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Abstract 
Micro-buckling of unidirectional fiber-reinforced composites is in-
vestigated in this paper by means of an explicit representation of a 
geometrically imperfect fiber within the context of kinematical and 
material non-linear behavior. Two types of fiber imperfections are 
considered: a helicoidal shape, identified as 3D imperfection; and a 
sinusoidal plane shape (2D imperfection). Both imperfection models 
are characterized by a maximum misalignment angle of the fiber 
with respect to the ideal or perfect configuration, as is usually con-
sidered in this field. A total of 816 cases were computed in terms of 
imperfection type (either 2D or 3D), fiber volume fraction, fiber 
arrangement (square or hexagonal array), orientation for 2D mod-
els, matrix yield stress, and misalignment angle. Two load cases, with 
constrained and unconstrained transverse strain, were considered. 
Assuming periodic boundary conditions, homogenization was car-
ried out to obtain macroscopic stresses. Numerical results are com-
pared with an analytical model available in the literature. The results 
show a high imperfection-sensitivity for small misalignment angles; 
on the other hand, the type of imperfection and the fiber arrange-
ment do not have a large influence on the results. In addition, it was 
found that this problem is governed by fiber volume fraction and 
matrix yield stress only for small imperfections, whereas for large 
misalignment angles, a change in fiber volume fraction produces 
small changes in micro-buckling stress. 
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1 INTRODUCTION 

In the context of fiber-reinforced composite materials, the term fiber micro-buckling refers to the buck-
ling of fibers involving transverse displacements under compression in the direction of the fiber. By 
analogy with a structural behavior, micro-buckling is frequently modeled as the buckling of a column 
which is laterally supported on an elastic matrix. This problem has attracted a number of researchers, 
starting from the pioneer work of Rosen (1965). There are two general ways in which such instability 
can occur: either due to elastic buckling of the fiber involving deformations of the matrix (a problem 
which is usually called micro-buckling), or by plastic deformations (called kinking), as reported by 
Budiansky and Fleck (1993). Comparison between both modes has been made by Sun and Tsai (2001) 
among others: both are seen to be different problems and involve different assumptions; however, 
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these authors concluded that the loads (stress fields) found at buckling or kinking are not very differ-
ent. 
 Micro-buckling may occur in mainly two modes: in a periodic (or “in-phase”) mode there are peri-
odic deformations of the fibers and shear of the matrix but no significant transverse deformation oc-
curs. Micro-buckling can also occur in a non-periodic (or “out-of-phase”) mode, in which shear is negli-
gible and buckling is dominated by transverse deformations, much in the form of a beam on an elastic 
foundation. Both cases were discussed by Rosen (1965) and were reviewed in the classical text by 
Jones (1975). Regarding stability of the post-critical path, Maewal (1981) anticipated a stable post-
buckling behavior for the in-phase problem. On the other hand, Yurgartis and Sternstein (1994) per-
formed tests that showed the detrimental influence of fiber misalignment on the micro-buckling pro-
cess, a behavior that is typical of unstable postbuckling. 
 Tomblin et al. (1997) investigated imperfection-sensitivity of fiber micro-buckling as a consequence 
of fiber misalignment under compression in the direction of the fiber within the framework of the gen-
eral theory of elastic stability. Material nonlinearity was introduced in the shear constitutive equations 
by means of a hyperbolic relation, and the adopted RVE focused on in-phase modes. This led to the 
identification of an unstable symmetric bifurcation behavior for a RVE, in which a 2/3 power law was 
found to characterize the imperfection-sensitivity caused by fiber misalignment. Such deterministic 
theoretical results indicated the nature of the expected unstable behavior and were followed by proba-
bilistic studies by Tomblin and Barbero (1997) and Barbero (1998). 
 The importance of stacking sequence on micro-buckling was highlighted by Drapier et al. (1996) 
with reference to bending tests which were performed to identify limit states under compression. Ra-
ther than considering a UC, these authors took into account a two-dimensional model of a homogenized 
laminated composite. For the same periodic configuration of fiber misalignment (under an in-phase 
mode), a nonlinear Finite Element model of a unidirectional carbon-fiber and epoxy-matrix composite 
was used (Drapier et al., 1998). The results under compression with misalignment showed significant 
loss of stress carrying capacity, exhibiting high imperfection-sensitivity. This was the first numerical 
study to quantify the effect of geometric imperfections on micro-buckling. 
 Consideration of waviness in other composites, such as biaxial and triaxial textile composites, was 
recently addressed by Mallikarachchi et al. (2013), Kueh (2013, 2014), and Rasin et al. (2016). 
 All models reported in the literature were based on a two-dimensional idealization of fiber wavi-
ness, whereas in reality the fiber may adopt a 3D helicoidal shape rather than a 2D sinusoidal one. Nev-
ertheless, the 2D idealization is often used to calculate imperfection sensitivity of fiber micro-buckling 
because it is mathematically tractable. Therefore, a pressing question is whether or not a 2D approxi-
mation is sufficiently accurate with respect to a 3D one, and thus the motivation for this work in which 
a more detailed model and refined results are discussed. 
  
