
VOLUMINA JURASSICA, 2020, XVIII: 53–106 

DOI: 

The proposal of a GSSP for the Berriasian Stage (Cretaceous System):  
Part 1

William A.P. WIMBLEDON1, Daniela REHÁKOVÁ2, Andrea SVOBODOVÁ3, Tiiu ELBRA3, Petr SCHNABL3,  
Petr PRUNER3, Krýstina ŠIFNEROVÁ3, Šimon KDÝR3, Oksana DZYUBA4, Johann SCHNYDER5,  

Bruno GALBRUN5, Martin KOŠŤÁK6, Lucie VAŇKOVÁ6, Philip COPESTAKE7, Christopher O. HUNT8,  
Alberto RICCARDI9, Terry P. POULTON10, Luc G. BULOT11, 12, Camille FRAU13, Luis DE LENA14

Key words: Berriasian, GSSP definition, J/K boundary, global correlation, Calpionella alpina Subzone, markers and proxies.

Abstract. Here in the first part of this publication we discuss the possibilities for the selection of a GSSP for the Berriasian Stage of the 
Cretaceous System, based on the established methods for correlation in the Tithonian/Berriasian interval. This will be followed, in the 
second part, by an account of the stratigraphic evidence that justifies the locality of Tré Maroua (Hautes-Alpes, SE France) as the proposed 
GSSP. Here we discuss the possibilities for correlation in the historical J/K boundary interval, and the evolution of thinking on the posi-
tioning of the boundary over recent generations, and in relation to research in the last ten years. The Tithonian/Berriasian boundary level is 
accepted as occurring within magnetosubzone M19n.2n. The detailed distribution of calpionellids has been recorded at numerous sites, 
tied to magnetostratigraphy, and the base of the calpionellid Alpina Zone is taken to define the base of the Berriasian Stage. This is at 
a level just below the distinctive reversed magnetic subzone M19n.1r (the so-called Brodno reversal). We discuss a wide range of magneto-
stratigraphic and biostratigraphic data from key localities globally, in the type Berriasian areas of France and wider regions (Le Chouet, 
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Saint Bertrand, Puerto Escaño, Rio Argos, Bosso, Brodno, Kurovice, Theodosia etc.). The characteristic datums that typify the J/K boun-
dary interval in Tethys and its extensions are detailed, and the correlative viability of various fossil groups is discussed. The boundary 
level is correlated to well-known J/K sections globally, and a series of secondary markers and proxies are indicated which assist wider 
correlation. Particularly significant are the primary basal Berriasian marker, the base of the Alpina Subzone (marked by dominance of 
small Calpionella alpina, Crassicollaria parvula and Tintinopsella carpathica) and secondary markers bracketing the base of the Calpio-
nella Zone, notably the FOs of the calcareous nannofossil species Nannoconus wintereri (just below the boundary) and the FO of Nanno
conus steinmannii minor (just above). Notable proxies for the boundary are: 1) the base of the Arctoteuthis tehamaensis Zone in boreal and 
subboreal regions, 2) the dated base of the Alpina Subzone at 140.22 ±0.14 Ma, which also gives a precise age estimate for the system 
boundary; and 3) the base of radiolarian “unitary zone” 14, which is situated just above the base of the Alpina Subzone.

1. PREAMBLE

This account is written on behalf of the Berriasian Work-
ing Group of the International Subcommission on Creta-
ceous Stratigraphy. It represents the culmination of ten years 
of work on J/K boundary interval sections across the globe, 
and is an introduction to the proposal of a GSSP section for 
the Berriasian Stage (Cretaceous System). That section, at 
Tré Maroua, in the Vocontian Basin of SE France, is dis-
cussed in Part 2 of this work.

The Berriasian is the first stage/age of the Cretaceous 
System/Period. Previous work and the decisions of inter-
national symposia have consistently confirmed that the Glo-
bal Stratotype Section and Point (GSSP) for the Berriasian 
should be located in an outcrop in former areas of the ocean 
of Tethys. Though it is necessary to recognise the difficulties 
that are still encountered when trying to correlate between 
marine late Tithonian – earliest Berriasian levels in Tethys 
and its extensions [Panthallassa (Japan, Russian Far East, 
California, Andes), Mexico, Caribbean and the Middle At-
lantic] and various isolated boreal marine basins, not to 
mention the non-marine regions. It is worth noting that such 
difficulties caused by biotic provincialism that began in the 
Tithonian continued through the Berriasian and later, affect-
ing correlations in the Valanginian and Hauterivian. How-
ever, these difficulties are becoming less insurmountable in 
the Jurassic/Cretaceous (J/K) interval: obstacles and un-
certainties with correlation have been overcome by use of 
magne tostratigraphy and by recognition of ever-wider rec-
ognition of ‘Tethyan’ marker species (e.g. nannofossils, cal-
careous dinoflagellates), as well as proxy species (e.g. be-
lemnites) which have FOs that approximate to widespread 
Tethyan marker species and zonal boundaries. 

In 2009, the Berriasian Working Group (BWG) of the 
International Subcommission on Cretaceous Stratigraphy 
(ISCS) began a concerted research effort, with the aim of 
examining and comparing all relevant contender sites that 
might qualify as a GSSP for the Berriasian Stage, the basal 
stage of the Cretaceous System. When, by 2009, a core 
group had coalesced that possesses all the required specia-
lisms, it was agreed that its first aim was to accumulate inte-

grated site data before any consideration was given to a pro-
spective boundary level. Documentation and compa rison 
would, it was hoped, lead to a consensus on the best mark-
ers, which would thus guide the group towards making a de-
cision on the most logical and useful boundary level, before 
moving on to selecting a specific section for a GSSP. Fur-
ther, we would examine traditional levels for the boundary, 
assessing those before moving to new horizons: prospects 
and possibilities were first assessed (Wimbledon et al., 2011). 

Consequent on the initial decision to base any choices of 
preferred marker levels, or localities, on a systematic ap-
praisal, more than sixty stratigraphic sequences across the 
globe, some previously studied and some new, were docu-
mented and assessed (see Appendix 1). The group’s efforts 
have been directed towards recording ranges of any stra-
tigraphically useful fossil group, and, whenever possible, 
magnetostratigraphy has been applied. From this growing 
body of integrated data – in particular, palaeomagnetism, 
calcareous nannofossils, ammonites, calpionellids and cal-
careous dinocysts, but also belemnites and palynology – we 
have been able to assess the usefulness of various biotic 
markers, and their relative positions. 

In 1973, at the time of the J/K colloquium, ammonites 
ruled where stage definition was concerned; and the Titho-
nian–Berriasian world consisted essentially of Mediterra nean 
Tethys and limited adjoining Alpine regions, with discussions 
on wider correlation constrained severely by ammonite pro-
vinciality. Earlier iterations of a J/K boundary working group 
were preoccupied with discussion of that fossil group, and 
with a rather narrow geographical focus – ammonite correla-
tion between Tethys and boreal Russia being a paramount 
preoccupation: even though correlative accuracy was poor, 
sometimes with discrepancies of more than 2 my. Widespread 
endemism in the ammonites had been repeatedly reco gnised 
as an obstacle to correlation, even in the regions of western 
Tethys, and, thus, though published research on the J/K inter-
val has grown and more profiles have been documented, it has 
been done relying less on ammonites, and more on calpionel-
lids combined with magnetostratigraphy, and also calcareous 
nannofossils. Through the identification of these and other 
fossil groups, we can now regard the Mediterra nean/Alpine 
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region as only part of wider Tethyan core area, with, beyond 
that, magnetostratigraphy and other biotic elements beginning 
to promise global correlations. 

The BWGs aim in the past ten years, with discusions at 
15 workshops, has been to broaden horizons, and for work 
to take place in all regions that have substantial J/K profiles 
with data to offer, excepting only those where war and risk 
to life and limb have prevented fieldwork. Latterly, various 
authors have attempted definition of the boundary level or 
approximation to a boundary using calpionellids, nannofos-
sils, radiolarians, dinocysts etc., and magneto stratigraphy. 
This has involved study of parts of the globe far beyond the 
confines of limited regions that were being considered when 
earlier ICS J/K discussions ceased (e.g. Zakharov et al., 
1996a), with the WG focussing its activity in the Andes, 
Mexico, California, the Russian Far East, China, the Black 
Sea, North Africa and the Middle East.

In recent decades, calpionellids have consistently been 
seen as the most useful fossil group for biostratigraphy in 
the Tithonian-Berriasian boundary interval, and the turnover 
from Crassicollaria species to small, orbicular Calpionella 
alpina has been documented numerous times as a wide-
spread marker falling in the middle part of magnetic zone 
M19n.2n. The consensus in the Berriasian WG on this was 
recorded in the account of its Warsaw 2013 workshop dis-
cussions. One salient advance has been to expand the known 
geographical extent of the C. alpina (=Alpina) Subzone 
(sensu Pop, 1974 and Remane et al., 1986) and to gather in-and to gather in-
formation on taxa from other fossil groups that bracket this 
datum. This level lies in the lower part of the interval tradi-
tionally labelled as the “Berriasella jacobi (=Jacobi) Sub-
zone”, with its geographically limited ‘Mediterranean’ am-
monite faunas. The Crassicollaria-Calpionella zonal interval 
has been shown to be constrained also by the FOs of calcar-
eous nannofossil species (e.g. Rhagodiscus asper, Cruciel
lipsis cuvillieri, Nannoconus wintereri, N. globulus, N. stein
mannii, Hexalithus strictus). The BWG activity has also 
focussed on finding proxies for these various markers in bio-
tically impoverished areas in other marine regions and in 
 areas of non-marine sedimentation; in the latter using mag-
netostratigraphy to overcome correlation problems (e.g. in 
China, and in the Purbeck facies in Europe). The finding of 
‘Tethyan’ calpio nellids, nannofossil and calcareous dino-
cysts outside the regions that they were supposed to typify, 
notably in the Andes, has been a great advance.

In regions with radiolarian-rich facies (see Radiolaria 
chapter), other biota can be scarce. The base of radiolarian 
“unitary zone” 13 coincides with the base of the Crassi col-
laria Zone, and the base of zone 14 (Baumgartner et al., 
1995) falls at a level close above the base of the Alpina Sub-
zone, though boreal and austral radiolarian biostrati gra phies 
do not fit with this Tethyan zonal scheme. 

The literature and this proposal on the J/K boundary are 
founded primarily on biostratigraphy and magneto strati gra-
phy. Internationally there has been no unequivocal stable 
isotope, or geochemical, event identified that helps deter-
mine or fix a boundary: the literature reveals a long-term 
carbon (C) isotope decline in the later Jurassic–early Creta-
ceous (Tithonian–Valanginian), that has been widely record-
ed in Tethys (see Isotopes below). The causes of the J/K de-
clining C isotope trend are not known, although some 
pos sibilities have been mooted. A handful of minor anoma-
lies have been suggested close to the J/K boundary (see be-
low): more high-resolution studies are required on these, 
and on sites in the Vocontian Basin in general. The Berriasian 
WG earlier sampled one Vocontian Basin profile for stable 
isotopes, and the results from the Le Chouet locality con-
formed to the widely-recognised J/K pattern of long-term C 
isotope decline, with no marked fluctuation. For this reason, 
local sites, including Tré Maroua, have not been studied in 
detail, though preliminary results from the locality will be 
presented in the second part of this paper.

There have been limited consideration of sequence stra-
tigraphy in the J-K interval (Du Chene et al., 1993; Monteil, 
1993), cyclostratigraphy is still in its infancy (e.g. Rameil, 
2005), and sea-level fluctuations shown in the “Exxon-Haq” 
composites have not been keyed to well studied and cali-
brated sequences, such as those described here. Better cy-
clostratigraphy may come from other sections spanning the 
Tithonian to Berriasian, such as those in the Neuquen Basin: 
but for that to happen, there will have to be adjustments to 
initial magnetostratigraphic determinations and widespread 
biostratigraphic markers will need to be identified.

In June 2016, the then 70-plus Berriasian Working 
Group held a formal vote to select the primary marker for 
the Tithonian/Berriasian boundary. With a 76% majority, the 
base of the Calpionella alpina (Alpina) Subzone was chosen 
(Wimbledon, 2017; Wimbledon et al., 2017). Thus the pro-
posed boundary level adopted by the BWG was still situated 
within the Jacobi Zone, between the two ammonite zonal 
levels (Grandis and Jacobi) put forward during the 1963 and 
1973 J/K colloquia, and thus conforming to the usage of re-
cent generations. 

After consideration of a shortlist of potential GSSP sites 
at the WG’s workshop at Kroměříž in 2018, two contenders 
were decided upon: when more documentation was to hand, 
a choice would be made between stratigraphic profiles in the 
Vocontian Basin and at Fiume Bosso in the Italian Apen-
nines. In May 2019, the Berriasian Group completed a con-
sultation and a one-month formal vote on the selection of 
a GSSP locality. The group voted with a 73% majority to 
select the Tré Maroua section in the Vocontian Basin.

Accordingly, on 1st December, 2019 this proposal of Tré 
Maroua as the GSSP for the Berriasian Stage (Cretaceous 
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System) was submitted by the Berriasian WG to the ISCS/
ICS. The GSSP put forward is situated at the base of bed 14 
in the lower cliff section at Tré Maroua, a level coinciding 
with the base of the Alpina Subzone, which is used as the 
primary marker for the stage base.

2. HISTORICAL

The scope of “Neocomian” is a fraught subject; though it is 
a topic largely beyond the scope of this proposal. It is not a for-
mal unit, but in a loose sense (Hoedemaeker, 1990) it comprises 
the lower stages of the Cretaceous, the Berriasian, Valanginian 
and Hauterivian. Thurmann (1835), in coining the name Neo-
comian, depended on de Montmollin’s (1835) description of 
the Cretaceous at Neuchâtel. From that text, it can be inter pre-
ted that the Calcaire Jaune formation represented the Va langi-
nian, Hauterivian and perhaps part of the Barremian: authors 
differ on what precisely is represented. Whether Montmollin’s 
Calcaire Jaune includes any part of the Berriasian would be 
speculation, as is the case with his “Portlandian”. Before even 
1860, the Neocomian had already been variously defined, 
with some marked variation: to include the Hauterivian plus 
the Va langinian (and the Urgonian), or not; and, significantly, 
plus the Berriasian, and even the Aptian (Renevier, 1874).

To take a step backwards in time, Purbeckian and Portland-
ian were the stage names with priority, the inventions of 
Brongniart (1829), and Desor’s brief paper introducing the 
term “Valangien” (=Valanginien/Valanginian) only appeared 
in 1854. Mid 19th century knowledge could be more or less 
summarised by Oppel’s (1865) presumption that his Titho-
nian facies was the approximate equivalent of the Portland 
and Purbeck beds of northern Europe: that is the Portlandian 
(d’Orbigny, 1842–1849 definition) and Purbeckian (relegat-
ed to the Cretaceous by d’Orbigny), and that somewhere 
above was the Valanginian. The idea that Tithonian was in 
part Purbeckian was presumably founded on Edward 
Forbes’ (1851) opinion that marine molluscs and echinoids 
in the Purbeck Formation were Jurassic. Of course, nowhere 
had these various units been seen and related one to another 
in a continuous sequence, in superimposition (with the ex-
ception of the Portland/Purbeck junction, described exten-
sively since the time of William Smith).

When modern studies began, the inadequacy of the Va-
lan ginian type area was soon recognised: leading to the pro-
posal of alternative type sections in south-east France (see 
Bulot, 1996). And a multiplicity of publications catalogued 
the biostratigraphy of the Tithonian and Berriasian, moving 
beyond the ammonites that had dominated 19th and early 
20th century discussions. But the difficulties of correlating 
non-marine Purbeck and extra-Tethyan Portland beds with 
marine Tithonian/Berriasian remain.

Returning to the lack of continuity between the sequen-
ces of the Upper Jurassic and Lower Cretaceous historical 
type areas, it was for Coquand (1871) to recognise the 
‘missing’, undescribed, Cretaceous interval that sat between 
the Tithonian and Valanginian, identifying a separate Berria-
sian, in Ardéche, in southern France. Coquand’s work was 
founded on Pictet’s collections (Pictet, 1867) of ammonites 
at Berrias (which, by the way, lacks the basal Berriasian as 
we currently define it). The ammonite fauna was thought by 
Pictet to have affinities with the Valanginian, but was cor-
rectly seen by Coquand as a distinct assemblage, one that 
was neither Valanginian nor Tithonian; and Renevier (1874) 
endorsed that opinion.

Though, by 1870, the two lowest stages of the Lower 
Cretaceous had been reasonably concretely recognised in 
France, in superimposition, various workers in Europe con-
tinued to invent new stage names and interpretations of ex-
isting names around the boundary level. Dubisian (=Pur-
beckian) (1859 – Desor and Gressly) had already been 
named, and it was followed by Infraneocomian (1876 – Du-
mas). De Lapparent (1883) made the Berriasian a substage 
of the Purbeckian, but still in the Portlandian, and, further, 
lnfravalanginian (1885 – Choffat), Freixilian (=Portlandian: 
1887 – Choffat), Aquilonian (=Purbeckian: 1891 – Pavlov) 
and Allobrogian (= Portlandian-Purbeckian: 1909 – Rollier) 
were coined. It was a time when the invention of stage-
names had gone into overdrive. As an aside, it has to be kept 
in mind that mid to late 19th century understanding of what 
constituted a stage or any unit (chrono-, bio- or lithostrati-
graphic) was flexible; with formations, stages and biozones 
used more or less interchangeably. 

Concentration of study on sites with remanié and mixed 
(Tithonian/Berriasian) ammonite faunas, collecting ex situ 
in quarries and even from field brash, as at Aizy-sur-Noya-
rey (Isère) and Chomérac (Ardèche), impeded progress. 
Fortunately, in time, more complete sequences were studied, 
such as that at La Faurie (Mazenot, 1939). The disentangle-
ment of autochthonous and remanié elements, and an under-
standing of the true ranges of the many Tithonian to Ber-
riasian ammonite taxa still proceeds (Bulot et al., 2014; Frau 
et al., 2015, 2016b) 

As the end of the 19th century approached, Kilian (1889) 
reaffirmed the position of the Berriasian Stage at the base of 
the Cretaceous. Connected studies of further regions in wes-
tern Tethys and beyond proliferated (e.g. Arnould-Saget, 
1953; Nikolov, 1966, 1982; Nikolov, Mandov, 1967; Le Hé-Nikolov, Mandov, 1967; Le Hé-Le Hé-
garat, Remane, 1968; Allemann et al., 1975; Donze et al., 
1975; Nikolov, Sapunov, 1977; Hoedemaeker, 1981, 1982; 
Tavera, 1985; Kvantaliani, 1989, 1999; Olóriz, Tavera, 
1989; Tavera et al., 1994; Benzaggagh, Atrops, 1995a, b; 
Sey, Kalachëva, 1996, 2000; Bogdanova, Arkad’ev, 1999, 
2005), and even if many contradictions about macrofaunas 
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were still to be addressed (Mazenot, 1939; Le Hégarat, 
1973; Frau et al., 2016a, c), there was stability in stratigra-
phic nomenclature, which grew still further with the new 
emphasis on micropalaeontology and magnetostratigraphy.

Recently, the suggestion has been made (Granier, 2019) 
that d’Orbigny and Oppel put forward some evidence for 
recognition of a base to the Cretaceous; that is, at a time pri-
or to the substantive lowest Cretaceous studies by workers 
such as Coquand, Pictet, de Lapparent, Kilian etc. In fact, 
what d’Orbigny and Oppel wrote highlighted the complete 
lacuna in knowledge that existed for them where the bound-
ary interval was concerned. Of course, d’Orbigny suggested 
divisions within the “Neocomian”, but Oppel was preoccu-
pied with the Jurassic, not the Cretaceous. Oppel (1865) re-
corded three ‘Berriasian’ ammonites, though without know-
ing their true age: Pseudargentiniceras abscissum, Proni
ceras pronum (both known also in the uppermost Tithonian), 
and Berriasella callisto (based on an incorrect location given 
by d’Orbigny). 

Much has been written about d’Orbigny’s unfamiliarity 
with the reality of field geology in classical areas – omitting 
most of the Oxford Clay from the Oxfordian, and placing half 
the Kimmeridge Clay in the Portlandian. In his Pro drôme 
(1850), there is no “Valanginian”, let alone any mention of 
a substantive base for the Cretaceous: a number of species of 
Ammonites are listed broadly under his “17ème étage”, that is, 
as Neocomian. These comprise the long-ranging Ptychophyl
loceras semisulcatum (known to occur in the Berriasian) and 
ammonite taxa that we now take to be definitively Valangin-
ian (Olcostephanus astierianus, Platy len ticeras gevrilianum, 
Dichotomites bidichotomus, Sayno ce ras verrucosum, Neocomi
tes neocomiemsis, Kilianella as perima, Prodichotomites carte
roni, Kilianella roubaudiana, Platylenticeras marcousianum, 
Olcostephanus josephinus, and Paquiericeras nicolasianum). 
By the time Coquand made his breakthrough in recognising 
the existence of a substantial pre-Valanginian and post-Titho-
nian interval, both Oppel and d’Orbigny had been dead for 
some years: the two had no knowledge of these Berriasian 
rocks or their fossil contents. In fact, d’Orbigny was so little 
informed about the identity of fossils in this interval that he 
only mentioned a single typical Berriasian ammonite, Berria
sella callisto, and this he placed in the Kimmeridgian. 

Much of this, and more, was well documented by 
Breistroffer (1964). 

