be verified by inspecting the bottom panels of Figs.
6 and 7. It is worth noticing that the Wigner function
of the leading eigenstates in this case has real and imagi-
nary part (we have displayed the real part) with positive
and negative regions (red and blue colors respectively).
The corresponding eigenvalues are no more real and the
spectral gap is large. This is a generic behaviour similar
to what we have found in the 2D case [16], and most im-
portantly, it is a clear indication that the morphology of
the qISS is the same for both β.

Then, how can we explain the marked quantum local-
ization enhancement found for β = 1.5 with respect to
β = 1.75 in Fig. 3? The explanation lies at the 3D na-

FIG. 6. (Color online) Wigner function of the invariant eigen-
states, corresponding to eigenvalue λ1 = 1 with the same pa-
rameter values of Fig. 5. k = 4.5 (a), k = 5 (c) and k = 5.5
(e) for β = 1.5, and k = 4.5 (b), k = 5.5 (d) and k = 6.5 (f)
for β = 1.75. Classical corresponding limit cycles are marked
with crosses.

ture of the parameter space. For spaces with more than 2
parameters the coalescence-separation phenomenon can
take place, and quantum mechanically this could induce
an enhancement of the region of localization. This can
be better appreciated by means of the left panel of Fig.
8 which shows a cut of the parameter space in the plane
τ = 0.18. From approximately β = 1.5 to lower values
the ISS merges with the big regular region. This coa-
lescence has no intermittencies and generates a very big
regular area that we know from our previous studies can
be better reflected in the quantum realm [13]. In the
right panel the logarithmic scale reveals an internal clas-
sical structure than explains the local minima found in
the quantum participation ratio of Fig. 4.
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FIG. 7. (Color online) Wigner function of the leading eigen-
states, corresponding to second largest eigenvalue |λ2| with
the same parameter values of Fig. 5. k = 4.5 (a), k = 5 (c)
and k = 5.5 (e) for β = 1.5, and k = 4.5 (b), k = 5.5 (d) and
k = 6.5 (f) for β = 1.75. Classical corresponding limit cycles
are marked with crosses.

FIG. 8. (Color online) Participation ratio in parameter space
(k, β) for τ = 0.18 with linear and logarithmic (color) gray
distribution in the left and right panels respectively.

IV. CONCLUSIONS

We study the dissipative kicked top, a paradigmatic
system in quantum and classical chaos which is also the
starting point of many body models. It has a spherical
phase space and a 3D parameter space. As a result we
have extended the validity of localization properties of
qISSs to this case, giving them a more generic nature. In
fact, we identify the same effects of parametric tunnel-
ing found in 2 parameter systems that induces a chaotic
shape for the invariant eigenstates in parameter regions
corresponding to an ISS but that are near the chaotic
background. Also, we have verified the localization on
the limit cycles of the ISS for the leading eigenstates [16].

On the other hand, we have found deep consequences
of the coalescence-separation phenomenon, only present
for systems with a parameter space with more than two
dimensions. In fact, 3D ISSs can merge and break up as
one of the parameters varies. Indeed, the quantum man-
ifestations of this dynamics can be very important, lead-
ing to a marked enhancement of localization due to the
enlargement of the regular regions. This can have very
important derivations in many body dissipative systems
where parameters proliferate. Even for the mean-field
approximation one can have several of them [12].

In the future, we will study the generalization to more
dimensions. The first step would be to characterize the
measure of this phenomenon at the classical level, which
has not been addressed in the literature to the best of
our knowledge. The next one would be to analyze the
quantum counterparts and direct application to many
body problems.
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