2 MODEL 

2.1 Framework of analysis 

At a unit cell level, a composite is modeled in this work by means of computational micro-mechanics 
(see, for example, Zohdi and Wriggers, 2008); in which there are macro and micro scales. This method-
ology has been employed to model a wide range of heterogeneous materials, such as particle-reinforced 
composites (Li and Wongsto, 2004); and fiber-reinforced composites (Car et al., 2002). Matrix and fiber 
are modeled as two separate materials at the micro scale; whereas a single homogenous material 
(which is assumed to have an equivalent behavior to the heterogeneous fiber-matrix material) is taken 
into account at the macro scale. In a periodic heterogeneous material, this UC is employed to recon-
struct the composite material by means of a repetitive pattern, as shown in Figure 1. 
 



N. D. Barulich et al. / On micro-buckling of unidirectional fiber-reinforced composites by means of computational micromechanics   3 

Latin American Journal of Solids and Structures xx (20xx) xxx-xxx 

 

 

Figure 1: Unit cell Example of a two-dimensional periodic material. 
 

 In computational micro-mechanics, a UC is considered with given boundary conditions and under a 
specific load configuration. With the solution of the stress field at the UC level, usually known as micro-
scopic stresses, a post-process follows to evaluate the stress field in an equivalent homogeneous mate-
rial, usually known as macroscopic stresses. This process at the micro level is carried out in this work 
using a Finite Element approximation. The model employed in this work is discussed in this section, 
including UC geometry, boundary conditions, and constitutive materials. The stability analysis is per-
formed by means of the general purpose Finite Element code ABAQUS (2009). 
 

2.2 Unit cell geometry 

A UC shown in Figure 2a was used in this work to represent the microstructure in the periodic compo-
site together with the geometric deviations with respect to an ideal or perfect configuration. The UC is 
constructed by means of the scan of a transverse section (see Figure 2b) by introducing displacements 
without rotation along the curve that defines the fiber along the imperfect location (imperfection lines, 
shown in Figure 3). Finite Element models were investigated by assuming hexagonal (designated as 
Hx) and square (Sq) fiber arrangements, which are shown in Figure 2b. This allows representation of a 
three-dimensional periodic microstructure, leading to a geometry that can be easily meshed. 

 

 (a) (b) 

Figure 2: (a): Unit cell. (b): Transverse sections (fiber arrangements). 

 
 For a given fiber radius Rf, the dimensions of the UC were calculated based on fiber volume fraction 
Vf and the ratio between fiber length Lf and diameter Df, i.e.  = Lf/Df. Since a first order computational 
micromechanics technique is employed in this work, absolute UC dimension values, such as fiber radius 
Rf, would not affect results. Higher order homogenization theories would be necessary to take into 
account such absolute UC dimensions, as explained by van Dijk (2016) among others. The angle  is 
equal to 60º in Hx, and 90º in the Sq configuration (see Figure 2). The value of b in Figure 2 is given by 
 

4 sin( )
b Rf

Vf
 (1) 
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2.3 Fiber imperfections 

Two types of imperfections with respect to a straight fiber were considered in this work: (i) Three-
dimensional (3D) deviations, with the fiber having a helicoidal shape; (ii) Two-dimensional (2D) devia-
tions following a sinusoidal shape. In their initial positions, the fibers are assumed to be in phase. As 
shown in Figure 3, the 3D imperfection is contained in a cylinder whereas the 2D imperfection lies in a 
plane. 
 With reference to Figure 3, perfect alignment would be given by a fiber placed in the direction of 
axis x1; a 2D imperfection has been illustrated in the plane containing axis x1 and has a given angle  
measured with respect to the plane x1-x2; in other words,  defines the orientation of the plane where 
the 2D imperfection develops. Following the usual definitions in the micro-buckling field, both imper-
fections have a maximum angle of misalignment () of the fiber with respect to axis x1. 
 The difference between angles  and  should be emphasized. The orientation of the plane which 
contains the imperfect fiber in the 2D model is ; whereas  is the maximum angle of the fiber with 
respect to axis x1. Thus, angle  has relevance in a 2D model, but  is a relevant parameter in both 2D 
and 3D models. 
 The Cartesian equations of the 2D imperfection line are given by 
 