2.1. 1973 SYMPOSIUM  
ON THE JURASSIC/CRETACEOUS BOUNDARY

Though numerous meetings have considered the placing 
of the J/K boundary since, one earlier conference on the to-
pic is much quoted – that at Lyon/Neuchâtel, in 1973. It was 

the last significant gathering that brought together specia-
lists on the interval prior to the setting up of the current 
Berriasian WG (2007) and its numerous meetings. An ex-
amination of the motions and votes of the 1973 participants 
reveals the existence of a consensus, a consensus that was 
carried forward in subsequent years. As all roads lead to and 
from this conference, it is worth considering the series of 
motions that came from the floor at the colloquium, and it is 
useful to record those that touched on J/K boundary defini-
tion, as they were proposed by the involved and experienced 
researchers who were present (Colloquium, 1975).

Formal motions (with proposers) in ascending order of 
popularity:
• the J/K system boundary should be at base of the Up-

per Berriasian Bossieri zone – 8 votes (Casey: motion 8)
(supported by Marek and Dembowska in motion 10–8 
votes);

• that the J/K boundary should be the Tithonian/Berriasian 
boundary – 19 votes (Birkenmajer: motion 1);

• J/K should be Tithonian/Berriasian boundary, and be 
placed at the base of Jacobi/Grandis Zone – 22 votes 
(Frandrin, Thieuloy, Le Hégarat and Druschits: motion 3);

• J/K should be at the Tithonian/Berriasian boundary, and 
be defined in Tethys – 22 votes (Remane and Barthel: 
motion 11);

• more work is required to identify a global stratotype – 
23 votes (Hughes, Dilley, Verdier, Middlemiss, Gollis-
staneh, Gygi, Haak and Morgenroth: motion 9);

• J/K boundary should be the Tithonian/Berriasian boun-
dary – 24 votes (Hughes, Dilley, Verdier, Middlemiss, 
Gollisstaneh, Gygi, Haak and Morgenroth: motion 4);

• a French section should be the regional stratotype – 25 
votes (Hughes, Dilley, Verdier, Middlemiss, Golliss-
taneh, Gygi, Haak and Morgenroth: motion 8).
It can be seen that, apart from Casey’s, most motions co-

incided and/or overlapped, and most votes were for the sys-
tem boundary to be at the Tithonian/Berriasian boundary. 
No motion from the floor suggested that the base of the Cre-
taceous should be anywhere except at or close to the base of 
the Berriasian, in the Jacobi/Grandis subzonal interval. 

The conference organisers did not find these votes, and 
this consensus, conclusive: so they produced a questionnaire 
of their own devising, to re-test opinion (results Collo quium, 
1975, p. 392). A completely new question was posed, one 
not devised by the involved specialists who had identified 
their own priority motions. It was: “Should the Berriasian be 
moved to the Jurassic?” Only 16 (of 84) attendees agreed 
with this proposition. The conclusion of the organising com-
mittee was then that “A large majority want the Berriasian to 
remain in the Cretaceous”. Further, according to the ques-
tionnaire responses, a majority agreed that the base of the 
Cretaceous should be the base of the Berriasian (question 1, 
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p. 392), and 62 of the 82 cast a vote for the Jacobi/Grandis 
subzones to be the base of Berriasian (question 4, p. 392). 
In a geological symposium, where it can be hard to reach 
a consensus amongst specialists, such a sizeable majority 
was decisive.

Subsequently, though numerous individual works fo-
cussed on regional boundary intervals, concerted efforts to 
explore broader boundary definitions and correlations were 
few and a period of stasis followed. Hoedemaeker, uniquely, 
tried to think more widely and surmount some of the larger 
obstacles to correlation, even in the non-marine (Hoede-
maeker, 1987, 2002). Discussions were still ammo nite-
dominated, more generalised and not directed to corre lative 
potential, and even less to detailed site documentation and 
comparison: as summarised in Zakharov et al. (1996a). As, 
diplomatically, analysed by Remane (1991), the conclusion 
in 1996 was more or less the same as it had been in 1973: 
that the Berriasian was the basal stage of the Cretaceous and 
that it should have its base defined in Tethys.

2.2. STAGE NOMENCLATURE

Long before the two international J/K symposia, Ber-
riasian was already well entrenched, and Jocelyn Arkell 
(1956) could state that the “Berriasian has been adopted for 
the lowest stage of the Cretaceous, in conformity with al-
most universal modern usage”. Just below, in the Jurassic, 
everything was not so clear. Portlandian (d’Orbigny, 1842–
51) had been in use (even in France – Lexique Stratigra
phique International for France, Dreyfus et al., 1956) as the 
primary contender with priority for the final stage of the Ju-
rassic System. However, fruitless, generations-long argu-
ments and stalemate between English and French geologists 
over how to define Portlandian (sensu anglico or sensu gal
lico) had blocked decisions. The impasse was finally broken 
when the International Jurassic Subcommission made an ar-
bitrary, but understandable, decision to promote Oppels’s fa-
cies term Tithonian/Tithonique over d’Orbigny’s original stage 
name, Portlandian (the senior synonym) – adopting this as 
the global stage label (though with no stratotype), with Port-
landian being suppressed (Sarjeant, Wimbledon, 2000).

This decision also had an impact on the global applica-
tion of the stage name Berriasian. An immediate increase in 
stability and some momentum was given to the use of a sin-
gle set of names in the Late Jurassic to Early Cretaceous in-
terval, turning away from the use of reputedly synonymous 
rival regional stages. Nowithstanding the fact that in most 
regions outside Tethys (Califonia, Mexico, Argentina. Chile, 
Middle East, Middle Atlantic, Japan, Russian Far East, New 
Zealand, and Australia) the standard stage names of Titho-
nian and Berriasian had generally been in use.

Though neither the Portlandian nor the Tithonian was 
ever extended by their promoters to include part of the Cre-
taceous, this was not the case with the junior synonym “Vol-
gian”, used in Russian basins. Nikitin’s original conception 
was rather limited: a formation (Volgaformation, Nikitin, 
1881) of Early Tithonian age (=old Late Kimmeridgian – 
see Arkell, 1933). In an attempt to make “Volgian” equate 
with Tithonian, it was extended (Gerasimov, Mikhailov, 
1966) to cover the Klimovi to Nodiger zonal interval. How-
ever, as became clear (see Casey, 1973), this made it corre-
spond not only to both Lower and the Upper Tithonian, but 
even some part of the Berriasian. It was fortunate that the 
Russian Stratigraphic Commission made a decision (Zha-
moida, Prozorovskaya, 1997) to suppress the term “Volgian” 
and to use the standard names Tithonian and Berriasian; 
confirming an earlier decision by the Interdepartmental 
Stratigraphic Committee of the USSR to regard Berriasian 
as the standard basal stage of the Cretaceous System (Lup-
pov, 1967; Rostovtsev, Prozorovsky, 1977). However, an in-
heritance of confusion remains, because of the extensive use 
in Russia of “Volgian” with its several different meanings, 
and poor definition above. With “Volgian” defunct, an aber-
rant unit that straddled, at least, two standard stages (and 
possibly three – Scherzinger, Mitta, 2006) had been re-
moved from the debate (Urman et al., 2019). 

3. EARLY BERRIASIAN PALAEOGEOGRAPHY

Palaeogeographic reconstructions of a truly Berriasian 
nature are few. The number of Late Jurassic-Early Creta-
ceous reconstructions that relate biostratigraphic informa-
tion and depositional basins to plate tectonic and terrane re-
constructions, rather than present-day base maps, are a rarity, 
and some nominal “J/K boundary” recon struc tions tend to 
show either much earlier or much later geographical reali-
ties. Early Berriasian geography was markedly different to, 
for instance, the Kimmeridgian to Early Tithonian (or the 
later Early Cretaceous), because former wide Late Jurassic 
seaways became restricted, including the passage between 
Greenland and Britain, and the routes northward from Te-
thys across the Caspian and Black Sea regions were closed 
by earliest Cretaceous times. Later Berriasian connections 
from Tethys to the Russian Platform have been assumed 
based on supposed identifications of Tethyan ammonite taxa 
on the Russian Platform.

The reconstruction here (Fig 1; modified after Rees et al., 
2000) of earliest B erriasian geography illustrates perfectly 
the restricted seaways and the isolation of some basins, and 
the limitation of marine connections. But it also shows the 
enormous oceanic bodies of equatorial to subtropical re-
gions, Panthallassa and Tethys. The sedimentary rocks of 
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these two water bodies, actually and potentially, hold the 
majority of evidence for understanding palaeoenvironments 
and biota at and around the J/K boundary. Of Panthallassa, 
the northwest portion has the largest area with surviving 
submarine lowest Cretaceous rocks, with the most studied 
portion onland in the SE in Argentina. Biotic migration 
routes, with northward and southward movement, via west-
ern Canada and California (Jeletzky, 1984) and the Okhotsk 
region (Zakharov et al., 1996b) are still much in need of 
study, as far as the exact timing of migrations and strati-
graphic significance is concerned, and some regions are 
complicated by the emplacement of allochthonous terrains. 
Tethys affords the largest database of evidence for future 
study. As a water mass, including the Middle Atlantic, it has 
left dateable sediments on the south from Mexico and the 
Caribbean, to Africa and on to southern Tibet and Australa-
sia, and on the north from offshore eastern Canada and 
Spain to, at least, Iran. This is not to mention fragments in 
non-carbonate marine facies in the Russian Far East and Ja-
pan. The Greenland/UK seaway appears to have been 
blocked after later Tithonian (=middle Portland) times, until 
the later Berriasian. The route across Poland closed even 
earlier, soon after Chitinoidella Zone times (=lowest Port-
land beds) (Pszczółkowski, 2016)

A multiplicity of profiles with calpionellids in western 
Tethys, via the Middle Atlantic to the Caribbean and Mexi-
co, Kurdistan and the Arabian Peninsula, Iran and to the 
western edge of Panthallassa in the East Indies and on its 
eastern edge in the Andes, indicate geographical connec-
tions even when elements of the macrofauna were subject to 
marked provincialism. Taking into account areas lost through 
subduction (ocean floor of northern Laurasia, much of Pan-
thallassa and the floor of Tethys), this thus includes most of 
the globe with recognisable J/K outcrops, excluding only 
some isolated, low-biodiversity boreal basins. 

Tethyan Jacobi Zone ammonites have long been reported 
from the Russian Far East (where clastic facies have proved 
unsuitable for microfossils and palynology), as well as Ja-
pan. The finding of nannofossils in the accretionary terrains 
of Japan (Shikoku Island) reinforces the connection. Of 
course, ‘Tethyan’ nannofossils are recorded also in California.

A key recent development with implications for palaeo-
geography has been the finding of a belemnite, an Arctoteu
this species, marking the mid-M19n boundary level in re-
gions with mixed Tethyan and boreal biotas – California and 
Japan – and Siberia. It is apparent that, though ammonites 
did not travel north or south around Panthallassa in latest 
Tithonian to earliest Berriasian times, belemnites could. 
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Fig. 1. Early Berriasian palaeogeography

Tithonian-Berriasian localities: A – Apulco, AA – Argo Abyss, AL – Arroyo Loncoche, B – Berrias, Bo – Fiume Bosso, D – Durlston Bay, Er – Eriksdal,  
E – Ellesmere Island, ET – East Timor, G – Grand Banks, Ga – Garagu, GL – Graham Land, Gr – Grindstone Creek, U – Ussuri Bay, H – Honshu, K – Kurovice, 
L – Liaoning, LO – Los Organos, M – Milne Land, Ma – Maurynya, N – Nagirze, No – Nordvik, O – Oman, P – Puerto Escaño, S – Shal, SK – Sidi Khalif,  
Sv – Svalbard, TK – Tepe Kel, Th – Theodosia, T – Tré Maroua, Y – Yemen
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In the Andes, ammonite provinciality is well known, but 
‘Tethyan’ calcareous nannofossils, calcareous dinoflagel-
lates and calpionellid species in the sequences there prove 
that consistent connections existed, via the Caribbean, and/
or also via routes between the Arabian plate (Kurdistan, 
Oman and Yemen) and southern Tibet, where some of the 
same species have been recorded. Regardless of geographi-
cal divisions of the globe based on single fossil groups, 
Tethyan biotic elements extended to most areas; this is true 
for calpionellids, and even more so for nannofossils, both 
now proved to have geographical ranges far beyond those of 
the earlier-preferred neocomitid ammonites. 

As an aside, herein we use terms such as boreal and 
subboreal informally; employing the former in the original 
way, to simply denote northern regions. Connections be-
tween boreal basins were intermittent, some fossil groups 
sometimes being able to migrate between (and to Tethys/
Panthallassa) and some not – there were no long-lasting or 
uniform distributions, which argues against the use of terms 
such as “Boreal Realm”.

4. WIDER J/K CORRELATIONS  
EMPLOYING DIFFERENT FOSSIL GROUPS  

AND INORGANIC METHODS

Below we discuss possibilities for correlation of the Al-
pina Subzone, as the marker for the base of the Berriasian 
Stage, by direct correlation of calpionellids (plus magneto-
stratigraphy, nannofossils, ammonites or calcareous dino-
cysts) or by use of other fossil groups which accurately 
mark or approximate the boundary level, plus consideration 
of inorganic methods (geochronology, isotopes).

4.1. CALPIONELLIDS

Calpionellids are microfossils that are seen as the most 
significant for biostratigraphy in rocks of latest Jurassic to 
early Cretaceous age. In 1902, Lorenz gave the name Cal
pio nella alpina to multitudes of minute incertae sedis or-
ganisms in the rocks of the Swiss Portlandian. Subsequently, 
most workers have assigned them to the ciliate Infusoria, 
but Remane consistently opposed this view on the basis that 
their loricae are made of calcite (Remane, 1989).

Early studies in the J/K interval were widespread, from 
Mexico to the Himalaya, and New Guinea (e.g. Andrusov, 
Koutek, 1927; Cadisch, 1932; Colom, 1934, 1939, 1948, 
1950, 1965; Deflandre, 1936; Lafitte, 1937; Heim, Gansser, 
1939; Brönnimann, 1953, 1955; Rickwood, 1955; Zia, 1955; 
Bonet, 1956; Emberger, Magne, 1956; Durand Delga, 1957, 

1973; Ferasin, Rigato, 1957; Hudson, Chatton, 1959; Brunn-
schweiler, 1960; Bermudez, Rodriguez, 1962; Doben, 1962, 
1963; Brun, 1963; Busnardo et al., 1963; Filipescu, Dra-
gastan, 1963; Remane, 1963, 1964, 1971; Catalano, Lima, 
1964; Borza, 1965, 1966; Furrazola-Bermúdez, 1965; Cata-
lano, 1965; Magne, 1965; Magne, Sigal, 1965; Le Hégarat, 
Remane, 1968; Linetskaya 1968, 1969; Allemann et al., 
1971; Edgell, 1971; Catalano, Liguori, 1971; Kreisel, Furra-
zola-Ber múdez, 1971; Furrazola-Bermúdez, Kreisel, 1973). 
Le Hégarat and Remane (1968) and Le Hégarat (1973) set 
the scene for the use of calpionellids with their substantial ef-
forts to calibrate them with ammonites. Ammonites and cal-
pionellids (and nannofossils), were cited by Ogg and Lowrie 
(1986) and tied to magnetozones in the J/K boundary interval. 

It is perhaps noteworthy that in a suite of key J/K and 
often-cited publications on other fossil groups, magnetostra-
tigraphy and sea-level change, various authors have chosen 
to correlate their data with a standard calpionellid scale (e.g. 
Ogg, Lowrie, 1986; Haq et al., 1987; Bralower et al., 1989; 
Weis sert, Channell, 1989; Baumgartner et al., 1995; Bown, 
1998).

Since the 1973 Jurassic/Cretaceous colloquium, there has 
been published an ever-increasing number of detailed calpio-
nellid biostratigraphic studies in the boundary interval, often 
with precise integration with other biomarkers; and this over 
a widening geographical extent, most notably to include the 
Andes and Mexico; and, latterly, progress has been given im-
petus by the work of the Berriasian group and collaborating 
specialists (Pop, 1974, 1976, 1986a–c, 1994, 1997, 1998a, b; 
Allemann et al., 1975; Makarieva, 1974, 1976, 1979; Baka-; Makarieva, 1974, 1976, 1979; Baka-
lova, 1977; Grandesso, 1977; Micarelli et al., 1977; Jansa et al., 
1980; Trejo, 1980; Durand-Delga, Rey, 1982; Atrops et al., 
1983; Ascoli et al., 1984; Borza, 1984; Bakalova-Ivanova, 
1986; Borza, Michalík, 1986; Mazaud et al., 1986; Remane, 
1986; Remane et al., 1986, 1999; Channell, Grandesso, 1987; 
Al-Rifaiy, Lemone, 1987; Mem mi et al., 1989; Cresta et al., 
1989; Weissert, Channell, 1989; Myczyński, Pszczół kowski, 
1990, 1994; Altiner, Özkan, 1991; Taj Eddine, 1991; Bucur, 
1992; Wierzbowski, Re mane, 1992; Lakova, 1993, 1994; Öz-
kan, 1993; Adatte et al., 1994; Tavera et al., 1994; Benzag-
gagh, Atrops, 1995a, b, 1996, 1997; Olóriz et al., 1995; Rehá-
ková, 1995, 2000a, 2002; Cantu Chapa, 1996; Pszczółkow-
ski, 1996, 1999; Rehá ková et al., 1996, 2009, 2011; Grün, 
Blau, 1997, 1999; Ivanova, 1997; Reháková, Micha lík, 
1997; Fernandez Carmona, Riccardi, 1998, 1999; Houša 
et al., 1999, 2004; Lakova et al., 1999, 2007, 2017; Skourtsis-
Coroneou, Solakius, 1999; Ivanova et al., 2000, 2002; Pszczół-
kowski, Myczyński, 2004, 2010; Pszczółkow ski et al., 
2005; Boughdiri et al., 2006; Grabowski, Pszczół kowski, 
2006; Andreini et al., 2007; Azimi et al., 2008 ; Boughdiri et 
al., 2009; Michalík et al., 2009, 2016; Ben Abdesselam-Ma-
hdaoui et al., 2010, 2011; Benzaggagh et al., 2010, 2012; 
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Grabowski et al., 2010; Lukeneder et al., 2010; Pruner 
et al., 2010; Dragastan, 2011; Michalík, Reháková, 2011; 
Sallouhi et al., 2011; Wimbledon et al., 2011, 2013, 2016, 
2020; Petrova et al., 2012, 2019; Lakova, Petrova, 2013; Ló-
pez-Martínez et al., 2013a, b, 2015a, b; Platonov et al., 
2014; Maalaoui, Zargouni, 2015, 2016, 2017; Bakhmutov 
et al., 2016, 2018; Frau et al., 2016a; Hoedemaeker et al., 
2016; Svobodová, Košťák, 2016; Wohlwend et al., 2016; 
Celestino et al., 2017; Carevic et al., 2018; Elbra et al., 
2018a, b; Kowal-Kasprzyk, 2018; Kowal-Kasprzyk, Rehá-
ko vá, 2019; Svobodová et al., 2019; Reháková, Rozic, 
2019), and in many such projects calpionellid biostratigra-
phy has been closely coupled with magnetostratigraphy. 

Calpionella has long been identified as a key zonal indi-
cator. It shows diversity in size, and in the proportions of its 
loricae through time (Kowal-Kasprzyk, Reháková, 2019); 
and such morphological changes are especially noticeable 
between the Crassicollaria Zone and the Alpina Subzone 
(Calpionella Zone). The boundary between these two bio-
zones has repeatedly been described as being indicated by 
the marked increase in small globular Calpionella alpina. 
The marked reduction in the size of Calpionella has recently 
been statistically analysed (Kowal-Kasprzyk, Reháková, 2019). 
This event (the “explosion” or “bloom” of some authors) co-
incided with the disappearance of most Crassicollaria spe-
cies (Borza, 1984; Pop, 1986a; Remane, 1986). Based on 
the large database recounted above, recent generations of 
J/K workers have regarded calpionellids as the most consis-
tent and useful fossil group to provide a Tithonian-Berria-
sian bio-event and a primary marker. 

Studies conducted by the Berriasian WG since 2009 have 
built further on the considerable body of literature and have 
reinforced earlier opinions. The turnover from Crassicollaria 
and large Calpionella to small orbicular Calpionella alpina, 
accompanied by Crassicollaria parvula and Tinti nopsella 
carpathica, has been documented as the most consistent and 
widespread marker, occurring in the middle of magnetic sub-
zone M19n.2n. This fact was recognised by the clear consen-
sus amongst specialists at the Warsaw J/K workshop (Wimble-
don et al., 2013). Ongoing work since has extended the 
identification of the Alpina Subzone further east in Tethys, 
to Arabia and Iran (references listed above), it has unambi-
guously confirmed disputed results in North America, expand-
ed those in the Caribbean, and brought new results in South 
America (López-Martínez et al., 2013a, b, 2015a, b, 2017). 

In 2016, the choice of a primary marker for the base of 
the Berriasian Stage was decided. 

Because of the geographical extent noted above, and the 
consistency and frequency of its identification, the Alpina 
Subzone base was put forward to the Vienna Cretaceous Sym-
posium as the primary marker for the Tithonian/Berriasian 
boundary by the Berriasian WG (Wimbledon et al., 2017). 

4.2 CALCAREOUS NANNOFOSSILS

The majority of Mesozoic nannofossil families originat-
ed in early Jurassic times. The Jurassic-Cretaceous bounda-
ry was marked by a large turnover at the family and species 
level. At the latter, there were approximately seventeen ex-
tinctions and fifteen first appearances, with the appearance 
of three nannolith families (Kanungo et al., 2017). Under 
suitable conditions, nannoconids contributed considerably 
to the sedimentation of deeper water limestones. Nannoco
nus evolved just prior to the Berriasian, and a suite of spe-
cies of this genus and other taxa have their first occurrences 
clustered around the stage base (references cited below). 

Nannoconids and other coeval J-K nannofossils that are 
well documented in the Atlantic and Tethys, onshore and 
offshore, and though they have been considered lower-lati-
tude forms, there are records that they extend into supposed 
boreal regions (e.g. North Sea, Jakubowski, 1987) and into 
both east and west sub-boreal Panthallassa (Aita, Okada, 
1986; Bralower et al., 1990) Sequences in boreal basins lack 
the nannofossil diversity seen in low latitudes and they are 
dominated by robust ubiquitous genera such as Watznaueria 
(Zanin et al., 2012). 

Distribution of calcareous nannofossils that mark the 
J/K boundary interval is thus extensive, in almost all re-
gions, and having perhaps the greatest potential for future 
correlation in the boundary interval, given that practical 
techniques for obtaining nannofossils are amongst the most 
simple. The last thirty years have seen identification of J/K 
nannofossils at numerous DSDP sites, in Japan (Shikoku), 
in the Pacific (e.g. Shatsky Rise), California, Mexico, Ara-
bia, the Andes, Australasia, as well as Siberia – far beyond 
the Atlantic-western Tethyan range where research was first 
focussed.

Biozonations of calcareous nannofossils in the Tithonian/
Berriasian interval, notably in the middle Atlantic and Te-
thys, were developed from the 1970s (Worsley, 1971; Thier-
stein, 1975; Sissingh, 1977; Roth, 1978; Perch-Nielsen, 1985; 
Bralower et al., 1989; Bown, Cooper, 1998; Pszczółkowski, 
2006). The last contribution defined several key species FOs 
in the Lower Ber riasian (base of the ammonite Jacobi Zone, 
but enigmatically placed that level at the base of magnetic 
zone M18r), in sequence from the base: Nannoconus stein
mannii minor, N. steinmannii steinmannii, Cruciellipsis cu
villieri, Rhagodiscus nebulosus and Retacapsa angustifora
ta (the last just into the ammonite Occitanica Zone). For the 
purposes of this J/K account, we can consider the pioneering 
broader study of Bralower et al. (1989), which considered 
a number of key onshore localities in western Tethys, as pro-
viding the starting point for recent consideration of nanno-
fossil stratigraphy in the boundary interval, related to mag-
netostratigraphy. 
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Bralower et al. (1989, fig. 14) took the J/K boundary to 
be defined by the base of the calpionellid Alpina Subzone 
(showing it to be coincident with the ammonite Jacobi Sub-
zone), but its level was placed (too high) in magnetosubzone 
M19n.1n, in the middle of a Rotelapillus laffitei Zone (NJK-C). 
Subsequently, R. laffitei has fallen into disuse as a marker, 
but other taxa have continued to be regarded as significant. 
In particular, Bralower chose as key indices Nanno conus 
steinmannii minor (FO lower M18n) and N. steinmannii 
steinmannii (FO lower M17r). 

From 2009, a reconsideration was started of various nan-
nofossils and other biotic markers and their calibration with 
magnetozones (Wimbledon et al., 2011). Revising datums 
mooted in earlier accounts, Casellato (2010, fig 16) pro-
posed a new nannofossil biozonation: biozones NJT17a, 
NJT17b, NKT and NK1 covering the interval between the 
top of magnetozone M20n and mid M17r. Casellato, kept 
N. steinmannii steinmannii as the marker for the NK1 zone 
in M17r, and founded a NKT zone on the FOs of N. stein
mannii minor and N. kamptneri minor at the base of M18r 
(Channell et al., 2010). Additionally, Nannoconus wintereri 
was recognised as the marker for a NJT 17b zone in 
M19n.2n, that is, close to the base of the Alpina calpionellid 
Subzone.

The expansion in recent years of nannofossil studies has 
provided a suite of first occurrences that is a useful comple-
ment to, and proxy for, calpionellid zonal boundaries. This 
includes results from several sites, some of have been con-
sidered as serious contenders to be the Berriasian GSSP (e.g. 
Pieniny Klippen Belt – Pszczółkowski, 2009; Brodno – 
Michalík et al., 2009; Torre de’ Busi – Casellato, 2010; 
Lókút – Grabowski et al., 2010, 2017; Le Chouet – Wimble-
don et al., 2013; Strapkova – Michalík et al., 2016; Puer to 
Escaño – Svobodová, Košťák, 2016; Banik – Wimbledon et al., 
2016; Rio Argos – Hoedemaeker et al., 2016; Kopa nitsa – 
Stoykova et al., 2018; Theodosia – Bakhmutov et al., 2018; 
Kurovice – Svobodová et al., 2019; Vocontian Basin – Wim-
bledon et al., 2020; Bosso – Reháková, Svobodová (unpub-Reháková, Svobodová (unpub- Svobodová (unpub-á (unpub- (unpub-
lished); Sidi Khalif – Gardin (unpublished)). Not forgetting 
that nannofossils (including Nannoconus species) are de-
scribed from Europe, North Africa, Arabia, the Atlantic, 
North and South America, Panthallassa and Japan, and, mi-
nus Nannoconus, from the Arctic Russian regions also.

Though the same useful ‘Tethyan’ nannofossils have 
been proved in both Mexico (Lena et al., 2019) and the An-
des (Vennari et al., 2014; López-Martínez et al., 2017), ex-
tension of early work in California (Bralower et al., 1990) 
has thus far proved disappointing, with only limited retrieval 
of typical late Tithonian and Berriasian marker species (Ca-
sellato, unpublished). 

The string of publications from an increasing number of 
stratigraphic profiles has led to a re-assessment of nannofos-

sil first occurrences, and biozones (summarised in Wimble-
don, 2017). Figure 2 herein shows the latest situation with 
FOs recorded from recently documented sites, with a suite 
of FOs of key species that are almost all stratigraphically 
lower than were recorded prior to 2010. Concentrating here 
on the J/K boundary interval, this affects several key Nanno
conus and other markers, as well the biozones founded upon 
them. In summary, this means that, because of the changes 
with positions of the FOs of the index species, three nanno-
fossil zones – NJT17b, NKT and NK1 – all occur in M19n 
(not between the top of magnetozone M19n and M17r). It 
impacts the biozones previously in use (Bralower et al., 
1989; Casellato, 2010), so that:
• Biozone NK1 (marker the FO of N. steinmannii stein

mannii), formerly was in the mid M17r, but is now in 
upper M19n.2n;

• Biozone NKT (markers the FOs of N. steinmannii minor 
and N. kamptneri minor) was formerly at the base M18r, 
but occurrences of the first species now form a cluster 
in mid M19n.2n, and the second appear in upper M19n 
(though there is one aberrant record in mid M19n.2n);

• Biozone NJT17b (marker the FO of Nannoconus win
tereri) was formerly high in M19n.2n, but is now in lo-
wer M19n.2n (see Fig. 2).
This does not detract at all from the usefulness of the 

marker species, but the compression of the zones raises 
doubts about their continued efficacy. The artefact of biozo-
nations in no way inhibits the great potential that nannofos-
sils have for extending correlations at or close to the bound-
ary level. In fact, the proliferation of recent studies has led 
to the stabilisation in first occurrences, and the recognition 
of the best nannofossil markers in the immediate boundary 
interval: notably Cruciellipsis cuvillieri and Nannoconus glo
bulus globulus (lower M19n.2n), Nannoconus steinmannii 
minor (base of the Alpina Subzone), Nannoconus wintereri 
(mid M19n.2n), Hexalithus strictus (mid M19n.2n), and 
Cre ta rhabdus octofenestrata, Nannoconus kamptneri minor, 
N. kamptneri kamptneri and N. steinmannii steinmannii 
(M19n.1r-M19n.1n).

In the Andes, Vennari et al. (2014) suggested that the 
calcareous nannofossil zones NJK-A, NJK-B, NJK-C and 
lower NJK-D (see Casellato, 2010 for equivalents) could be 
recognised in the ammonite Substeueroceras koeneni 
(=Koe ne ni) Zone. Observing key species in other regions 
raises a few questions. The NJK-C zone (= N. laffittei Sub-
zone), is a supposed equivalent to the upper Andreaei to lo-
wer Jacobi zones, with the FO of N. wintereri. This last-
men tioned occurrence may be early, as its FO elsewhere 
(except for a doubtful record at Nutzhof) is predominantly 
in the middle part of magnetosubzone M19n.2n (still within 
the Jacobi Subzone of authors). The NJK-D Zone at Las 
Loi cas (?= upper Jacobi – lower Grandis ammonite sub-– lower Grandis ammonite sub- lower Grandis ammonite sub-
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zones, Bralower et al., 1989) was defined by the FO of 
N. kamptneri minor, close to the ammonites Substeueroce
ras sp., Blanfordiceras sp. and Berriasella aff. gerthi. In 
western Tethys, including the Vocontian sites (Fig. 2), the 
FO of N. kamptneri minor is above the base of the Jacobi 
Subzone (circa the base of magnetozone M19n.2n) and 
close to the base of the Calpionella alpina (Alpina) calpionel-
lid Subzone. López-Martinez et al. (2017) note the same 
nannofossil taxa as Vennari et al. (2014) bracketing the base 
of the Alpina Subzone, and they make that level exactly co-
incident with the base of the ammonite Noduliferum Zone. 
The potential for more precise calibrations is obviously con-
siderable.

4.3. AMMONITES

In later Tithonian and earliest Berriasian times, no Te-
thyan immigrants migrated into the boreal regions and no 
boreal species have been recorded from Tethyan profiles 

(Rawson, 1995; Bulot, 1996; Lehmann et al., 2015). After 
mid Portland bed times, marine connections appear to have 
been intermittent even within the boreal ‘realm’: the Late 
Tithonian seaway across Poland was blocked, the J/K inter-
val is in non-marine facies in Dorset and NW Europe, it is 
lost in a hiatus in much of East Greenland, and each other 
region (Russian Platform, Siberia, North Sea) has its own 
distinct ammonite biozonation, reflecting provincialism. 
Though Svalbard has a condensed “Taimyrensis Zone”, in 
common with Siberia, that seems to straddles the J/K boun-
dary. These are some of the reasons that, although the defini-
tion of the Jurassic/Cretaceous boundary, founded on ammo-
nites, has been debated in extenso, correlations between 
Tethys and boreal areas remain at a preliminary stage (Wim-
bledon et al., 2011). 

In recent years, integrated magneto- and biostratigraphy 
have allowed the first correlation between Tethys and one 
high-boreal region – Siberia (Houša et al., 2007; Schnabl 
et al., 2015), apparently confirming that the latest “Vol-
gian” correlates with the earliest Berriasian (following 

Triangles denote sites with 
no magnetostratigraphy.
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These earliest occurrences were all recorded at Torre’ de Busi, excepting that for N.s.s. from Bosso, 
and N.k.k from DSDP 534A, cited from earlier published sources.

20n.2n

Theodosia
Nutzhof
Puerto Escano
Rio Argos
Le Chouet 
Arcevia

*
Fiume Bosso

Sidi Khalif
Lokut
Kurovice
Font de St Bertrand
Tre Maroua
Kopanitsa
Belvedere
Charens

Velykyi Kamianets 

Fig. 2. Calcareous nannofossil FOs against magnetostratigraphy and calpionellid and ammonite biozonations  
(modified from Wimbledon, 2017, and bibliographic sources given therein, plus Wimbledon et al., 2020)

Abbreviations of biozones: Chitin – Chitinoidella; Rem – Remanei; Inter – Intermedia
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 Casey, 1973). No significant ammonite turnover above the 
suprageneric level equates to the Jurassic/Cretaceous 
boundary, neither in boreal basins nor in Tethys, or further 
south. In Siberia, the approximation of the lower boundary 
of the am mo nite Taimyrensis Zone (Dzyuba, 2010) to the 
base of the calpio nellid Alpina Subzone (and the belemnite 
Tehamaensis Zone) has been suggested (Schnabl et al., 
2015), though the lack of ammonites remains a problem. 
Better calibration in the Andes awaits more elucidation of 
magnetostratigraphic results (see below). The family Poly-
ptychitidae, notably Craspedites, Praetollia and Chetaites 
(Baraboshkin, 2002; Rogov, Zakharov, 2009) are dominant 
in Russian basins, with Subcraspedites widespread in other 
regions. Tethyan Early Berriasian ammonite faunas are 
very much more diverse, and are dominated by ammonites 
of the family Neocomitidae. The distributions of Berria
sella Pseudosubplani tes, Malbosiceras, Delphinella, Dal
masiceras, Strambergella and Pseudoneocomites are 
seemingly restricted to a Mediterranean to Caucasian “sub-
realm” (Le Hégarat, 1973; Kotetishvili, 1988; Wimbledon 
et al., 2013). 

Earliest Berriasian Berriasella sensu stricto is only 
known from SW to central Europe, North Africa, Ukraine, 
the Caucasus and northern Iran. The putative much wider 
geographical distribution has been due to a more lax defini-
tion of the genus. In the north, after a period of strong pro-
vincialism, a change in ammonite distribution came about 
during the later Berriasian, with the decline of the Craspedi-
tinae and Dorsoplanitinae and the diversification of the Tol-
liinae (Baraboshkin, 1999). The widespread appearance of 
Hectoroceras (Casey, 1973; Birkelund et al., 1983; Bara-
boshkin, 1999) is a noteworthy event in all basins from 
Greenland to the Russian northern Far East, tentatively in 
magnetozone M16r.

In austral regions and around Panthallassa, an Indo-Pa-
cific subrealm has been recognised. In Argentina and Chile, 
the faunas are dominated by Andiceras, Argentiniceras, 
Frenguelliceras, Hemispiticeras, Cuyaniceras and Pseudo
blanfordia (Riccardi, 1988; Parent et al., 2011; Vennari et al., 
2012). Endemic Kossmatia, Durangites and Substeueroce
ras in Mexico are now considered to extend into the Ber-
riasian (Olóriz et al., 1999: Villaseñor, Olóriz, 2019). The 
conspecificity of the Berriasian ammonites described by 
Collignon (1962) from Madagascar with western Tethyan 
taxa is still unsolved, at least regarding Berriasella; and 
Subthurmannia from Pakistan (Spath, 1939; Fatmi, 1977) 
are fully distinct from Fauriella of northern western Tethys 
(Bulot, 1996). Endemism of Berriasian Neocomitidae at the 
genus level was much higher than has been supposed in the 
literature, and homeomorphy has led to erroneous taxono-
mic interpretations. 

Spiticeras was one of the few taxa that ranged through-
out the whole of Tethys and beyond (Lehmann et al., 2015). 
It links the Mediterranean and the Indo-Pacific regions, with 
populations reported from the west coast of America (Jeletz-
ky, 1965; Imlay, Jones, 1970), Madagascar (Collignon, 1962) 
and the shelf basins of South America and Antarctica 
(Thom son, 1979; Riccardi, 1988). As stated, the core area 
for earliest Berriasian Berriasella is western Tethys, as far 
east as Iran and Iraq; and the efficacy of the taxa previously 
used to define a J/K boundary (Mazenot, 1939; Le Hégarat, 
1973) is limited to a similar geographical area.

4.3.1. Jacobi Subzone

In western Tethys, the inability to separate ammonite 
faunas in the lowest Berriasian has led to various usages for 
the stage’s first biozone. A Euxinus Zone (Wiedmann, 1975; 
Howarth, 1992) has been used to cover the combined Jacobi 
and Grandis subzones (Le Hégarat, 1973), that is, the sup-
posed post-“Durangites Zone” (=Andreaei Zone, Wimble-
don et al., 2013) and pre-Subalpina Subzone interval. Alter-
natively, a “Jacobi Zone” has been applied as a label for this 
interval, following earlier factual work (e.g. Le Hégarat, 
1973; Hoedemaeker, 1982; Tavera, 1985), though some-
times it has been repeated with no new primary results and 
thus no substantive definition. Riccardi (2015), importantly, 
has reviewed correlative ammonite faunas in this interval in 
the New World.

There is no doubt that a substantial turnover in ammo-
nites, Himalayatidae to Neocomitidae, (Wimbledon et al., 
2013; Bulot et al., 2014; Frau et al., 2015) occurs at the le-
vel of the base of the Berriasella jacobi (=Jacobi) Subzone/
Zone of authors (Tavera et al., 1994). This is an important 
event, and this level was previously promoted and selected 
as the best level for the base of the Berriasian (1973 Juras-
sic/Cretaceous Colloquium decision). However, though we 
can recognise this ammonite turnover, and its coincidence 
more or less with the base of magnetozone M19n (within the 
calpionellid Crassicollaria colomi Subzone), it is not easily 
definable at multiple sites, and there have been issues both 
with recognition of the earliest Berriasian ammonites (sys-
tematic and stratigraphic), the use of a Berriasella jacobi 
Zone/Subzone, and its limited areal extent. 

These are issues which previously have sometimes been 
hinted at, but not fully addressed. Additionally, there are no-
menclatorial problems with the Mazenot’s type material of 
Berriasella jacobi: B. jacobi is not a Berriasella (Frau et al., 
2016a), but a microconch Strambergella, and many of the 
specimens assigned to “Berriasella jacobi” have been misi-
dentified, notably, specimens from Bulgaria, Crimea, Iraq, 
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Tibet and South America (e.g. Nikolov, 1982; Liu, 1988; 
Howarth, 1992; Arkad’ev, Bog danova, 2004; Arkad’ev 
et al., 2005, 2012; Salazar Soto, 2012). Additionally, the 
true stratigraphic origin of the type material of Mazenot 
(1939) for Strambergella jacobi is now proven to be well 
above basal Berriasian levels – in fact, occurring in the calp-
ionellid Ferasini-Elliptica subzones (Frau et al., 2016a).

These facts have rendered Strambergella jacobi prob-
lematical as a marker for the lowest Berriasian, and unsuita-
ble as an index species for the lowest zone of the stage. Fur-
ther, the species and the Jacobi Subzone can play no useful 
part in the definition of a lower boundary for the Berriasian. 
Moreover, recent studies have revealed that the base of the 
calpionellid Alpina and ammonite Jacobi biozones are not 
coincident (as has often been stated to be the case in the 
past), and neither of them is seen to lie close to the base of 
magnetozone M18r (e.g. Tavera et al., 1994; Pruner et al., 
2010; Wimbledon et al., 2013)

The earliest post-Protacanthodiscus (Tithonian) ammo-
nite fauna is not characterised by S. jacobi, but by other spe-
cies, notably Praedalmasiceras (pars Dalmasiceras) and 
Delphinella, as in Spain, France, Bulgaria and Ukraine. The 
preliminary results from the expanded sections of the Vo-
contian Basin (Le Chouet, St Bertrand, etc.) suggest that 
four successive assemblages can be identified there in the 
lowest Berriasian, as detailed in the Tré Maroua description 
in Part 2. This has potential for wider correlations.

One key observation is that the first occurrences of Del
phinella approximate the base of the Calpionella Zone in the 
Vocontian basin sections (Wimbledon et al., 2020). This is 
of great interest in approximating the boundary using am-
monites as secondary markers in other regions.

4.3.2. Grandis Subzone

The problem of making a distinction between putative 
Jacobi and Grandis subzone ammonite assemblages has 
been apparent in the work of various authors, and it was 
highlighted in the range charts in Le Hégarat’s (1973) se-
mi nal study, where a number of species were recorded 
spanning the two subzones. It is clear, for instance, that the 
genus Pseudosubplanites occurs low down, in levels as-
signed to the Jacobi Subzone of authors. There have been 
concerns that some of the patterns of distribution of larger 
forms of Pseudosubplanites were ecologically controlled, 
and the incoming of large forms of the genus have not al-
ways been consistent. Work is in progress on the matching 
of presumed macro- and microconchs. Thus it is still pre-
mature to try to make any statement on retaining a putative 
Grandis Subzone while work is in progress on critical 

French localities (Berrias, Le Chouet, Font de St Bertrand, 
Beaume, Tré Maroua). Outside France, thus far, no clear 
base for the subzone has been fixed (e.g. Spain – Hoede-
maeker et al., 2016: Crimea – Arkad’ev et al., 2012; 
Bakhmutov et al., 2018). Therefore, the unambiguous se-
paration of “Jacobi” and Grandis” faunas has yet to be sa-
tisfactorily resolved (see Frau discussion in Reboulet et al., 
2018). 

However, ammonite data from France that has been cali-
brated with magnetostratigraphy, calpionellid and nannofos-
sil data is informative, as discussed by Wimbledon et al. 
(2020) and shown here in Figure 3.

4.4. BELEMNITES

Belemnites are not prominent in most well-documented 
Mediterranean to Alpine J/K sections, or in North Africa, 
and thus have been little employed for biostratigraphy. At 
well-known Berriasian sites, in more recent times, accounts 
of belemnites have appeared: at Rio Argos (Hoedemaeker 
et al., 2016), Stramberk and Kurovice (Eliáš et al., 1996), 
though no belemnite biozonation can be applied over a wid-
er Tethyan area. Belemnites are uncommon in the studied 
outcrops of the Vocontian Basin. 

However, in boreal and sub-boreal regions the potential 
for correlation appears to be substantial.

Doyle and Kelly (1988) and Mutterlose et al. (2019) 
have reviewed the distribution of Jurassic-Cretaceous boreal 
belemnites. Exchange between Tethys and boreal regions 
was almost non-existent in Berriasian times: Tethyan genera 
such as Hibolithes, Pseudobelus and Duvalia did not pene-
trate significantly into higher boreal basins: the first reached 
the Russian Platform and California in Tithonian times, and 
it alone persisted in the latter into the Berriasian. All other 
basins lack any representation of these three genera. In the 
Berriasian, the genera Liobelus and Acroteuthis had the 
greatest geographical spread.

In boreal regions and those areas where boreal and Te-
thyan biotic elements are mixed, some very substantial 
stratigraphic advances have been made in recent times. No-
tably on the correlation, precisely at the J/K boundary level, 
between Siberia and California (Dzyuba, 2010, 2012, 2013) 
and Japan (Sano et al., 2015; Haggart, Matsukawa, 2019).

4.5. CALCAREOUS DINOFLAGELLATES

Calcareous dinoflagellate cysts are common fossils in the 
Tithonian to Berriasian of European and North African Te thys. 
Many sites documented for calpionellids and nannofossils 
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in Mediterranean and Alpine regions have also been studied 
for calcareous dinoflagellates. Borza (1984) and, later, Lako-
va et al. (1999) gave a biozonation applicable to European 
Tethys. 

Cysts appear to have much potential as accessories to the cal-
pionellids, but the stratigraphic ranges of some species have 
yet to be resolved (e.g. Stomiosphaera moluccana and Colo
misphaera pieniensis (Wimbledon et al., 2013; and below). 
Of notably useful species, in the Balkans, the first appear-
ance of Stomiosphaerina proxima has been recorded in the 
calpionellid upper Crassicollaria Zone, and is said to have its 
FAD at the base of the Colomi Subzone, though it appears 
earlier in SE France. This restriction to the Crassicollaria 
Zone was emphasized by Reháková (2000a) (see also Lukene-
der et al., 2010: but see López-Martínez et al., 2013b). C. for
tis only just pre-dates S. proxima (appearing pre-Crassicol-
laria Zone), and its range straddles the upper Crassicollaria 
and Calpionella zones, affording a wider stratigraphic bra cket: 
this proves to be the case in some French sites (e.g. Tré Ma-
roua and St Bertrand: Wimbledon et al., 2020). If such oc-
currences could be confirmed and consistently proven in Si-
beria (and perhaps the Russian Platform), it would be a step 
forward in accuracy when trying to correlate with the calpio-
nellid Crassicollaria/Cal pionella zonal boundary. Vishnevs-
kaya’s (2017) FAD of C.? fortis in Siberia appears to be very 
high (ammonite Analogus Zone) and that of S. proxima is 
shown lower than one might expect (ammonite Exoticus 
Zone, ?M20n magnetozone) as compared to Tethys, as the 
calpionellid Alpina J/K boundary (M19n.2n) has been cor-
related with the middle of the Siberian ammonite zone of 
Craspedites taimyrensis. However, the original assignment 
of magnetozones numbers in Siberia, at Nordvik, may merit 
reconsideration, as may the specific identifications of dino-
cysts. That being as it may, more research on calcareous 
dinoflagellates is an absolute priority in boreal regions. 

Recently, sampling in the Tithonian to Valanginian of 
southern Mendoza at Arroyo Loncoche, Río Seco del Altar 
and Tres Esquinas has revealed a relatively rich calcareous 
dinoflagellate cyst assemblage (with poorly preserved cal pio-
nellids and benthic foraminiferans) of some twenty species 
(Ivanova, Kietzmann, 2016). Ivanova and Kietzmann (2017) 
and Kietzmann et al. (2018b) have recorded, in particular: 
Colomisphaera tenuis, Col. fortis, Stomiosphaerina proxima 
(lower part of the ammonite Noduliferum Zone) and Stomio
sphaera wanneri (upper part of the Noduliferum Zone). The 
S. wanneri biozone (Arroyo Loncoche) they take to be “Late 
Berriasian” (equating it with the Noduliferum to Damesii 
ammonite zones). S. wanneri has been found in the Upper 
Berriasian in the Carpathians, but it has also been collected 
in the Lower Berriasian in southern Ukraine (Bakhmutov 
et al., 2018), and it seems that it appears similarly early in 
France (see Wimbledon, 2017; Wimbledon et al., 2020). 

4.6. PALYNOLOGY 

4.6.1. Organic-walled dinoflagellates 

Dinoflagellate cysts are microfossils of planktonic or-
ganisms. They are widely distributed and are often used for 
biostratigraphy in the Mesozoic and Cenozoic, par ticularly 
in petrochemical exploration. Tithonian to Valanginian dino-
flagellate cyst associations are demonstrably provincial. 
Cosmopolitan taxa in the Tithonian to Berriasian interval are 
relatively rare, especially in the Arctic and the Southern 
Hemisphere. Jurassic-Cretaceous boundary beds in southern 
Europe and the North Atlantic region include significant 
proportions of taxa which are present in northwest Europe 
and the Volga Basin, but they are matched with biostratigra-
phies based on fossil groups which are endemic. Thus, the 
calibration of bioevents is possible locally, but it only has 
limited geographical significance. Within individual basins, 
the incoming, and in particular the range-tops of species 
have great stratigraphic utility and various compilations of 
ranges close to the Jurassic-Cretaceous boundary have been 
made (e.g. Davey, 1979; Woolam, Riding, 1983; Riding, 
1984; Monteil, 1992, 1993; Powell, 1992; Stover et al., 1996; 
Leereveld, 1997; Poulsen, Riding, 2003; Harding et al., 
2011). Typically, ranges have been compiled against stan-
dard ammonite zonations and have become somewhat re-
moved from the rock-intervals in which the cysts occur. 
Many of the sections and boreholes used as the basis of 
these compilations have limited age-control and few have 
been subjected to the intensive multidisciplinary study car-
ried out by the Working Group. It is, however, apparent as 
more becomes known that individual species sometimes 
have different ranges in different basins, so it is necessary to 
establish ranges at multiple sites with strong age-control 
from multiple indicators.

Few palynological publications have appeared on 
Tethyan marine sequences in recent times, but much work in 
boreal/sub-boreal regions has been undertaken (e.g. Harding 
et al., 2011; Pestchevitskaya et al., 2011; Schneider et al., 
2017; Nøhr-Hansen et al., 2019; Turner et al., 2019), which 
affords limited possibilities for consistent correlation with 
Tethyan profiles.

The proposed GSSP at Tré Maroua (and St Bertrand) has 
only been the subject of preliminary sampling for palynolo-
gy. Several zonation schemes exist for the boundary interval 
in other parts of the world, but few have much resolution in 
the latest Jurassic/earliest Cretaceous, and in many areas 
there are non-marine facies or non-sequences within the la
test Jurassic and earliest Cretaceous marine rocks. So far, 
few palynological studies have been carried out on sequences 
with calpionellid control. Dinoflagellate cyst zonal schemes 
elsewhere vary in the solidity of macrofossil control, which 
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close to the boundary is rather intensely provin-
cial in reach, with many uncertainties in correla-
tion. Thus, effectively, most biostratigraphic 
schemes ‘float’ against the Jurassic-Cretaceous 
boundary and it is thus still unclear how regional 
dinoflagellate cyst zonations equate to one another, 
and whether incomings and outgoings of some 
key dinoflagellate cyst species are diachronous 
between regions, as has been suggested, for in-
stance, by Harding et al. (2011), or whether some 
are, in fact, good time planes. 

In Tethys, very few sampled marine calpio-
nellid-controlled sequences have yielded palyno-
logical assemblages across this interval. There is 
a hiatus, with no palynology between the Titho-
nian and Berriasian at Berrias and other sampled 
sections in the Vocontian Basin of SE France, and 
thus in the zonations based on them (e.g. Monteil, 
1993; Leereveld, 1997; Hunt, 2004). In the Euro-
pean Tethys, only a suite of boreholes in northern 
Bulgaria and the Bruzovice section in the Outer 
Western Carpathians have yielded assemblages 
that can unequivocally be assigned to the calpio-
nellid Alpina Subzone (Dodekova, 2004; Pav-
lishina, Feist-Burkhardt, 2004; Skupien, Doupov-
cová, 2019). The sequences, however, may contain 
non-sequences and were apparently sampled only 
at reconnaissance level. 

Here, critical range tops and range bases of 
stratigraphically significant dinoflagellate cyst 
species close to the proposed boundary are com-
piled from key literature (Fig. 4). These are plot-
ted against the available biostratigraphy. The Bior-
bifera johnewingii (Bjo) Interval Zone of Leere-
veld (1997) covers the Late Tithonian to the Late 
Berriasian and is defined as the interval between 
the first appearance of Biorbifera johnewingii and 
the first appearance of Pseudoceratium pellife
rum. Several major events lie within this interval 
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Fig. 4. Ranges of key taxa of organic-walled dinoflagellate 
cysts close to the Jurassic/Cretaceous boundary against 

calpionellid and ammonite zonations in the Vocontian Basin, 
Dorset, North Sea, Carpathians, northern Bulgaria, and 

Volga [compiled from Monteil (1992, 1993), Abbink et al. 
(2001b), Dodekova (2004), Hunt (2004), Harding et al. 

(2011), and Skupien, Doupovcová (2019)]. 
It should be noted that the equivalence of the timescales 

between regions is an approximation

Occit. – Occitanica; Fulg. – Fulgens; Sub. – Subditus; Okusen. 
– Okusensis; Kerb. – Kerberus; An. – Anguiformis; Prim. – 
Primitivus; Preplic. – Preplicomphalus
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zone, most notably the first appearance of the genus Spinif
erites, but also the last occurrence of Senoniasphaera juras
sica and the evolution of the diverse forms in the Amphorula 
lineage (e.g. Monteil, 1990). It would appear that high-reso-
lution palynological biostratigraphy will be possible around 
the base of the Berriasian, based on close sampling. 

Sources used are as follows: Table 1.
Herein (see Fig. 4), the ranges of some species, chosen 

because they are widely used in biostratigraphy and feature 
in the compilations cited in the figure, are plotted where 
there is some measure of biostratigraphic control. The rela-
tive positions of the biostratigraphies against which they are 
plotted follows the work and correlations of the Working 
Group, but it is possible that some of these will be subject to 
revision in the future. 

Given the uncertainties with the correlation of these sec-
tions and the different sampling intervals, sample sizes and 
taxonomic approaches between studies, there are some inte-
resting commonalities between some ranges at different 
sites.

Late Tithonian markers: Prolixosphaeridium anasilum, 
Dichadogonyaulax cumula and Senoniasphaera jurassica 
all become extinct in the very latest Tithonian in European 
Tethyan sites, although D. cumula runs significantly higher 
in the boreal Terschelling Basin and S. jurassica runs higher 
in the Volga Basin and may run higher in Dorset, if its oc-
currence in the upper Purbeck Limestone Formation is not 
the result of recycling.

Late Tithonian/Early Berriasian markers; Impletosphae
ridium tribuliferum has a long range in the Late Jurassic and 
becomes extinct early in the Berriasian in the Vocontian Ba-
sin and in Dorset. The short range of Amphorula monteiliae 
spans the Tithonian/Berriasian boundary interval in Tethyan 
sites where it occurs and it may lie close to the boundary in 
Dorset. The range-bases of Biorbifera johnewingi and War
renia californica start below the basal Berriasian in Tethyan 
sites and they range high into the Berriasian. 

Early Berriasian markers: the most important of the taxa 
incoming in the earliest Berriasian in Tethys are the Spinife
rites spp. Other taxa starting close to the base of the Ber ria-

sian in Tethys include Ctenidodinium elegantulum, Mude
rongia tabulata and M. longicornuta. The incoming of 
Dichadogonyaulax bensonii appears to be a reliable marker 
a short time after the beginning of the Berriasian.

Dinoflagellate cyst biostratigraphy potentially offers an 
important tool for the correlation of sequences in the latest 
Jurassic and lowest Cretaceous. New work on the GSSP 
candidate sections and other sections across this interval is 
urgently necessary.

4.6.2. Pollen and Spores

The term ‘miospores’ denotes pollen and spores and is 
often preferred in palaeopalynology since the botanical af-
finities of many form-taxa are uncertain. Although many 
Upper Jurassic and Lower Cretaceous sequences have been 
studied for palynology, many – if not most – studies of ma-
rine sequences have focussed only on dinoflagellate cysts, 
while studies of non-marine sequences have perforce fo-
cussed on miospores, many of which have been shown to 
have extremely long ranges. During the later Jurassic, pro-
vincialism of floras became more marked and changing cli-
mates drove migration of the parent plants, and so miospore 
ranges in any given section are usually less than the total 
range of the species. As a result of the facies on which most 
studies have taken place, miospore ranges are difficult to 
calibrate against the several markers used by the Working 
Group. 

In NW Europe, climatic change close to the Jurassic-
Cretaceous boundary led to decline of arid-land floras domi-
nated by gymnosperms. A change to a moister semi-arid 
 regime facilitated the rise of a diverse vegetation of gymno-
sperms, ferns, bryophytes and lycopsids (Norris, 1969; Hunt, 
1985; Abbink, 2001a). Existing taxa expanded their ranges 
into the region, but there was also a burst of evolution and 
many new miospore forms appeared. Few, however, became 
extinct at this time.

Miospores with ammonite or other marine control close 
to the base of the Berriasian have been reported in NW 

Table 1
Sources of palynological data

Locality Section(s) Biostratigraphic control Author(s)
Vocontian Trough Berrias, Broyon, Angles ammonites Monteil, 1992, 1993; Hunt, 2004
Bruzovice, Czech Republic Bruzovice calpionellids Skupien, Doupovcová, 2019
North Bulgaria R-6, R-7, R-8 Sultanice calpionellids, ammonites Dodekova, 2004;  

Pavlishina, Feist-Burkardt, 2004
Volga Basin, Russia Gorodishche, Kashpir ammonites Harding et al., 2011
Dorset Basin, UK St Aldhelm’s Head, Durlston Head, Durlston Bay ammonites, miospores Hunt, 2004
Terschelling Basin, Netherlands Wells L06-2, L06-3 ammonites, miospores Abbink et al., 2001b 
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Europe from the Wessex Basin, UK (Hunt, 1985) and Ter-
schelling Basin (Abbink et al., 2001b). Correlations using 
available ammonites and dinoflagellate cysts suggest that 
the range bases of Apiculatisporis verbitskayae Dörhöfer 
and Cicatricosisporites purbeckensis Norris lie in the latest 
Tithonian, while the range bases of Matonisporites elegans 
Hunt and Aequitriradites spinulosus (Cookson and Dett-
mann) lie close to or just above the base of the Berriasian in 
these basins. Secure range-tops in the interval are not avail-
able. Further work on sections with ammonite and/or cal pio-
nellid control is urgently necessary, but it is rather likely that 
miospore floras, although useful for biostratigraphy within 
regions, will have little significance for inter-regional corre-
lation around the Jurassic-Cretaceous boundary.

4.7. RADIOLARIANS

From latest Jurassic to early Cretaceous times several 
distinct regions have been described with their own radiolar-
ian associations: Tethyan (lower latitudes – Mediterranean, 
Alps, Caucasus; Baumgartner et al., 1995), northern Pan-
thallassan (Vishnevskaya, 2001), and arcto-boreal (Vishnev-
skaya, Kozlova, 2012; Vishnevskaya, 2013). Boreal ele-
ments such as the genus Parvicingula also occur in austral 
regions (Argentina, Antarctica, southern eastern Tethys; 
Kiessling, 1999). California, Mexico and the Caribbean have 
received special attention (summarised by Pessagno et al., 
2009), and this region falls in the second association above, 
and has a grouping of largely non-Tethyan taxa and some 
Tethyan species. Radiolarian provincialism hinders the cor-
relation of radiolarian faunas between northern Eurasia and 
America, and “subboreal” Panthallassa and Tethys during 
late Jurassic-early Cretaceous times. (Vishnevskaya, 2013). 
The integration of zonal schemes between the several radio-
larian provinces is ongoing.

Radiolarians are widespread in the Tithonian to 
Berriasian, but often in facies with little other biota (e.g. 
Russian Far East, Caribbean, Arctic), or they are calcified 
and not suitable for study using normal techniques, or are 
richly developed in some levels, but absent through adja-
cent intervals. For instance, the Nordvik section has yield-
ed no radiolarian from the zones of ammonites Craspedites 
okensis (=Okensis Zone) or C. taimyrensis (=Taimyrensis 
Zone)(Bragin, 2011). Few profiles have been documented 
in detail with exact ranges documented relative to a li-
thostratigraphy and to other significant biota. The last, co-
occurrences of occasional radiolarians with other biota, are 
key. Opportunities to calibrate radiolarians with other mi-
crofossil groups have sometimes been overlooked (Pessa-
gno et al., 2009). In the Vocontian Basin profiles, radiolar-
ians are not uncommon, and are typical in some microfacies 

(see microfacies of Tré Maroua), but of low diversity and 
mostly calcified. 

The radiolaria research group, studying multiple sites 
(Baumgartner et al., 1995), recognised two biozones (13 
and 14), the boundary between which they closely delimited 
relative to calpionellid and nannofossil events: it is close to 
the base of the Calpionella Zone. In their “unitary zone” 
(UAZ) 13 they recorded fifty taxa whose first appearances 
mark the beginning of the biozone [Angulobracchia (?) 
portmanni, A. (?) portmanni s.l., Archaeospongoprunum pa
tricki, Artocapsa (?) amphorella, Bistarkum valdorbiense, 
B. brevilatum, Canoptum banale, Crucella collina, Cyrto
capsa (?) grutterinki, Ditrabs (?) osteosa, Emiluvia chica 
decussata, Halesium (?) lineatum, Homoeoparonaella sp. 
aff. H. irregularis, Homoeoparonaella speciose, Hsuum feli
formis, H. raricostatum, Katroma milloti, Milax adrianae, 
Mirifusus odoghertyi, Obesacapsula rusconensis umbrien
sis, O. breggiensis, O. polyhedra, O. rusconensis, O. bulla
ta, O. rusconensis s.l., Pantanellium berriasianum, P. sp. 
aff. P. cantuchapai, Parapodocapsa furcate, Paronaella (?) 
tubulata, Parvicingula sphaerica, P. longa, P. cosmoconica, 
Pseudoaulophacus (?) pauliani, Pseudocrucella (?) elisa
bethae, Pseudoeucyrtis (?) fusus, P. sceptrum, Sethocapsa 
(?) concentrica, S. kitoi, S. tricornis, S. sp. aff. S. karni
nogoensis, Syringocapsa coronata, S.lucifer, S. longitubus, 
S. vicetina, S. agolarium, Stylosphaera (?) macroxiphus, 
Triactoma luciae, Wrangellium puga, W. columnum, and 
W. depressum]. They next recognised the first appearances 
of twelve taxa as marking the base of their “unitary zone” 14 
[Bernouillius (?) monoceros, B. spelae, Cyclastrum rarum, 
Dicroa periosa, Godia lenticulata, Jacus (?) italicus, Par
vicingula usotanensis, Pseudoeucyrtis acus, Ristola aspara
gus, Stichomitra sp. aff. S. asymbatos, Thanarla pulchra, 
and Xitus sandovali].

Biozone 13 is unambiguous in its definition: the FAD of 
Tintinopsella carpathica, which marks the base of the cal-
pionellid Crassicollaria Zone, was recognised at the bottom 
of unitary zone 13. The critical information on the position-
ing of the junction between this zone and zone 14 (Baum-
gartner et al., 1995) was that it was placed just above the 
base of the calpionellid B zone, that is, the base of the Cal-
pionella Zone. This makes unitary zone 13 more or less 
equivalent to the Crassicollaria Zone. Zone 14 is now some-
what less well defined, mainly because of improved knowl-
edge of nannofossil ranges. Baumgartner et al. relied on 
Bralower et al. (1989) and other earlier references, when 
they identified the nannofossils Nannoconus steinmannii 
steinmannii and N. steinmannii minor in radiolarian zone 
14. This was perhaps why unitary zone 14 was said to also 
cover magnetozones M18 and M17. Nevertheless, the earli-
est occurrences of both these long-ranging species are now 
recorded in M19n, and this is consistent with the base of 
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zone 14 being just above the base of the Calpionella alpina 
Subzone, i.e. in magnetosubzone M19n.2n. 

Pessagno et al.’s (2009) scheme for radiolaria was fo-
cussed on eastern Panthallassa and southern North America. 
These authors were critical of the Baumgartner et al. (1995) 
results: that they were typifical mostly of “Central Tethys”, 
that some taxa were over-lumped, and that others had been 
ignored (e.g., Pantanelliidae Pessagno and Blome, species 
of Perispyridium). However, none of this precludes attempts 
to apply the scheme.

Pessagno et al. (2009) used radiolarian species markers 
for the base of the Berriasian that are mostly not in the range 
charts of Baumgartner et al. (1995) The base of the 
Berriasian they identified with the FO of Archaeoceno
sphaera boria as the primary indicator, supported by the 
species Obesacapsula rotundata. Four species were record-
ed as having their LOs at the same level: Ristola altissima, 
Complexapora kozuri, Loopus primitivus and Hsuum mclaugh
lini. Unfortunately, Pessagno et al. worked where there was 
no magnetostratigraphy available, preferring to calibrate 
their results with a combination of endemic ammonites and 
occasional nannofossil datums: not taking opportunities to 
calibrate radiolaria with calpionellids that had already been 
identified in Mexico. 

In the Great Valley of California, Pessagno et al. (2009) 
placed the base of their radiolarian zone 5 (sample Grin 94–
20), just below the thick sandstone formation at Grindstone 
Creek, that is, low in the bivalve Buchia uncitoides Zone 
(=Uncitoides Zone). They also noted there the occurrence of 
a UAZ 13 species, Obesacapsula polyhedral, in the same 
profile, calibrating it with the nannofossil “Nannoconus 
stein manni [sic] s.s. Zone: upper Berriasian”. This sample 
(Grin 94–37) with O. polyhedra is 50 metres above the base 
of Pessagno’s Zone 5, just above the thick sandstone forma-
tion (mid Uncitoides Zone). The Bralower et al. (1990) nan-
nofossil assemblage is probably Berriasian, but no more ac-
curacy can be achieved than that.

A rare instance where radiolarians have been collected in 
some numbers and directly calibrated with calpionellid 
zones was given by Mekik et al. (1999, fig. 4) from NW 
Anatolia. Immediately above the base of the Calpionella 
Zone at Kel, they indicate the appearance of the radiolarians 
Acaeniotyle diaphorogona, Alievium nodulosum, Archaeod
ictyomitra apiarium, Dicerosaturnalis dicranacanthos, De
viatus diamphidius, Halesium sp., Emiluvia pessagnoi, 
Pyramispongia barmsteinensis, and Thanarla sp; and some 
metres above of Pantanellium berriasianum, Hsuum rari
costatum, Tethysetta cf. boesii, Tricolocapsa campana, Po
dobursa cf. multispina, Ristola altissima altissima and 
Zhamoidellum cf. ventricosum. Of all these, only Pantanel
lium berriasianum and Hsuum raricostatum are given as in-
dicator species by Baumgartner et al. (1995), in unitary as-

semblage 13. However, Ristola altissima was used by 
Pessagno et al. (2009) to mark the top of their Zone 4.

Of the many J/K localities documented in detail in re-
cent years, only Grindstone Creek (already mentioned), 
Fiu me Bosso and Torre de’ Busi have figured in accounts 
of radiolarians (Baumgartner et al., 1995). No details have 
been  obtainable on radiolarian results from Torre de’ Busi, 
nor, particularly, on how these might relate to published 
magnetostatigraphy or the biostratigraphy of other fossil 
groups. At Fiume Bosso, the base of the calpionellid Alpi-
na Subzone was formerly placed in bed 78 by Houša et al. 
(2004), and Matsuoka et al. (2019) sampled that part of the 
sequence (now placed in the calpionellid Colomi Sub-
zone), and work is ongoing at higher levels to bracket the 
J/K boundary.

4.8. FORAMINIFERA

Foraminifera are a long-lived group of Protozoa which 
first appeared in the fossil record in the Ordovician. By lat-
est Jurassic/earliest Cretaceous times, a number of different 
groups and assemblages of foraminifera had developed, 
that reflect the different palaeoenvironmental realms exist-
ing at the time, including both benthonic and planktonic 
forms. 

One of the significant evolutionary developments in ben-
thonic foraminifera was a symbiotic relationship with algae, 
which allowed foraminiferal tests to develop significant 
size. This relationship required high light levels and such 
“larger foraminifera” typically occurred in shallow, warm-
water carbonate platforms during Jurassic-earliest Creta-
ceous times (as described by many authors, including Hot-
tinger (1967), Bassoulet, Fourcade (1979) and Boudagher-Fadel 
(2018). In contrast, cooler, deeper-water settings lack these 
larger foraminifera, and are also poor in smaller benthonic 
foraminifera. The result is that although shallow marine (to 
upper slope) foraminiferal associations are well known, and 
ages may be inferred for them, it is difficult to precisely cor-
relate key appearances and extinctions of key marker taxa in 
these groups with the succession of calpionellids, nannofos-
sil or ammonite markers that traditionally define divisions of 
the Tithonian-Berriasian interval. Therefore, it is difficult to 
recognise this boundary in shallow marine depositional set-
tings. The challenge in assessing the value of foraminifera to 
aid the recognition of the Jurassic/Cretaceous boundary is to 
find good quality data sets from depositional settings in 
which both calpionellids and larger foraminifera, which are 
largely mutually exclusive palaeoenvironmentally, are pre-
sent. Such settings include upper slope locations where as-
sociations of abundant foraminifera and less common cal-
pio nellids may both occur. 
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In Tethyan shallow-marine shelf depositional settings 
a number of biozonal schemes have been developed based 
on a similar succession of key larger foraminiferal taxa, 
spanning the Tithonian-Berriasian boundary interval. These 
include the species Anchispirocyclina lusitanica, Montsale
via salevensis, Pseudocyclammina lituus and Protopenerop
lis ultragranulata (senior synonym of P. trochangulata Sep-
tfontaine, 1974). They are the most widespread, cosmopoli-
tan taxa that have been recorded by many authors across the 
Tethyan region, for example, Kuznetsova, Gorbachik (1985, 
Ukraine), Rojay, Altiner (1998, Turkey), Arkad’ev et al. 
(2006, Ukraine), Olszewska (2010, SE Poland) and Granier 
(2019, S. France – Middle East), among others. 

Altiner and Özkan (1991) studied calpionellids in Anato-
lia (Turkey), and found foraminifera associated with cal-
pionellids, which had been either transported (approximate-
ly contemporaneously) from shallower marine environments 
in carbonate turbidites or as in situ elements. They reported 
the first occurrence of Protoropeneroplis ultragranulata (as 
P. trochangulata), in association with calpionellid Subzone 
A2 (Crassicollaria) assemblage. Additionally, in Turkey 
(central Pontides), Rojay and Altiner (1998) recorded the in-
coming of P. ultragranulata (as P. trochangulata) as latest 
Tithonian by correlation with the work of Altiner and Özkan 
(1991). 

Of the key foraminifera taxa listed above, the shortest 
ranging form, Anchispirocyclina lusitanica, has been con-
sidered in several studies to be Tithonian restricted (see ref-
erences below). However, it has been recorded in a supposed 
ammonite Jacobi Zone (?earliest Berriasian) of Portugal 
(Granier, Bucur, 2011) (in association with magnetozone 
M18). The species’ extinction has been recognised as high 
as the top of the Jacobi Zone by Granier (2019), who de-
fined an A. lusitanica biozone for the Tithonian to earliest 
Berriasian (based on the total range of the nominate taxon), 
succeeded by a P. ultragranulata biozone for the Berriasian 
(representing the lower part of the range of the nominate 
taxon). The evolutionary appearance of P. ultragranulata 
has been recorded in several biozonal schemes in shallow 
marine platform areas, across a wide region including 
France, Italy and Iran. Granier (2019) discussed the record 
of P. ultragranulata by several authors in the latest Titho-
nian, however, it is uncertain whether these occurrences 
would now fall in the Berriasian using the new definition of 
the base of the stage. Bucur (1997) had previously described 
the species as occurring in the Tithonian of Romania, and 
other areas, and showed the widespread distribution of the 
species across Europe, together with records from Tanzania 
and Pakistan. Bucur and Sasaran (2005) noted that P. ultra
granulata, though first appearing in the latest Tithonian, be-
came more abundant from Berriasian times onwards in the 
Trascau Mountains, Romania.

Arkad’ev et al. (2006) described the Tithonian-Berria-
sian succession (with ammonites, foraminifers and ostracods) 
at Theodosia in eastern Crimea. In this section, the extinc-
tion of A. lusitanica and the appearance of P. ultragranulata 
coincided with a level they interpreted as the base of the 
Jacobi Zone. The depositional setting was interpreted as 
slope, with many of the carbonates (and contained fora mi-
nifera) showing signs of contemporaneous resedimentation. 
In the same Theodosia cliffs, Bakhmutov et al. (2018) docu-
mented nannofossils and magnetostratigraphy, together with 
ammonites, foraminifera, calcareous dinocysts and calpio-
nellids. These authors noted the extinction of A. lusitanica 
much higher, in the lowermost part of the Berriasian. 
Bakhmutov et al. recorded A. lusitanica in the same samples 
as P. ultragranulata; and interpreted the specimens of 
A. lusitanica to be derived from a shallow marine setting, 
within lowermost Berriasian deep-water sediments, but that 
the reworking was contemporaneous, there being no abra-
sion or damage on the specimens. The authors also recorded 
rare planktonic foraminifera in the section. Also in southern 
Ukraine, Krajewski and Olszewska (2007) recorded A. lusi
tanica ranging into the early Berriasian and P. ultragranula
ta occurring in the latest Tithonian. 

Olszewska (2010) recorded rich foraminiferal associa-
tions, of both smaller and larger taxa, in Tithonian/Berriasian 
boundary beds (of the Babczyn Formation) in boreholes in 
south eastern Poland, with limited calibration to calpionel-
lids and calcareous dinocysts (but not to ammonites). She 
identified a change from her Andersenolina alpina Zone to 
the overlying Protopeneroplis ultragranulata-Protomarso nel-
la kummi Zone as marking the base of the Berriasian. A key 
link to other authors’ biozonations is the incoming of P. ul
tragranulata at the boundary, correlated with calpionellid 
biozone B (Alpina Subzone). Notably, she did not record the 
presence of A. lusitanica in her studies. She used the extinc-
tion of Protopeneroplis striata to define the top of the Ti-
thonian and tied this bioevent to a C. alpina occurrence in 
one of the boreholes. 

Boudagher-Fadel (2018) defined a biozonation scheme 
for the Upper Jurassic that included a Freixialina planispi
ralis biozone corresponding to the Tithonian, marked by the 
presence of A. lusitanica, A. neumanni, Everticyclammina 
vir guliana, E. praekelleri and Pseudocyclammina lituus. Se-
veral of these taxa range into the overlying Berriasian. This 
author noted that the top of the biozone is marked by the 
disappearance of the genera Parurgonina, Pseudospriocyc
lina, Kastamonina and Labyrinthina. 

Granier (2019) subdivided the Tithonian-Berriasian in-
terval of Tethyan shallow-water carbonates in the uncon-
formity-bounded formations of the Jura (plus Spain, Moroc-
co and offshore Abu Dhabi) into three biozones (zones and 
subzones), combining mostly large benthic foraminifera and 
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“calcareous” green algae (Dasycladales). Within this biozo-
nation, however, there are no clear bioevents in the biostrati-
graphic succession that appear to correlate with the Titho-
nian/Berriasian boundary. Notably, Granier (2019) considers 
that the first appearance of P. ultragranulata occurs in the 
latest Tithonian and the extinction of A. lusitanica in the ear-
liest Berriasian. The same succession was also documented 
by Neamtu et al. (2019) in the eastern Carpathians, Romania. 

In offshore east Canada and north eastern USA, calpio-
nellids, foraminifera and dinoflagellate cysts have been re-
corded from a number of wells and boreholes. Ascoli et al. 
(1984) and Ascoli (1990), among others, have reported the 
association of a Calpionella alpina acme biozone with the 
top occurrence of the foraminifer A. lusitanica at the Ti-
thonian/Berriasian boundary in multiple hydrocarbon explo-
ration and stratigraphic test wells across a large region from 
Baltimore Canyon to offshore Nova Scotia and Newfound-
land. More recently, in offshore Nova Scotia, the extinction 
of A. lusitanica has been recognised as marking the top of 
the Tithonian in shallow-marine settings, where it is corre-
lated with the appearance of the nannofossil Nannoconus 
steinmannii (Weston et al., 2012). Calpionellid assemblages 
defining the base of the Berriasian are recorded by these au-
thors from the Mohican I-100 and Moheida P-15 wells. 

Smaller benthonic foraminifera may also be common in 
Tethyan shallow-water settings: however, their use as re-
gional biostratigraphic markers around the boundary level 
over a wide region of Tethys is less well established. Olsze-
wska (2010) recorded an abundance of smaller foraminifera 
both below and above the base of the Berriasian, including 
species such as P. kummi (which ranges as high as the Bar-
remian). It remains to be seen whether any of these taxa, and 
her local biozonation scheme based on them (which she was 
able to tie to other parts of Poland, including the Holy Cross 
Mountains and Kraków areas and attempted a correlation 
with SW Ukraine), prove to be correlatable with the base of 
the Berriasian over a wider area. 

Planktonic foraminifera occurred in Late Jurassic-Ber-
riasian slope settings along the continental margins of Tethys 
(Gradstein et al., 2018), but were rare and of low diversity; 
this contrasts markedly with their abundance and diversity 
in deep marine settings from Barremian/Aptian times on-
wards, where they are of great value for biostratigraphic 
subdivision and correlation. Gradstein et al. (2018) defined 
the appearance of a rich assemblage of planktonic foraminif-
era, including Favusella hoterivica, Conoglobigerina gule
khensis, Lilliputianella eocretacea, L. aff. similis and Hed
bergella aff. handousi, defining Zone Cr1, from the Tonas 
road section, in Crimea. This assemblage was interpreted as 
approximating to the base of the Berriasian and was related 
to calcareous nannofossils and ammonites (of the Jacobi 
Zone), though not to calpionellids

Within cosmopolitan foraminiferal assemblages located 
in shallow-marine settings, the extinction of Anchispirocy
clina lusitanica and the appearance of Protopeneroplis ul
tragranulata occur in the Tithonian/Berriasian boundary in-
terval. In some sections, this change matches the boundary 
precisely, whereas in some it occurs in the lowermost 
Berriasian as defined by rare, co-occurring calpionellids. 
Other authors claim that the two species overlap in ranges 
over the boundary interval. However, it is possible that this 
mixing of shallow marine (larger foraminifera) and calpio-
nellid faunas (slope to deep marine), is affected by rework-
ing of shallow water specimens into deeper water settings – 
such reworking not being contemporaneous. It is therefore 
possible that some of the derived occurrences of A. lusitani
ca in lowermost Berriasian sediments represent reworking 
and erosion of older, late Tithonian sediments rather than ge-
nuine earliest Berriasian occurrences reworked contempora-
neously. Further work is required to resolve this question. 

Smaller benthonic and planktonic foraminifera may have 
some potential for the definition of the Tithonian/Berriasian 
boundary in Tethyan deeper marine areas, however, more 
research is required to define biostratigraphically important 
assemblages over a wider area. 

4.9. MAGNETOSTRATIGRAPHY

Though today it is universally accepted as an essential 
tool, when integrated with biostratigraphy, promotion of mag-
netostratigraphy in the Tithonian/Berriasian interval was first 
systematically undertaken only a little over thirty years ago. 
The method relies on matching a sequence of magnetozones 
in a given profile with the unique pattern of magnetic polarity 
zones of the ocean floor GPTS (Butler, 1992). One of the first 
studies, fittingly, was on the historical type section at Berrias, 
in France (Galbrun, 1984, 1985; Galbrun, Rasplus, 1984), fol-
lowed by another, in Spain, at Sierra de Lugar. 

Magnetostratigraphy as a correlative tool has been wide-agnetostratigraphy as a correlative tool has been wide-
ly seen as amongst the most significant, and this is very true 
in the global definition of Jurassic/Cretaceous (J/K) boun-
dary. It must be recognised that not all rocks preserve their 
primary magnetization (e.g. McCabe, Elmore, 1989) and 
that magnetostratigraphy must be integrated with other 
stratigraphical methods. In the context of the lithological-
ly and environmentally varied J/K interval, magnetostrati-
graphy works equally well in oceanic, shallow marine and 
non-marine sediments, and may be applied also in radiomet-
rically-dated volcanic rocks. For magnetostratigraphy, fi ne-For magnetostratigraphy, fine-
-grained lithologies (limestones, claystones, and fine siltsto-
nes) are generally preferred, which is opportune when 
studying many Tithonian-Berriasian profiles. Results in re-
cent times have been required to meet at least six out of ten 
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reliability criteria for palaeomagnetic data in magnetostrati-
graphic studies (Opdyke, Channell, 1996) and pass the re-and pass the re-
versal test (McFadden, McElhinny, 1990) for sections con-
taining both normal and reverse polarization. Complete 
thermal or alternating field demagnetization is performed 
and analysis of magnetization components (Wilson, 1961; 
Zijderveld, 1967). Directions are determined from line-fit-
ting least squares analysis (Kirschvink, 1980), statistical pa-
rameters (e.g. Fisher, 1953) should be fully documented, 
and magnetic mineralogy determined. 

These criteria were applied in studies of the French sites 
(Wimbledon et al., 2020): see Part 2 of this publication.

The distinctive magnetozone pattern around the J/K 
boundary may be recognised in both marine and non-marine 
profiles, in different latitudes and basins (Tethys, Panthallas-
sa, austral, boreal, non-marine), and, of course, it is unaffec-
ted by biotic provincialism and independent of independent 
biostratigraphical schemes, as well as providing a constraint 
on the timing of paleoenvironmental change. In regions 
where endemism and low diversity have hindered wider cor-
relation, magnetostratigraphy has become a primary indica-
tor in the boundary interval.

Through the 1980s there was an early developmental 
phase of geomagnetic study in the Tithonian-Berriasian 
(Nairn et al., 1981; Lowrie, Channell, 1983; Cirilli et al., 
1984; Ogg et al., 1984; Lowrie, Ogg, 1986; Ogg, Lowrie, 
1986; Márton, 1986; Mazaud et al., 1986; Channell, Gran-
desso, 1987; Galbrun et al., 1990) on marine strata in North 
Africa, Spain, Italy, England and Portugal, and on the Pur-
beck Formation of southern England (Ogg et al., 1991, 1994): 
all founded on recognition of ocean-floor magnetic anoma-
lies (Vogt, Einwich, 1979). Some studies were allied to li-
mited or still-evolving biostratigraphic data. With more data 
it became clear that, with integrated close-frequency collect-
ing, a succession of magnetozone boundaries had the poten-
tial to give far greater accuracy and certainty, to constrain 
fossil markers, to help detect deficiencies in the fossil re-
cord, and, occasionally, sedimentary phenomena such as 
condensation and non-sequence. Even so, some key J/K 
sites have been found to be re-magnetised (e.g. Rio Argos, 
Mupe Bay), or even where original magnetisation was well 
developed, calibration with calpionellids could not be at-
tained (e.g. Theodosia).

As ammonite biostratigraphic methods were judged im-
perfect in providing a comprehensive inter-regional corre-
lation in the Tithonian-Berriasian interval, magnetostratigra-
phy was developed as a useful constraint and complement 
to macro- and microfossil biozonations. Houša et al. led the 
way in a new era with precise integration of calpionellid 
species ranges and magnetozones at Brodno and Bosso 
(Houša et al., 1996a, b, 1999, 2004). More recent work re-
vises some of the details at these sites (references in Pru-

ner et al., 2010). Studies then moved to the more biotically 
challenging Arctic, to Siberia, where correlation of that bo-
real basin to the M-sequence was achieved in one Tithonian 
and Berriasian sequence (Houša et al., 2007), at Nordvik. As 
the sole Russian high-latitude site with a reasonably extend-
ed magnetostratigraphy in the Tithonian/Berriasian interval, 
this site, for a time, uniquely fitted with the GPTS and the 
stratigraphic pattern determined in Tethys (Houša et al., 
2007): but see alternative interpretations of Bragin et al. 
(2013) and Schnabl et al. (2015). A study was also carried 
out in Svalbard (Rogov, Guzhikov, 2009). Unfortunately, 
the hoped-for expansion of magnetic studies in boreal and 
sub-boreal regions, notably in Russia, where correlation is 
difficult, have not materialised. New sites with better bio-
stratigraphic control have not been identified: though the 
often-described, broken siliciclastic sequences at Gorodish-
che and Kashpir have been subject to preliminary magnetic 
documentation (Baraboshkin et al., 2015).

Studies on the J/K interval still expand in number (e.g. 
Guzhikov, Eremin, 1999; Speranza et al., 2005; Gra bow ski, 
Pszczółkowski, 2006; Guzhikov, Ba ra boshkin, 2008; Mi-
cha lík et al., 2009; Channell et al., 2010; Grabowski, 2011; 
Guzhikov et al., 2012, 2016; Bragin et al., 2013; Wimble-
don et al., 2013, 2020; Gra bowski et al., 2017, 2019; Salmi-
nen et al., 2014; Arkad’ev et al., 2015; Satolli et al., 2015; 
Schnabl et al., 2015; Michalík et al., 2016; Satolli, Turtu, 
2016; Bakhmutov et al., 2018; Elbra et al., 2018a, b)

Exciting new developments and prospects appear: the 
first North African magnetostratigraphy in a J/K interval at 
Beni Kleb (tied to a calpionellid biozonation; Schnabl un-
published) and the first magnetostratigraphic records in 
North America – results obtained from the lower Great Val-
ley Sequence of the Sacramento Valley at Elder Creek. Fur-
ther, new, ongoing work in Mexico is integrated with recent 
calpionellids advances, and, most recently, the first palaeo-
magnetic results have been published for the Andes (Iglesia 
Llanos et al., 2015, 2017) and the non-marine of NE China 
(Schnabl et al., 2019).

4.10. RADIO-ISOTOPIC AGE CONSTRAINTS  
ON THE JURASSIC/CRETACEOUS BOUNDARY

The base of the Berriasian, and thus the Cretaceous, 
though well-defined biostratigraphically, lacks a clearly de-
fined numerical age. Though radiometric dates have been 
obtained from several regions with Berriasian strata (N. Ca-
li fornia, Andes, Tibet, Caribbean, Mexico, Japan and others), 
the classical sedimentary sequences through the J/K interval 
in Tethys are mostly without datable materials, as is the case 
with both the Tithonian Stage below and the Valanginian 
above. Consequently, though no radiometric data can be cit-
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ed from the Vocontian Basin, a discussion is given here of 
recent dating results in regions where fossils occur that al-
low a direct correlation with Tethys, and a direct connection 
to the proposed GSSP. More recent results derived from the 
application of modern methods are shown in Table 2.

There are some often-quoted instances where useful 
widespread micro- or nannofossils are associated with dat-
able minerals in the boundary interval: one example of note 
is Shatsky Rise. Mahoney et al. (2005) provided an age of 
144.6 ±0.8 Ma as a minimum estimate for the Jurassic-Cre-±0.8 Ma as a minimum estimate for the Jurassic-Cre-0.8 Ma as a minimum estimate for the Jurassic-Cre-
taceous boundary there. This relied in part on nannofossils 
that suggested Bralower et al.’s NK1 zone (N. steinmannii 
steinmannii zone). Bralower et al. (1989) placed the base of 
this zone in magnetozone M17r. (Though this does not co-
here with present knowledge: see above). In any case, M17r 
could not be in the “earliest Berriasian”, as mooted by Ma-
honey et al. (2005). 

As can be seen, assigning a numerical age for the J-K 
boundary can be difficult. Over the last twenty-five years, 
dating has relied on different approaches and on some re-
peated assumptions, which have yielded a large range of 
ages: from 135 to 145 Ma (Lowrie, Ogg, 1986; Bralower 
et al., 1990; Gradstein et al., 1995; Mahoney et al., 2005; 
Liu et al., 2013; Vennari et al., 2014; López-Martínez et al., 
2015a). Currently (2019), the base of the Berriasian in the 
International Commission on Stratigraphy’s chart is given 
an age of ∼145.0 Ma. This age has been the most enduring 
one for the boundary, due to the agreement between of the 
M-sequence model of Ogg et al. (2012) and the Ar-Ar age of 
Mahoney et al. (2005). 

The model (Ogg et al., 2012) is based on a spline-fitting 
model that predicts the ages of stage boundaries from the 

Early Cretaceous (Aptian) to the Late Jurassic (Oxfordian). 
The model is a combination of astronomically calibrated du-
rations (Huang et al., 2010a) for some of the magnetozones 
and the distances between magnetic anomalies in the NW 
Pacific (Larson, Hilde, 1975; Tamaki, Larson, 1988; Chan-
nell et al., 1995), with the aim of determining a spreading 
rate for the region

This complex web of correlations has been combined 
with a astronomically calibrated durations for the Kim-
meridgian-Oxfordian and the Aptian to produce a decreas-
ing sea-floor spreading rate for the north-western Pacific 
(Huang et al., 2010a, b). On this basis, the age of each stage 
boundary was back-calculated from the base of the Aptian 
M0 (base age 126.3 ±0.4 Ma) to the Oxfordian. In the case 
of the J-K boundary the projected age was placed at 
145.0 ±0.8 Ma. Mahoney et al. (2005) measured an Ar-Ar 
age of 144.2 ±2.6 Ma from the M19-M20 anomalies in the 
Shatsky Rise, which was used as a rough estimate for the 
base of the Cretaceous (Ogg, Lowrie, 1986; it is now more 
accurately placed in the middle of the M19.2n (Wimbledon, 
2017). This was later corrected to 145.5 ±0.8 Ma, because of 
the recalibrated 40K decay constant (Renne et al., 2010). 
Thus, both of these studies have taken different and inde-
pendent approaches, but have yielded similar ages

In contrast, when radio-isotopic dating has been directly 
applied to rocks that were closely associated with boundary 
markers the results have been significantly different. Bra-
lower et al. (1990) dated volcanic horizons in the Great Val-
ley Group at Grindstone Creek (California), placing them in 
an Assipetra infracretacea (Upper Berriasian) nannofossil 
subzone (Angustiforatus Zone) at circa 137.1 Ma (ID-TIMS). 
The authors back-calculated the age of the Berriasian base 

Table 2
Radiometric dating in the J/K boundary interval

Stage Biostratigraphy Geological Context Numerical Age (Ma) Dating Method

Be
rri

as
ia

n

? Infracretacea Zone Great Valley Sequence, Grindstone Creek, California (12) 137.1 ±0.6 U-Pb, ID-TIMS

Lower

early Berriasian nannofossils Sangxiu Fm., Tibet (11) 140–142 U-Pb, SIMS
? Basaltic intrusion in M19 sediments, Shatsky Rise (10) 145.5 ±0.8 Ar-Ar
upper Noduliferum Zone Vaca Muerta Fm., Las Loicas, Argentina (9) 139.55 ±0.03 U-Pb, CA-ID-TIMS
upper Noduliferum Zone Vaca Muerta Fm., Las Loicas (8) 139.238 ±0.049 U-Pb, CA-ID-TIMS
Elliptica Subzone Pimienta Fm., Mexico (7) 140.512 ±0.031 U-Pb, CA-ID-TIMS
Ferasini to Alpina Subzones Pimienta Fm., Mexico (6) 139.1 ±2.6 U-Pb, LA-ICP-MS
base Alpina Subzone & 
base Noduliferum Zone

Vaca Muerta Fm., Las Loicas (5) 140.22 ±0.13 U-Pb, CA-ID-TIMS

Koeneni Zone & FO R. asper Vaca Muerta Fm., Las Loicas (4) 140.6 ±0.4 U-Pb, CA-ID-TIMS

Ti
th

on
ia

n

Upper
Koeneni Zone & FO U. granulosa Vaca Muerta Fm., Las Loicas (3) 141.31 ±0.56 U-Pb, CA-ID-TIMS

Buchia piochii Zone La Désirade Igneous complex (2) 143.734 ±0.060 U-Pb, CA-ID-TIMS

Lower Andesensis Zone Vaca Muerta Fm., La Yesera , Argentina (1) 147.112 ±0.078 U-Pb, CA-ID-TIMS

1, 3, 4, 5, 7, 8 after Lena et al., 2019; 2 – Pessagno et al., 2009; 6 – López-Martínez et al., 2015a; 9 – Vennari et al., 2014; 10 – Gradstein et al., 2012, modi-
fied after Mahoney et al., 2005; 11 – Liu et al., 2013; 12 – Bralower et al., 1990
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141.1 Ma, using an arbitrary duration of 4–6 Myr for the 
biozones and their presumed age in the Upper Berriasian as 
an anchor. However, the nannofossil assemblage appears, at 
best, to indicate an age no older than the calpionellid Ellip-
tica Subzone: C. angustiforatus occurs at this level in Tuni-
sia, and A. infracretacea is a common Lower Berriasian 
nannofossil. Surpless et al. (2006), still in the Great Valley 
Group, reported depositional ages of 132.6 to 143.6 Ma in 
a range of J/K strata. Liu et al. (2013) dated interbedded 
bentonites in four sections in the Sangxiu Fm. of Tibet. The 
ages cluster around 140–142 Ma (U-Pb, SIMS), but the ages 
violated stratigraphic superposition, and a single age for the 
boundary is not quoted. López-Martínez et al. (2015b) da-
ted a volcanic unit in the Pimienta Formation (Mexico) at 
139.1 ±2 Ma (U-Pb LA-ICP-MS). The unit lies between the 
calpio nellid Colomi (uppermost Tithonian) and the Elliptica 
subzones (Lower Berriasian), thus bracketing the J-K boun-
dary, though the base of the Alpina Subzone is not present, 
so that a very precise constraint on the boundary age is not 
possible. Vennari et al. (2014) sampled an ash bed at Las 
Loicas (Neuquen Basin, Argentina), at a level 20 m above 
the J-K boundary and within the Andean upper part of the 
Noduliferum ammonite Zone (placed in the NJK-D nanno-
fossil zone), with an age of 139.55 ±0.03 Ma (CA-ID-TIMS). 
The authors used a constant sedimentation rate of 0.5 cm/kyr 
to back-calculate the age of the boundary to circa 140 Ma. 
Lena et al. (2019) presented geochronological constraints 
(U-Pb CA-ID-TIMS) on Late Tithonian to Early Berriasian 
deposits at Las Loicas and on the later Berriasian in the Ta-
maulipas Fm. at Mazatepec (Mexico). The age of the boun-
dary (i.e. the base of the calpionellid Alpina Subzone) at 
Las Loicas was set at 140.22 ±0.14 Ma (U-Pb CA-ID-TIMS) 
and the age in the Elliptica Subzone at Mazatepec at 140.512 
±0.036 Ma (U-Pb CA-ID-TIMS).

One of the drawbacks of studies on Jurassic/Cretaceous 
radio-isotopic ages is that the dated horizons are often stra-
tigraphically distant from the level of the stage base. This 
has forced the use of calculations that involve arbitrary con-
stant sedimentation rates, or durations of magnetozones and 
biozones to back-calculate the age of the boundary, which 
inevitably introduces unknown errors in the age. Another is-Another is-
sue is that geochronological data has seldom been calibrated 
with magnetozones, and thus the boundary level in magne-
tosubzone M19n.2n is hard to prove. As a result, the correla-
tion between well-studied J-K sections in western Tethys 
and radio-isotopic ages around the boundary have been 
based on biostratigraphic data. However, in many of the ra-
diometrically dated sections, the biotic boundary markers 
(primary and secondary) are rare. Lastly, the majority of the 
analytical techniques employed to date the boundary (e.g. 
SIMS, LA-ICP-MS) lack precision and accuracy, usually 
within limits of 1–3% of their age, which in the case of the 

J-K transition (circa 140–145 Ma) yields a precision in the 
order of 1–3 Myr. Overall, the analytical techniques used to 
measure the age of the boundary are unsuitable to date the 
appearance of key taxa in the geological record. In addition, 
these analytical techniques (U-Pb SIMS and U-Pb LA-ICP-
MS) do not address the effects of Pb-loss, thus compromis-
ing the accuracy of the measurements. Recently, Lena et al. 
(2019) were able to bracket the primary and secondary 
markers using U-Pb CA-ID-TIMS at Las Loicas; however, 
fossil markers occur in low resolution, in addition to some 
anomalous calpionellids around the putative boundary level; 
and further investigation is required. Nevertheless, the as-
semblage of the calpionellids Crassicollaria parvula and 
C. colomi and the FO of the nannofossil Umbria granulosa 
granulosa from Las Loicas was dated at 141.31 ±0.56 Ma, 
considered to be a valid age for the Late Tithonian. The age 
from the Lower Berriasian Elliptica Subzone at Mazatepec 
of 140.512 ±0.031 Ma is robustly calibrated, since the cal-
pio nellid zonation there is closely comparable to that proven 
in western Tethys. As a result, Lena et al. (2019) has sug-
gested a best boundary estimate to be between 140.7 and 
141 Ma, though still without magnetostratigraphy. In sum-
mary, even given the issues and concerns described above, 
radio-isotopic ages tend to broadly cluster around 140–141 
Ma, differing by circa 4 Ma from Ogg et al. (2012).

The comparison between studies that have calibrated the 
age of the base of the Berriasian and the M-sequence (Ogg 
et al., 2012) is not a simple one. The absence of integrated 
radio-isotopic ages, biostratigraphy and magnetostratigra-
phy is a major challenge for dateable global correlations. 
Geochronological studies that lack magnetostratigraphy ef-
fectively prevent dating of Tithonian-Berriasian magne-
tozones, and thus an accurate age assessment for the base 
of the Berriasian (i.e. the base of the calpionellid Alpina 
Subzone) and magnetosubzone M19.2n is not possible. Ne-
vertheless, it is worth pointing out that the accuracy of the 
M-sequence age model of Ogg et al. (2012) is ultimately de-
pendent on the quality of available radio-isotopic ages and 
cyclostratigraphic data at and or around stage boundaries 
between the Oxfordian and the Aptian. New geochronologi-
cal data from the late Jurassic to early Cretaceous suggest 
that the ages of the stage boundaries in this interval could 
be younger than those used in the M-sequence model of Ogg 
et al. (2012). For instance, Zhang et al. (2018) provided 
mag netostratigraphic data allied to the U–Pb ages of Midt-Midt-
kandal et al. (2016) from Svalbard cores, which suggest that 
the age of the M0 (Aptian base) is 121–122 Ma, rather than 
∼126 Ma. Aguirre-Urreta et al. (2015) presented a high-pre- presented a high-pre-
cision U–Pb age of 127.24 ±0.03 Ma for the highest Haute-
rivian Agrio Fm. (Neuquén Basin, Argentina): which Mar-Mar-
tinez et al. (2015) used to anchor cyclostratigraphic studies 
at Río Argos, and calculate an age for the base of the 
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Hauterivian at 131.96 ±1 Ma, and the base of the Barremian 
at 126.02 ±1 Ma. Aguirre-Urreta et al. (2017) later reported 
a U–Pb high-precision age for the Lower Hauterivian at 
130.394 ±0.037 Ma, which is fairly close to that of Mar tinez 
et al. (2015). Therefore, new geochronological constraints 
in the Early Cretaceous suggest an apparent consistent offset 
and younger ages: that is, of ∼3–4 Myr less than those pre-
dicted by the M-sequence age model. Thus, future updates 
of the M-sequence model are likely to predict younger nu-
merical ages for Late Jurassic to Early Cretaceous stage 
boundaries, and there is likely to be a change in the crucial 
apparent agreement between the M-sequence model of Ogg 
et al. (2012) and that of Mahoney et al. (2005).

4.11. SEA LEVEL

Information on sea-level change calibrated to the de-
tailed biostratigraphy of the Berriasian is limited. 

Previous widely-quoted global accounts have not always 
been closely related to either traditional biozonal schemes or 
accurate biostratigraphy: e.g. with the base of the Creta-
ceous in some unusual positions, such as within M16n (Haq 
et al., 1987, fig. 3).

Hoedemaeker (1987, 2002) related sea-level fluctuations 
to ammonite diversity. He recognised the lowest stands of 
sea level during the earliest Cretaceous in (1) the uppermost 
Grandis Subzone (Jacobi Zone), (2) upper Boissieri Zone – 
the uppermost Berriasella picteti Subzone – in the latest 
Berriasian. The highest sea-level stands were correlated 
with (1) the Jacobi Subzone, and (2) approximately with the 
Berriasella paramimounum / Berriasella picteti subzonal boun-
dary. A relatively rapid sea-level rise approximately coinci-
ded with the base of the Paramimounum Subzone.

Correlation of ammonite and calpionellid biostratigraphy 
presented in Hoedemaeker et al. (2016; fig. 1A) shows that 
periods of ammonite and calpionellid diversification coin-
cided, confirming the results of Reháková (1998, 2000b). 
Reháková (1998, 2000b), tried to correlate bioevents, of cal-bioevents, of cal-cal-al-
careous dinoflagellates and calpionellids, in pelagic West 
Carpathian deposits with sea-level fluctuations sensu Haq 
et al. (1987). Radiation and diversification phases in calpio-
nellids coincided with intervals of the ongoing transgres-
sion: whereas stagnant phases in their evolution coincided 
with sea-level falls and siliciclastic inputs. The acme con-
centrations of some cyst taxa were controlled by sea-level 
highstand phases, or perhaps with increasing surface-water 
temperatures (Jach, Reháková, 2019). 

The latest general account of sea-level variations (Haq, 
2017) takes the base of the Berriasian to be in mid M19n.2n, 
at the base of the Alpina Subzone. In the Late Tithonian to 
Early Berriasian, sea-level fluctuations are plotted against 

parallel scales – with a western Tethyan ammonite and Eng-
lish ammonite biozonations: the latter being composite, and 
based on the more expanded Portland units of the Dorset se-
quence together with the broken and condensed siliciclastic 
interval in the North Sea basin (Wimbledon, 1980).

Haq (2017) notes five successive highstand events, tied 
to magnetozones:
1. Middle Microcanthum Zone (=Kerberus Zone) – mid 

M20n.2n.
2. Base Jacobi/ “Durangites” Zone (shown as equivalent) 

(=base Preplicomphalus Zone) – lowest M19n.2n.
3. Middle Jacobi/ “Durangites” Zone (= base Lamplughi 

Zone) – M18r.
4. Upper Jacobi/ “Durangites” Zone (= lowest Runctoni) – 

base M17r.
5. Lowest Boissieri Zone (= base Icenii Zone) – low M16r.

The supposed equivalence (item 1) of the Kerberus Zone 
to the Microcanthum Zone in M20n is undermined by the 
presence of earlier ‘English’ ammonites, Fittoni/Albani 
zone, associated with Chitinoidella in Poland: Chitinoidella 
marks M20n in Tethys. Of course, the Jacobi and “Duran-
gites” ammonite zones are in no part equivalent: the Andre-
aei Zone (=”Durangites” Zone) underlies the Jacobi Zone 
(see Ammonite chapter). Therefore, it is not clear how the 
lower, middle and upper Jacobi Zone of Haq (2017) might 
be interpreted. However, event two is apparently closest to 
the base of the calpionellid Alpina Subzone, notwithstand-
ing the application of ammonite zones.

Of the English biozones, only the lower ammonite zones 
in Dorset (up to the Anguiformis Zone) have been subjected 
to a magnetostratigraphic study, so the higher cited zones (Pre-
plicomphalus-Icenii) are not relatable to magnetozones (nor 
to the Tethyan ammonite zones mentioned by Haq). No pub-
lications are cited by Haq (2017) which elucidate this mat-
ter: nor on how the assumed equivalence of the Tethyan and 
two English ammonite stratigraphies was derived. There-
fore, it is not possible, with any degree of certainly, to relate 
the sea-level curve to the fossil markers in magnetozone 
M19n which define and constrain the base of the Berriasian 
– ammonite, calpionellid, nannofossil etc. A Jurassic-Creta-
ceous sea-level curve matched accurately to key biotic 
markers would be an interesting topic for investigation, if it 
took into account both regional tectonic and eustatic effects.

4.12. STABLE ISOTOPES

4.12.1. Tethys: carbon isotopes and cyclostratigraphy 

Carbon-isotope ratios measured on bulk carbonate rocks 
(e.g. Föllmi et al., 1994; Weissert, Mohr, 1996), calcitic 
shells and tests of foraminifera, bivalves or brachiopods 
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(e.g. Carpenter, Lohmann, 1995; Pellenard et al., 2014), pe-
do genic nodules (e.g. Cerling et al., 1989) and dispersed or-
ganic carbon and wood fragments (e.g. Yans et al., 2010) are 
widely used chemostratigraphic tools. They can help to bet-
ter correlate sedimentary successions in combination with 
a bio- and magnetostratigraphic scheme. This is because 
carbon isotopes trends and anomalies through time may re-
flect the ocean–atmosphere reservoir via their connection to 
the global carbon cycle. Alternatively, carbon isotope ratios 
measured on marine and continental materials may also (at 
least partly) reflect local/regional palaeoenvironmental con-
trols. Thanks to their global or near global character, some 
major carbon isotope anomalies (positive or negative peaks) 
are well known in the geological record, and correspond to 
major, geologically, short-lived palaeonvironmental/palaeo-
climatic events that can be precisely pinpointed in various 
sections. This is the case, as an example, for the negative 
peak event recorded globally at the base of the Toarcian 
(Jenkyns et al., 2002). Some isotopic events match major 
geological boundaries and are used as markers for those 
boundaries, e.g. the Paleocene-Eocene boundary, defined by 
the onset of a negative δ13C anomaly (Aubry, 2002).

This carbon isotope approach for long-distance correla-
tions can be tested around the Jurassic-Cretaceous boundary. 
In this time-interval, a steady carbon isotopes decrease is re-
corded from the ammonite Microcanthum Zone (Upper 
Tithonian) to the calpionellid Alpina Subzone (basal Berria-
sian) in the Vocontian Basin (e.g. Le Chouet road section, 
Wimbledon et al., 2020). This represents a large scale (glo-
bal?) trend that has been recorded in Tethys, boreal regions 
and in the Middle Atlantic (Weissert, Mohr, 1996; Price, Ro-
gov, 2009; Žak et al., 2011; Price et al., 2016). However, 
some regional differences may occur. As an example, the 
amplitude of the carbon isotope decrease is roughly of 
1.00‰ at the Lókút Hill section in Hungary (see review in 
Price et al., 2016), whereas the amplitude is only 0.40‰ at 
Le Chouet. Having probably interesting palaeoceanogra-
phic/palaeoclimatic roots, this Late Jurassic steady carbon 
iso tope trend is, however, of no use currently for stratigra-
phic correlation purposes in the Tithonian to Berriasian, and 
more studies are needed to build a fine understanding of car-
bon isotope evolution in the Vocontian Basin, and elsewhere.

In recent years, efforts have been made to increase the 
number of studies dealing with carbon isotopes in Russian 
boreal basins and a distinct positive carbon isotope excur-
sion has been mooted. However, it is still unclear if this iso-
topic event can be properly recognised in Tethyan regions. 
As an example, it is not evidenced in the Vocontian Basin, 
although this may be due to a lack of high resolution isoto-
pic data. Our preliminary work in the Vocontian Basin sug-
gests a smooth evolution of carbon isotope ratios through 
Berriasian time, which is recognised to be of regional/global 

significance. Therefore, it is of major importance to increase 
detailed records in Tethys, in order to help build global iso-
topic stratigraphic correlations: and this includes the area of 
the proposed GSSP, St Bertrand, Charens, etc., where a de-
tailed biostratigraphic and magnetostratigraphic scheme is 
already available. 

Furthermore, a preliminary cyclostratigraphic study (by 
Schnyder and Galbrun) has been undertaken using magnetic 
susceptibility (MS) variations in several J/K sections in the 
Vocontian Basin. However, though a cyclostratigraphic 
study generally gives good results in a succession with 
marl-limestone alternations, this is not often the case for 
well bedded/massive bedded limestone successions, such as 
at Le Chouet. MS is a palaeoclimatic proxy used to identify 
astronomical-paced cycles. First results have revealed astro-
nomical cycles of 20, 40, 100 or 400 kyrs duration (Mila-of 20, 40, 100 or 400 kyrs duration (Mila-
nkovitch cycles). This establishment of astronomical forcing 
paves the way for an estimation of the duration of biostrati-
graphic intervals and magnetozones in the Vocontian sec-
tions. It is hoped to apply this cyclostratigraphic approach, 
particularly, to the Tré Maroua and Saint Bertrand profiles.

4.12.2. Isotope records across  
the Jurassic/Cretaceous boundary in boreal regions: 

carbon and oxygen isotopes

Reconstructions of carbon-, oxygen- and strontium-iso-
tope curves for boreal palaeobasins are based on the analysis 
of sedimentary organic matter or molluscan shell material, 
especially belemnites, which are best preserved in northern 
sections. Near the J/K boundary, thus far, the most detailed 
chemostratigraphic data have been obtained from belem-
nites. These data, taking into account their calibration with 
bio- and magnetostratigraphic data, allow us to recognise 
event levels for a correlation of J/K boundary beds across 
some boreal basins, and between boreal regions and Tethys.

Stable isotope data come from a number of boreal sec-
tions. In most of these, the J/K transition beds are poorly 
represented: Voskresensk in the Russian Platform basin and 
an uncertain locality in northern Germany (Podlaha et al., 
1998); Gorodishche, Kashpir and Marievka on the Russian 
Platform (Ruffell et al., 2002; Gröcke et al., 2003; Price, 
Rogov, 2009); Yatriya in Western Siberia (Price, Mutterlose, 
2004); Janusfjellet and Knorringfjellet in central Spitsber-
gen (Hammer et al., 2012). Nevertheless, in Siberia there 
are two sites characterized by a continuous sedimentary suc-
cession across the J/K boundary. Both Nordvik on the Lap-
tev Sea coast (Eastern Siberia) and Maurynya in the foot-
hills of the Northern Urals (Western Siberia) have detailed 
carbon and oxygen isotope records (Žák et al., 2011; Dzyu-
ba et al., 2013). 
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Based on the data from the Tithonian-Berriasian (“Upper 
Volgian”) and Upper Berriasian (“Ryazanian”) in the Nord-
vik, Maurynya and other Siberian sections, a composite bo-
real δ13C curve has been recently created (Dzyuba et al., 
2013). This curve is well-correlated with bio- and magneto-
stratigraphic zones. In the J/K boundary interval, two posi-
tive δ13C excursions were recorded. A significant positive 
δ13C shift is defined in the middle part of the ammonite 
Craspedites okensis (=Okensis) Zone at Nordvik, confined 
to the upper part of magnetozone M20n. This shift correlates 
well with a positive excursion found close to the base of the 
Boreioteuthis explorata belemnite beds at Maurynya. Fur-
thermore, it is coeval with a positive excursion in the Kach
purites fulgens (=Fulgens) – Craspedites subditus (=Subdi-
tus) ammonite zone transition in the Gorodishche section 
(Gröcke et al., 2003; Dzyuba et al., 2013), and with a posi-
tive excursion in the lower part of the “Upper Volgian” in 
the Janusfjellet section, Spitsbergen (Hammer et al., 2012). 
A positive excursion has also been observed in the compos-
ite Tethyan δ13C curve (Weissert et al., 2008) within the up-
permost part of M20n. The second positive δ13C excursion 
is most pronounced in the upper part of the Craspedites tai
myrensis (=Taimyrensis) ammonite Zone in the Maurynya 
section, and it is observed in the Nordvik section in the same 
interval, high in magnetozone M19n, confined to the co-in-
terval of the Arctoteuthis tehamaensis belemnite Zone and 
the nominal Taimyrensis Zone. The same excursion has 
been observed within the upper part of the Craspedites nodi
ger (=Nodiger) Zone in the Marievka section (Price, Rogov, 
2009; Dzyuba et al., 2013). Therefore, the J/K boundary is 
located in boreal sections between these two positive δ13C 
excursions, but closer to the upper one. Both excursions are 
interpreted as records of increased rates of organic carbon 
burial (Dzyuba et al., 2013). 

The intensive accumulation of organic-rich sediments at 
that time is evident from a wide, almost global, distribution 
of black organic-rich shales in the Upper Jurassic and part of 
the Berriasian interval (Föllmi, 2012). 

The composite Tethyan δ13C curve that is based on bulk 
carbonate analyses is relatively smooth in the Upper Ti tho-
nian–Berriasian interval (cf. Weissert et al., 2008). This is 
probably the result of the mixing of different biogenic com-
ponents in a given sample, and the fact that such a sample 
could span tens or hundreds of years, which averages out 
natural variations in habitat, vital effects, time and preserva-
tion (cf. Nunn et al., 2009, 2010; Dzyuba et al., 2013). In the 
case of belemnites, individuals that are used for isotope 
analysis commonly have an estimated age of no more than 
two years. 

A comparison of the δ18O curves obtained from the 
Maurynya and Nordvik sections show an agreement with 
the general trend in oxygen isotopic composition in the J–K 

boundary interval (Žák et al., 2011; Dzyuba et al., 2013). 
The negative trend in the δ18O curves established for both 
these sections had previously been recorded in the Russian 
Platform Basin (Price, Rogov, 2009). The same trend is ex-
pressed more or less prominently in Deep Sea Drilling Pro-
ject Hole 534A section in the central Atlantic Ocean (Tre-
mo lada et al., 2006) and in the Puerto Escaño section of 
southern Spain (Žák et al., 2011), where δ18O data were ob-
tained from bulk carbonates. This negative δ18O trend is as-
sociated with a gradual climatic warming (mid Oxfordian to 
the mid Berriasian – “early Ryazanian”) (e.g., Abbink et al., 
2001a; Price, Rogov, 2009; Zakharov et al., 2014). Accord-
ing to Dera et al. (2011), the δ18O decrease during the Late 
Jurassic corresponded approximately to a period of prolon-
ged and intense magmatism in the northeast Asian igneous 
provinces (Wang et al., 2006) that could have caused high 
pCO2 levels, which in turn could have maintained warmer 
climatic conditions.

Galloway et al. (2019) have recently identified a positive 
excursion at two localities in Canada’s Arctic islands, on 
Axel Heiberg Island. It forms the top of a prominent nega-
tive excursion (VOICE), with a minor positive reversal 
within it. The excursion occupies a stratigraphic interval that 
previously produced “mid-Volgian” dorsoplanitid ammo-
nites and bivalve Buchia fischeriana, and it is overlain by 
a newly collected Berriasian sequence containing the am-
monite Borealites (Pseudocraspedites) and Buchia okensis.

4.12.3. Strontium isotopes

The majority of sections in Tethys where integrated 
methods have been successfully applied tend to be in hemi-
pelagic to pelagic, deeper-water environments, often sug-
gesting sedimentation below the calcitic CCD. Documented 
belemnite-yielding sites with shallow-water sediments (or 
having originated above the calcitic CCD) and with strati-
graphically important bio-markers – i.e. ammonites, calcare-
ous nannofossils – are quite rare. There are several localities 
where they are present together with calpionellids (e.g. 
France, Turkey, Spain – Puerto Escaño). 

The majority of published data used for the global Sr 
isotope ratio curve close to the Jurassic/Cretaceous bounda-
ry are from boreal regions and not Tethys and elsewhere. 
The global 87Sr/86Sr curve (summarized in Price, Gröcke, 
2002; Price et al., 2016; Kuznetsov et al., 2017) used data 
obtained from various regions, including localities at higher 
latitudes: Falkland Plateau, New Zealand, Great Britain and 
the Russian Platform, as well as western Siberia.

The Late Jurassic and earliest Early Cretaceous are char-
acterized by a global increase in the 87Sr/86Sr ratio in the 
ocean (e.g. Howarth, McArthur, 1997; Jones, Jenkyns, 2001; 
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Price et al., 2016). Late Jurassic data have been published 
(Jones et al., 1994; Podlaha et al., 1998, and others) and also 
for the Early Cretaceous (Van de Schootbrugge et al., 2000; 
McArthur et al., 2004, 2007a, b; Vaňková et al., 2019, and 
others), whereas, the immediate Tithonian–Berriasian boun-
dary interval before 2017 was poorly supported by relevant 
data (Jones et al., 1994; Podlaha et al., 1998; Price, Gröcke, 
2002). For a long time, the Sr isotopic characteristics of the 
uppermost Tithonian and Berriasian were based only on data 
from sections in NW Europe and the Russian Platform, re-
presenting the boreal palaeobasins (Jones et al., 1994; Vei-
zer et al., 1999; Gröcke et al., 2003), as well as on results 
from the Tethyan Upper Berriasian sections of Spain and 
France (McArthur et al., 2007a). 

Strontium isotope data recently obtained from belem-
nites from the Maurynya section (Western Siberia) filled the 
data gap of the 87Sr/86Sr variation curve in the ocean at the 
J/K boundary (Kuznetsov et al., 2017).

Judging by the fact that the Maurynya section encom-
passes the Upper Tithonian-Upper Berriasian (“Upper Vol-
gian” – lowermost “Ryazanian”), up to the lower part of the 
ammonite Hectoroceras kochi (=Kochi) Zone, the Sr iso-
tope values obtained (0.707172–0.707242) characterize an 
interval from the upper part of the magnetozone M20n to the 
lower part of the M16r, and hence the interval, in Mediter-
ranean ammonite terms, from the upper part of the Micro-
canthum Zone to the Occitanica Zone, and probably the 
lowest horizons of the Boissieri Zone (Kuznetsov et al., 
2017).

Within the “Upper Volgian”, the 87Sr/86Sr ratio of the 
Maurynya belemnites varies from 0.707172 to 0.707222, 
whereas near a level which corresponds approximately to 
the J/K boundary, the ratios are in the range 0.707189–
0.707195 (Kuznetsov et al., 2017), which can serve as a use-
ful characteristic for the boundary. New Sr data obtained by 
Rud’ko et al. (2017) from the Crimean carbonate platform, 
on the northern periphery of Tethys, fit the trend estab-
lished at Maurynya. Despite the fact that these authors noted 
a decrease in the resolution of the method within the Ti tho-
nian–Lower Berriasian due to the relatively small number of 
well-dated determinations and the general flattening of the 
profile of the 87Sr/86Sr curve, they obtained close 87Sr/86Sr 
values (0.70717–0.70722) approximately in the J/K boun-
dary interval. 

The gradual increase in the 87Sr/86Sr ratio observed in 
the Maurynya section coincides with the general increase in 
this ratio in the Late Jurassic and Early Cretaceous world 
ocean. This indicates large-scale geodynamic causes that 
led to an increase in the content of radiogenic 87Sr during 
the Jurassic-Cretaceous transition. In general, the analysis 
of available Sr isotope data shows that during the Late 

Tithonian and Berriasian the 87Sr/86Sr ratio increased from 
0.70716 to 0.70730 (Kuznetsov et al., 2017).

5. WIDER STRATIGRAPHICAL CORRELATIONS

Here are considered some of the possibilities for correla-
tions between the Alpina Subzone’s base in Tethys and wider 
geographical regions in Pathalallassa, and boreal basins, 
noting opportunities and limitations. This examines the dis-
tribution and availability of Tethyan markers and their co-
occurences with endemic biotic elements (such as belem-
nites), and how the wider application of calpionellids, 
nannofossils and magnetostratigraphy has improved global 
correlations.

5.1. BOREAL REGIONS

Despite such terms as “Panboreal Realm” or “Super-
realm” relating to ammonites, each boreal or subboreal re-
gion has its own independent ammonite biozonal scheme: 
there is no such thing as a boreal realm with one zonal am-
monite fauna that has a uniform distribution: the faunal uni-
formity lost in earlier Tithonian times only reappears in the 
later Berriasian times (with some taxa widespread, e.g. Hec
toroceras kochi in Greenland, England and Siberia), and the 
same is true of Buchia (bivalve) zonations (e.g. Inflata Zone).

Previously, low diversity, sparse and regionally restricted 
ammonites were almost the only tool being used to achieve 
a correlation with other regions, but this now changes some-
what. In Siberia and Svalbard the boundary interval yields 
few ammonites, and the same is even more the case in Arc-
tic Canada. Much reliance has been placed on a single am-
monite taxon, or the inferred presence of zone when ammo-
nites are absent. With Buchia species being long-ranging 
(see below) attention has moved to more indicative belem-
nite species, as well as palynology and calcareous dinocysts.

5.1.1. Eastern England/North Sea basin

Little can be added to accounts of the Spilsby and San-
dringham formation by Casey (1973), as the few outcrops 
are in a state of decay. Of relevance here, Casey recorded 
the Preplicomphalus Zone’s fauna as Subcraspedites (S.) so
werbyi, S. (S.) preplicomphalus, S. (S.) cf. claxbiensis, 
S. (S.) spp. nov., Craspedites plicomphalus and C. thurrelli 
sp. nov. He correlated this Preplicomphalus Zone with the 
Nodiger Zone (Russian Platform) and the Taimyrensis Zone 
(Siberia).
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Rogov and Zakharov (2009) record Subcraspedites spe-
cies, including S. sowerbyi and S. cf. preplicomphalus in the 
Nikitini Zone at Gorodishche, apparently indicating a corre-
lation with the Preplicomphalus Zone. These authors also 
drew a comparison between Craspedites of the nodiger group 
morphology and the remarkable nodes near the umbilical 
seam in one English species, C. preplicomphalus. The oc-
currence of C. pseudonodiger in the middle part of the No-
diger Zone at Kashpir was seen as supporting a correlation 
between the Taimyrensis and the Nodiger zones, and indi-
cating an upper limit for the eastern English Preplicompha-
lus Zone.

5.1.2. Greenland

The Tithonian/Berriasian boundary interval is absent in 
East Greenland. A Tenuicostatus Zone (Upper Tithonian) 
fauna sits within a large hiatus between the Vogulicus and 
Chetaites ammonite zones (Callomon, Birkelund, 1982).

5.1.3. Siberia and Russian Platform

The biostratigraphic literature depends much on the NE 
Siberian section at Nordvik, which has become a kind of 
standard for Russian colleagues, with its magnetostrati-
graphic account (Bragin et al., 2013). Only the interpreted 
match with Tithonian-Berriasian magnetostratigraphy fixes 
the boundary interval (Houša et al., 2007), by means of the 
identification of upper M19r, M19n and lower M18 magnet-
ic zones in the Taimyrensis Zone. The profile’s ammonite 
record is sparse (Schnabl et al., 2015), and, even with a sub-
sequent update of finds from higher zones (Rogov et al., 
2015), it remains almost barren near the boundary. Howev-
er, finds of the belemnite Arctoteuthis tehamaensis, a Cali-
fornian species, in the ammonite Taimyrensis Zone at Nord-
vik allows a more precise correlation of the middle of 
magnetozone M19n with levels in California and Japan 
(Dzyuba, 2012; Haggart, Matsukawa, 2019). Thus, the base 
of the Tehamaensis Zone approximates to the base of the 
calpionellid Alpina Subzone. Further, Dzyuba (2013) 
equates the Arctoteuthis tehamaensis Zone with the Simno
belus compactus Zone on the River Maurynya (W. Siberia), 
expanding possibilities for correlation in Russia.

That notwithstanding, a very great deal hinges on the pu-
tative numbering of magnetozones at Nordvik. The three re-
versed intervals (identified as M19n.1r, M18r and M17r) 
were numbered with no calibration with fossils that could 
afford a wider correlation. All three are similarly thinly de-
veloped (Schnabl et al., 2015). With a fresh mind and no 

preconceptions, the original magnetozone notation of Houša 
et al. (2007) might warrant reconsideration. 

5.1.4 Svalbard

Palynology from Jurassic/Cretaceous boundary units in 
Svalbard has proven to have limited utility for wider corre-
lation (Dalseg et al., 2016). The most recent assessment of 
ammonite biostratigraphy near the Tithonian/Berriasian 
boundary in Svalbard is that of Rogov (2010). At Festnin-
gen, discontinuous occurrences of Upper Tithonian ammo-
nites were recorded, and later faunas are limited to three ho-
rizons near the putative Tithonian/Berriasian boundary. The 
Okensis Zone appears to be truncated, and, above, the 1 m 
assigned to the Taimyrensis Zone has only one faunal hori-
zon with one species, Craspedites cf. mosquensis. At Mykle-
gardfjellet (“AD” profile), an interval of 7 m has no ammo-
nites, then a monospecific Craspedites okensis fauna is over-
lain, above a gap, by 1m of strata with C. agardensis and 
C. cf. canadensis. These last two species were used to iden-
tify a putative Taimyrensis Zone. The remaining interval 
(4 m), though it was assigned to the Taimyrensis Zone, is 
unexposed. Thus, the Taimyrensis Zone, as at Nordvik, does 
not contain the zonal index. Guzhikov (Rogov, Guzhikov, 
2009) gave preliminary results on magnetostratigraphy at 
Myklegardfjellet (“AB” section). Ammonites are absent in 
most of the interval assigned to the Okensis Zone and 
through the entirety of the Taimyrensis and Chetae zones. 
Ne vertheless, Guzhikov interpreted a ‘normal’ magnetozone 
(with a short reversed subzone near its top) overlain by 
a short reversal (<1 m), placing these in a Taimyrensis Zone, 
and identifying magnetozones M19n and M18r, respectively.

The isotopic studies of Koevoets et al. (2016) in Sval-
bard offer new precise data that should reinforce the limited 
biostratigraphy. In the Agardhfjellet Formation of central 
Spitsbergen, two δ13C excursions have been recorded in the 
mid to late Tithonian. The extension of this study into the 
Berriasian is anticipated (Maayke Koevoets pers. comm.)

5.1.5. Canada

Considering the difficulties in correlating between the 
various boreal regions, Canadian usage has been to correlate 
Canadian zones with relative confidence only with northern 
Siberia (“high boreal”). Long-ongoing questions about cor-
relations of the late Jurassic-early Cretaceous endemic am-
monite zones among the various boreal and sub-boreal sub-
provinces are highlighted by the juxtaposition of the various 
“standard” columns (Ogg et al., 2016). 
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Tithonian (“Middle Volgian”) dorsoplanitid ammonites 
have been reported from several localities on Ellesmere and 
Axel Heiberg Islands (Frebold, 1961; Jeletzky, 1966, 1984; 
Callomon, 1984; Schneider et al., 2018). The ammonites 
Dorsoplanites ex gr. panderi Michalski and associated 
?Pavlovia were figured from northern Ellesmere Island by 
Frebold (1961); the latter re-interpreted as Pavlovia (?Para
virgatites) by Callomon (1984), and as Taimyrosphinctes 
(Ro gov, 2019, unpublished). Schneider et al. (2018) report-
ed the co-occurrence of Dorsoplanites maximus Spath 
and D. sachsi Michailov, confirming the presence of the bo-
real Maximus Zone on Ellesmere Island. Galloway et al. 
(2019) suggested that Jeletzky’s (1984) report of specifically 
uniden tified dorsoplanitids, occurring with large Buchia fis
cheriana (d’Orbigny), provides a “Middle Volgian” age for 
a newly discovered Arctic regional 13C negative excursion.

The ammonites Craspedites (Subcraspedites) cf. sower
byi Spath and C. (Craspedites) n. sp. aff. subditus (Traut-
schold) were illustrated from northern Ellesmere Island by 
Jeletzky (1984). They were re-assigned (Rogov, Zakha rov, 
2009) to Subcraspedites sowerbyi Spath and Craspedites cf. 
thurrelli Casey, respectively. A higher fauna in the same sec-
tion with Craspedites (Subcraspedites) n. sp. aff. praepli
comphalus [sic] Swinnerton and C. (Craspedites) n. sp. aff. 
subditus illustrated by Jeletzky (1984), has been updated to 
Subcraspedites cf. preplicomphalus and C. cf. thurrelli (Ro-
gov, 2019). These faunas were interpreted as corresponding 
to the regional Preplicomphalus and Okensis zones of east-
ern England and Siberia, respectively (Jeletzky, 1984; Ro-
gov, 2019).

Presumed Early Berriasian (“Late Volgian”) Craspedites 
(Taimyroceras) canadensis Jeletzky (1966) from Slidre 
Fiord, northern Ellesmere Island, appear to indicate a corre-
lation with the Craspedites taimyrensis (Taimyrensis) Zone 
of northern Siberia (Jeletzky, 1984; Rogov, Zakharov, 2009).

Canadian SubcraspeditesCraspedites ammonite assem-
blages and the overlying single taxon Craspedites canaden
sis (Jeletzky, 1984) appear to correspond to the northern Si-
berian Okensis – Taimyrensis zones, and the central Russian 
Fulgens – Nodiger zones (Rogov, Zakharov, 2009). The de-
piction (Ogg et al., 2016) of their mainly older age com-
pared with the Preplicomphalus Zone in eastern England is 
particularly interpretive, however, and Wimbledon (2017) 
placed the Russian Taimyrensis Zone (and equivalent Nodi-
ger Zone) almost entirely within the Cretaceous. 

5.1.6. Buchia Zones

Species of the bivalve genus Buchia have been used for 
correlation in the J-K interval, within the constraint of their 
zones encompassing very long stratigraphic intervals and 

thus having comparatively low resolution. Biozonations are 
well established in boreal regions such as Siberia (Zakharov, 
1987, 1990), as well as in subboreal NE China (Sha, Für-
sich, 1993) and the Great Valley of California [Jones et al., 
1969: see Zakharov, Rogov (2020) on Grindstone Creek], 
western and Arctic Canada (Jeletzky, 1984) and the Russian 
Far East (Urman et al., 2014). Formerly, the Buchia un
schensis (=Unschensis) Zone was said to have a base exact-
ly coincident with the base of the ammonite Taimyrensis 
Zone (Rogov, Zakharov, 2009). The Unschensis Zone (and 
its equivalent zones in other regions) now has a slightly 
greater vertical extent, covering the latest Tithonian and 
a large part of Berriasian time: in terms of Siberian ammo-
nite zones, from the Okensis Zone to the Kochi Zone 
(Schnabl et al., 2015). Thus the J/K boundary would fall in 
the lower Unschensis Zone. 

5.2. THE AMERICAS (EXCLUDING ARCTIC CANADA)

In the Americas, the resolution of correlations in the 
Tithonian-Berriasian interval, notably in Mexico and the 
Andes, has been improved beyond recognition in recent 
years. However, the great potential of thick marine sequenc-
es in California and western Canada is not yet realised 
(Jones et al., 1969; Jeletzky, 1984). Recent work on palyno-
logy, nannofossils, belemnites and magnetostratigraphy of 
the Great Valley sequence at Elder, Thomes, Watson and 
Grindstone creeks has still to be published.

In Mexico, early studies had been characterized and 
dominated by work of endemic ammonites, as with Califor-
nia and the Andes. However, pioneering research on calpio-
nellids by Воnet (1956) was followed by that of Trejo (1960, 
1975, 1980) and Adatte et al. (1994). More recently, a crop 
of results from López-Martínez et al. (2013b, 2015a, b), 
from Apulco, Tamazunchale and San José de Iturbide have 
revealed a full complement of biozones across the Titho-
nian-Berriasian boundary, with calcareous dinocysts, as well 
as accessory data on radiometric dates, and, most recently, 
calcareous nannofossils (Lena et al., 2019). This widespread 
evidence refutes uninformed criticisms of the work of Bonet 
and Trejo, and provides unequivocal correlations with Te-
thys and the Crassicollaria and Calpionella zones of other 
regions.

In western Cuba, calpionellids were described two de-
cades ago from the Guaniguanico terrane (Pszczółkowski, 
1999; Pszczółkowski, Myczyński, 2010), and both calpio-calpio-
nellids and nannoconids from the Sierra del Infierno 
(Pszczółkowski et al., 2005). Latterly, López-Martínez et al. 
(2013a) has given an account of further calpionellid finds in 
the Sierra Los Organos, debated by Pszczółkowski (2013) 
and López-Martínez et al. (2013c).
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The biostratigraphy of the Jurassic-Cretaceous interval 
in Argentina has been fully discussed by Riccardi (2015). 
The potential there for the application of calcareous nanno-
fossils in the Neuquén Basin was earlier demonstrated (Con-Neuquén Basin was earlier demonstrated (Con-was earlier demonstrated (Con-
cheyro, Bown, 2004), but it has not yet been realized exten-
sively. Early calpionellids finds by Fernandez Carmona and 
Riccardi (1999) were key, and they were followed by those 
of Kietzmann (2017: Chitinoidella/Crassicollaria zones), 
and identification of the Alpina Subzone at Las Loicas (Ló-
pez-Martinez et al., 2017). Those last authors identified both 
the Crassicollaria and Calpionella zones, with the appear-
ance of predominant small Calpionella alpina marking the 
base of the latter. They noted the same nannofossil taxa 
bracketing the base of the Alpina Subzone as Vennari et al. 
(2014), and they made that level exactly coincident with the 
base of the ammonite Noduliferum Zone. More work is an-
ticipated, on longer productive intervals, with more beds 
yielding calpionellids, and the same is necessary for nanno-
fossils. At Las Loicas, Vennari et al. (2014) suggested that 
calcareous nannofossils in the Substeueroceras koeneni 
(=Koeneni) Zone could be zoned (zones NJK-A, NJK-B, 
NJK-C, and lower NJK-D), but this was based on impersis-
tent occurrences of nannofossils (see Nannofossil chapter, 
and Andes).

Recent key work on palaeomagnetism at Arroyo Lonco-
che (Argentina) by Iglesia Llanos et al. (2017) is discussed 
immediately below.

5.2.1. Andes

A Tithonian-Berriasian marine succession is well deve-
loped in the foothills of the Andes in west central Argentina, 
consisting of about 200 to 1,700 metres of fossiliferous black 
shales and micritic limestones, i.e. the Vaca Muerta Forma-
tion. Ammonites present there were used during the first half 
of the XXth century (Burckhardt, 1900, 1903; Gerth, 1925; 
Krantz, 1928; Weaver, 1931; Leanza, 1945; see Riccardi, 
2015) to develop a biostratigraphic scheme comprising eight 
biozones. The most complex study being that of Weaver 
(1931), based on ammonites collected from different sec-
tions along almost 500 km of outcrop.

Since then, new studies on the ammonites have been 
mainly focused on selected parts of the stratigraphic succes-
sion and on specific localities. Thus modern systematic 
 studies on the Upper Tithonian-Berriasian, based on collec-
tions coming from carefully sampled sections, distributed 
through the entire exposed marine succession, are wanting. 
These circumstances and the provinciality of the ammonite 
fauna have made it difficult to make a proper correlation 
with elements of the standard southern European ammonite 
biozonation.

In recent years, however, new studies have resulted in 
the finding of chitinoidellids, calpionellids, nannofossils, di-
noflagellates and radiolarians, which together with magneto-
stratigraphy and cyclostratigraphy, all tied to ammonite bio-
stratigraphy, have introduced new possibilities for improving 
correlations with western Tethys (see Riccardi, 2015). 

Most recent studies were carried out on only two sec-
tions: Las Loicas (Vennari et al., 2014; López Martínez 
et al., 2017) and Arroyo Loncoche (Kietzmann et al., 2011, 
2018b; Iglesia Llanos et al., 2017; Ivanova, Kietzmann, 
2017; Kietzmann, 2017), although subsequently other sec-
tions were also added (Kietzmann et al., 2018a; Aguirre 
 Urreta et al., 2019). These studies have resulted in some 
conflicting conclusions on the proposed correlation of the 
An dean-Tethyan ammonite zones, especially on those as-
signed to the Tithonian-Berriasian transition (see Kietzmann, 
Iglesia Llanos, 2018).

This is most probably related to the fact that there have 
been no modern regional studies of the entire ammonite fau-
na, and the ammonite identifications for most sections are 
not backed up by proper systematic studies, and thus the 
recognition of faunal stratigraphic ranges and biozones is 
not accurate enough. This comment is valid for the defini-
tion of the Argentiniceras noduliferum biozone in the Las 
Loicas and Loncoche sections and the conflicting correla-
tion between them. That is, with the biozone in magneto-
zone M19 at the former and M16 at the latter. At Las Loicas, 
the base of the Noduliferum Zone was defined (Vennari 
et al., 2014) by an occurrence of Argentiniceras cf. fascicu
latum (Steuer) – material not figured – 3.4 m above the base 
of the authors’ nannofossil zone NJK-D (see below), al-
though A. noduliferum, with material figured, was recorded 
circa 13 m above that base

Later López-Martínez et al. (2017, fig. 1) placed the first 
record of A. noduliferum (material not figured) circa 6–7 m 
below the previous record of A. cf. fasciculatum and the 
lower boundary of the biozone was moved down to coincide 
with the base of nannofossil subzone NJK-D. Further, a pre-
vious record of A. noduliferum? from a level circa 66 m 
above base was deleted and the lower boundary of the Spiti
ceras damesi (=Damesi) Zone was moved down to a level 
circa 58 m above base. Here it is relevant that referral of the 
base of the Noduliferum Zone at Las Loicas to the middle of 
magnetozone M19n (Lopez Martinez et al., 2017, fig. 4) 
was not based on direct magnetostratigraphic studies, but on 
nannofossil correlation of the supposedly lower boundary of 
an ammonite biozonal boundary, whose definition needs to 
be clarified by a proper study of the ammonite fauna.

In the Loncoche section, the Noduliferum Zone was de-
fined on the occurrence of A. noduliferum: this was appa-
rently a single record, not illustrated, and one of two co-oc-
curring long-ranging species (Iglesia Llanos et al., 2017, 
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fig. 2). Here the base and the whole zone were placed in 
magnetozone M16r, but, again, the ammonite zone was 
poorly defined.

Further, the associated microfossil evidence is too patchy 
to be certain of vertical distributions and the recognition of 
Tethyan bioevents. It is therefore evident, that more detailed 
studies are needed in order to arrive at uncontroversial conclu-
sions on the correlation of both macro- and microfauna with 
J/K sections with better resolution in Tethys, Mexico etc.

6. BERRIASIAN WORKING GROUP METHODS, 
DECISIONS AND VOTES

The background geological facts that allow comparions 
of prospective GSSP sites are laid out here, and we summa-
rise below the progression towards making a decision on 
a GSSP locality. The Berriasian Working Group has held fif-
teen meetings for the purposes of comparing results, reach-
ing a consensus and making decisions on preferred markers 
and a GSSP locality (See Appendix 2)

In the traditional J/K boundary interval, there existed 
several salient prospects for the primary stage marker. The 
working group in early discussions, considered prospects 
for fieldwork and the potential of various biotic and mag-
netic events, essentially in and at the top of magnetozone 
M19n – where all earlier suggested boundary levels had 
been located. Their usefulness would depend on their being 
consistently developed and widespread, and if there were 
supporting markers to calibrate the prospective level. Those 
with no concentration of markers and no possibilities for 
calibration would be disgarded.

At the Milan WG meeting in 2009, the following hori-
zons were considered as salient prospects for study:
• base of magnetozone M18r;
• base of ammonite Grandis Subzone (Symposium deci-

sion 1963);
• base of magnetosubzone M19n.1r;
• base of calpionellid Alpina Subzone; 
• base of ammonite Jacobi Subzone (Symposium decision 

1973);
• base of magnetosubzone M19n.2n.

In addition, a suite of calcareous nannofossil events had 
been suggested as marking the levels of most of the biozone 
and magnetozone boundaries listed above. These also were 
subject to examination and testing. 

As an aside, the base of the ammonite Occitanica Zone 
(base of Subalpina Subzone) was previously suggested by 
Hoedemaeker (1987) as an alternative to the Jacobi Zone. 
This idea was picked up by some (particularly Russian) au-
thors on the basis that Tethyan taxa of this age had been re-

corded in Russia. However, the base of the Occitanica Zone, 
as seen in the Vocontian Basin, for instance, could not con-
sidered as a leading contender because of the impersistent 
development of its basal subzone, the Subalpina Subzone, in 
Tethys, not to mention its geographically limited range. This 
rejection of the Occitanica Zone (and Subalpina Subzone) 
has latterly been endorsed by Hoedemaeker (Hoedemaeker 
et al., 2016). In the Russian region most closely bordering 
Tethys, the Caucasus, the Cretaceous is interpreted as start-
ing with a sub-Occitanica unconformity (Sey, Kalacheva, 
2000), but with no Subalpina assemblage present, and on the 
Russian Platform ammonites have thus far not been proven 
convincingly to have precise affinities with French or other 
Tethyan Occitanica Zone taxa (Frau et al., 2016b, in press). 

In our early Working Group discussions, the magnetic 
subzone M19n.1r was ruled out as a prospective primary 
marker because it is such a very short subzone, and thus diffi-
cult to locate. It was agreed that the bases of M19n and M18r 
would be assessed as candidates, and biotic markers sought 
that coincided with them. The result of this would remain un-
clear until a reasonable number of localities had been docu-
mented. At the outset it appeared that no calpio nellid zone or 
event coincided with either magnetozone, but that had to be 
shown for nannofossils and ammonites. To date, site documen-
tation has proven that at only two sites (Puerto Escaño – Pru-
ner et al., 2010; Le Chouet – Wimbledon et al., 2013) is the 
Jacobi Subzone’s base demonstra bly close to or at the base of 
magnetozone M19n. Further, it has been shown that no nan-
nof ossil has its FO at the base of either M19n or M18r (sum-
marised Wimbledon, 2017; see nannofossil zones). Species of 
nannofossil previously recorded at or close to the base of 
M18r are now seen to have their earliest FOs in M19n (Fig. 2).

Salient amongst fossil markers were the two levels based 
on ammonites, selected by successive international confer-
ences, the Grandis Subzone (Colloquium, 1965) and the Ja-
cobi Subzone (Colloquium, 1975), and the base of the cal-
pio nellid Alpina Subzone, which in recent decades has 
largely replaced any ammonite datum as the primary marker 
in multiple publications. These have already been discussed 
above. The problems with definition of the base of the Jacobi 
Zone, and the identification and vertical range of the no-
minal index (Strambergella jacobi) have been fully dis-
cussed (Frau et al., 2016b). The Grandis Subzone is dis-
cussed in the Ammonite chapter herein. Suffice it to say that, 
in documenting dozens of localities (and literature sources), 
we have not found it possible to easily define either subzone 
in a clear-cut fashion and in the traditional way. This only 
discusses sequences that yield ammonites: the lack of am-
monites in multiple key sections across Tethys has made 
them even less of an option for stage definition.

At multiple WG meetings we have re-affirmed our early 
decision that the group should seek a GSSP that yielded, at 
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least, ammonites, calpionellids, nannofossils and magneto-
stratigraphy, so as to give the greatest correlation potential. 
This opinion was last confirmed during our meeting at the 
Vienna Cretaceous Symposium in 2017.

These investigations, results and conclusions led the 
Working Group to the determination that the consensus of 
recent years was correct: that a calpionellid datum linked to 
magnetostratigraphy, and supported by nannofossils and 
ammonites, where present, was the best option to define the 
stage base. The fact that the group had documented and as-
sessed so many localities gave the assurance that this con-
clusion was founded on the strongest factual basis. By the 
time of our 2014 WG meeting in Warsaw, there was a clear 
consensus that Calpionella alpina was the best candidate as 
a primary stage marker (Wimbledon, 2014).

In summary, the correlative framework for the base of 
the Berriasian can be shown as in Figure 5. This is the latest 
iteration of the table, the earliest (2011) version of which 
was used by Gradstein et al., 2012. In the latest version, 
a range of fossil groups are used for definition of the boun-

dary: calpionellids, supported by calcareous nannofossils, 
ammonites, belemnites and radiolaria. The widespread level 
chosen as the primary marker for the stage base is the base 
of the Alpina Subzone (and the calpionellid turnover it indi-
cates) in mid M19n.2n, and it is closely matched by the FO 
of Nannoconus steinmannii minor. Several taxa of nannofos-
sil (N. wintereri, H. strictus, C. cuvillieri and N. globulus glo
bulus) make their first appearances just below, in M19n.2n. 
The base of the subzone is precisely dated in the Andes, at 
140.22 ±0.14 Ma. In boreal and subboreal basins the Arcto
teuthis tehamaensis Zone has its base in the middle of 
M19n.2n. This and the base of radiolarian zone UZ 14, close 
above the base of the Alpina Subzone, provide widespread 
key proxies for the primary stage marker. And though the 
basal ammonites of the Jacobi Zone cannot be helpful in de-
fining a mid-M19n.2n boundary, the first appearance of Del
phinella there already provides a useful surrogate for the 
Alpina base in western Tethys; and it is hoped this observa-
tion may be extended to other regions where the genus has 
been recorded. 

α Colloquium decision on J/K boundary, published 1965
β Colloquium decision on J/K boundary, published 1975
A.n. Argentiniceras noduliferum Zone
T. Titanites anguiformis Zone
Cr./Ch. Crassicollaria/Chitinoidella zones
UZ Radiolarian Unitary Zone (adapted from Baumgartner et al.,. 1995) 
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Fig. 5. Correlative framework for the Upper Tithonian to Berriasian interval, with directly correlatable primary and secondary markers  
for the boundary level indicated, as well as proxies
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6.1.1. Selection of the primary marker  
for the base of the Berriasian Stage – June 2016

In 2016, after documentation and consideration of sites 
in Europe, North Africa, North and South America and Asia, 
the Berriasian Working Group held a formal vote. The pro-
posal was that the base of the Calpionella alpina Zone be 
selected as the primary marker for the Tithonian/Berriasian 
boundary. This level was proposed on the judgement that it 
provided the best marker, and one that it allowed correlation 
over the greatest part of the globe. 75 people voted: with 
2 abstaining, 16 voting “no” and 57 voting “yes”. That is, 
a 76% majority. 

6.1.2. Kroměříž meeting – May 2018

The purpose of this meeting was to consider a shortlist 
of contender GSSP candidates. After individual presenta-
tions on particular sites, consideration of the International 
Commission on Stratigraphy’s guidelines for selection of 
chronostratigraphic units, and mention of the already agreed 
parameters for a preferred Berriasian GSSP, there followed 
a discussion of localities showing a good magnetostratigra-
phic record and the calpionellid primary marker, (small or-
bicular) C. alpina, with supporting nannofossil and ammo-
nite datums. Key documented localities were demonstrated 
in Tithonian/Berriasian correlation charts. The discussion, in 
particular, included mention of the locality of Berrias, and 
the more useful localities of Puerto Escaño, Brodno, Fiume 
Bosso, the Drôme/Hautes-Alpes (Vocontian Basin) plexus 
of complementary sites (Tré Maroua , Le Chouet, Font de St 
Bertrand, Haute Beaume, and Charens), Torre de’ Busi, Rio 
Argos, and Kurovice. The pros and cons of these localities, 
some of which had been recently published, were discussed, 
and are (briefly) as follows.

The locality of Berrias was earlier ruled out as a con-
tender: the outcrop ends before the base of either the Alpina 
Subzone or the ammonite Jacobi Zone is reached: though 
the site is still being studied by the Working Group for the 
upper Lower, Middle and Upper Berriasian. The adverse 
rosso ammonitico facies at Puerto Escaño were noted, as 
were earlier comments (C. Casellato) about the condensa-
tion of the FADs of nannofossil marker species, supported in 
the discussion (K. Stoykova), though the very good palaeon-
tological record still was emphasised (M. Košťák). Brodno 
is well documented, but had been understood since our ear-
liest WG meetings to lack much of magnetozone M18r, and 
to have a weaker record of nannofossils in the upper part of 
M19n. Fiume Bosso remained a strong contender: there cal-
pionellids have been re-collected and revised in the Chiti-

noidella-Ferasini interval described by Houša et al. (2004), 
and a nannofossil revision was at the time still in progress. 
The top and base of the Alpina Subzone show slight changes 
in position from those published previously. Torre de’ Busi 
appeared to be a good prospect in 2010, but its calpionellid 
zonation shows some aberrant features, notably the very 
high placing of the base of the Alpina Subzone. The Vocon-
tian plexus of sites are geographically closely spaced and 
show a detailed composite record, with good calpionellid 
preservation, essentially showing the same Tithonian-Ber-
riasian facies succession and overlapping stratigraphic inter-
vals within the pre-Chitinoidella Zone to Oblonga Subzone 
biozonal range so far documented. The need for description 
of the local sedimentary context was stressed (J. Grabow-
ski), and the fact that Haute Beaume (near to Le Chouet) 
lacks breccias, as does most of the more distant Tré Maroua 
section was noted (C. Frau).

Two sites where great hopes were entertained in earlier 
times have proved to be a considerable disappointment: 
Theodosia, because, though it has ammonites, nannofossils 
and magnetostratigraphy, no coherent calpionellid zonation 
can be constructed; whereas Rio Argos yields ammonites, 
nannofossils and calpionellids, but is entirely remagnetised 
(Hoedemaeker et al., 1998). Kurovice shows a good fossil 
record, though it has three tectonised intervals which closely 
bracket the calpionellid Alpina zonal base, and it lacks am-
monites (M. Košťák); cal pionellid preservation is poorer 
than, for instance, France (D. Reháková).

Velikyi Kamianets, then being documented, was also 
mentioned (J. Grabowski): though some uncertainty over 
the position of the Alpina/Ferasini subzonal boundary meant 
that it did not qualify as a contender site. 

Therefore, in summary, Berrias (France), Theodosia 
(Ukraine), Torre de’ Busi (Italy), Brodno (Slovakia) and Rio 
Argos (Spain) were considered less suitable; Fiume Bosso 
(Italy) and the Vocontian Basin sites (France) were judged to 
be better candidates; and question marks remained over the 
localities of Puerto Escaño and Kurovice. This is tabulated 
below in Table 3.

Subsequent to the group discussion, J. Grabowski wrote 
suggesting we should include mention of a site not proposed 
and discussed at the Kroměříž business meeting – Lókút, 
and P. Pruner suggested another – Nutzhof. And these addi-
tional notes in the same format were circulated to the Work-
ing Group (see Table 4).

In the consultation of the whole group that followed, no 
adverse comment was lodged on the shortlisting of Fiume 
Bosso and the Vocontian Basin sites as the rival GSSP con-
tenders. In conclusion, it is perhaps worth stating that during 
the consultation on the GSSP vote, no other site from any 
other region was suggested or proposed.
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6.1.3. GSSP vote

By May 2019 documentation of Fiume Bosso and Tré 
Maroua (with complementary local sites) had been complet-
ed, and a one-month consultation was held within the Work-
ing Group to consider the site data that had been circulated. 
Next followed a one-month voting period. In the ballot, 52 
people voted: with 5 abstaining, 9 voting for Fiume Bosso 
and 38 voting for Tré Maroua. That is, a 73% majority.

The documentation available on Tré Maroua will be pre-
sented in Part 2 of this work.
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Appendix 1

 LOCALITIES STUDIED BY THE BERRIASIAN WG

Argentina
Las Loicas
Arroyo Loncoche

Bulgaria

Barlya 
Berende
Kopanitsa
Gintsi

California

Elder Creek
Grindstone Creek
Thomes Creek
Watson Creek
Hull Road

Czech Rep.
Kurovice
Štramberk

France 

Le Chouet
Font de St Bertrand
Charens
Haute Beaume
Tré Maroua 
Berrias

Hungary Lókút

Iraq
Garagu
Banik

Iran Shal

Italy

Torre de’ Busi
Fonte de Giordano
Fiume Bosso 
Arcevia
(Col Santino)
(Cortese quarry)

Mexico

Apulco
Mazatepec
San Jose de Iturbide
Tamazanchule
St Mateus, Zacatecas
San Pedro de Gallo

Russia

Ussuri Bay
Nordvik
River Maurynya
River Yatria
Gorodishche
Kashpir

Slovakia

Strapkova
Brodno
Hlboča
Snežnica

Spain
Puerto Escaño
Rio Argos

Tibet
Tingri
Gyangze
Nagarze

Tunisia
Beni Kleb
Sidi Kralif
Rheouis

Poland Pośrednie

Ukraine

Theodosia
Ili Burnu
Krasnosilivka
Yuzhnoe
Velykyi Kamianets
Balki

Yemen
Wadi Arus 
Mintaq Salt Dome

Australia Broome peninsula

China
Beipiao, (western Liaoning)
Pingquan (northern Hebei)

UK

Durlston Bay
Mupe Bay
Lulworth Cove
Portland quarries
Freshwater Bay
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Appendix 2 

LOCATIONS AND DATES OF BERRIASIAN WORKING GROUP MEETINGS

2007 – Bristol (United Kingdom) – working group first convened
2008 – Marseille (France)
2009 – Milan (Italy) and Plymouth (United Kingdom)
2010 – Smolenice (Slovakia) and Paris (France)
2011 – Sofia (Bulgaria)
2012 – Tunis (Tunisia) and Prague (Czech Republic)
2013 – Warsaw (Poland)
2014 – Copenhagen (cancelled)
2015 – St Privat, Gard (France)
2016 – Smolenice (Slovakia)
2017 – Vienna(Austria) (part of the Vienna Cretaceous Symposium) 
2018 – Kroměříž (Czech Republic)
2019 – Bratislava (Slovakia)