2 1

3 1

2
tan( )cos( )sin

2
2

tan( )sin( )sin
2

Lf
x x

Lf
Lf

x x
Lf

 (2) 

 The equations for a 3D imperfection line are 
 

2 1

3 1

2
sin

2
1 cos

c

c

x r x
Lf

x r x
Lf

 (3) 

  
where rc is the radius of the cylinder which contains the helicoid. This value may be obtained from the 
expression 
 

2 tan
2

c
Lf

r  
(4) 

 

(a) 
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(b) 

Figure 3: Definition of imperfection. (a): 2D model; (b) 3D model. 

 

2.4 Periodic boundary conditions  

Periodic boundary conditions (PBC) were used to represent a periodic microstructure. PBC are de-
scribed at large in the literature on computational micro-mechanics, such as Li and Wongsto (2004), 
Sharma et al. (2014), among others; they were also used by Kueh and Pellegrino (2007) and by Mal-
likarachchi et al. (2011) by means of 1D beam elements for 2D structures. 
 To model the micro-structure in a periodic material it is possible to employ the concept of periodici-
ty vectors (Oller et al., 2005; Car et al., 2002). Following the nomenclature adopted in Zahr-Viñuela and 
Pérez-Castellanos (2011), two points in a microstructure are identified as “corresponding points” if the 
position of one of them may be obtained as the position of the other one plus a linear combination of 

the periodicity vectors using integer coefficients. To illustrate the concept, periodicity vectors 1P  and 

2P  are shown in Figure 4. The points in pairs: (C0; C1), (C0; C2) and (C0; C3) are corresponding points. 

 

 

Figure 4: Corresponding points. 

 
 Three vectors of periodicity, shown in Figure 5, were used in this work. 
 

2 RfP1 i ; 2bP2 j ; 2 cos( 2 sin() )b bP3 j k  (5) 

where , ,i j k  are unit vectors in the coordinate directions x1, x2, and x3. 
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Figure 5: Periodicity vectors used in this work. 
 

 The boundary conditions are relations involving the forces and displacements at the boundary of 

the cell (Li and Wongsto, 2004). If the traction at a boundary point and its corresponding point are +t  

and t  respectively, then the following condition should be satisfied at all boundary pairs of points 

t t  (6) 

 

 Assuming that the displacements at a boundary point are written as u  and at its corresponding 

point as u , then the condition 
0u u Pε  (7) 

 
applies at all boundary points, where 0 is the macroscopic strain tensor; and P  is a periodicity vector 
(or a linear combination of them) which satisfies the condition 
 

P X X  (8) 

 

where X  and X
 
are the coordinates of each node of the considered couple, for which the displace-

ments are u  and u . 
 For a UC modeled by Finite Elements, it is only necessary to specify the conditions (7) for the dis-
placements at the boundary. The conditions (6) for the boundary tractions are automatically satisfied 
because a displacement-based variational Finite Element formulation is employed, as explained by Li 
and Wongsto (2004). 
 There are several ways to implement the conditions (7) in practice, including Lagrange multipliers 
or a penalty formulation. In this work, periodicity was implemented by means of multipoint linear con-
straints (using the *EQUATION command in ABAQUS). Basically, following (7), the scalar equation 
 

1 2 3 0i i i x i y i zu u U P U P U P  (9) 

 
(for i=1, 2, 3) holds, where Ui j are the displacement components in direction i of the additional node j 
that has been included as a control node. Three control nodes have been selected in this work, and a 
boundary condition is assigned to them in terms of the components of the macroscopic strain tensor 
which is to be imposed on the UC: 
 

0j
i ijU  (10) 
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 To avoid problems with units, equations (9) and (10) are assumed to include a unit coefficient to 
homogenize units. Equations (7) are thus implemented by use of equation (9) and boundary conditions 
(10). 
 Some further details need to be considered. When implemented using multipoint linear constraints 
in a program like ABAQUS, the first degree-of-freedom involved in equation (9) is eliminated as an un-
known from the problem and cannot be further employed in new restrictions or in other boundary 
conditions. For this reason, the equations that are included in the programming should be selected to 
achieve an effective enforcement of all necessary relationship at the UC boundary. Following this pro-
cedure it is possible to select the conditions to be employed and avoid problems with missing degrees-
of-freedom. 
 Boundary faces, edge lines, and vertices, are identified in Figure 6. 

   
 (a)                                          (b)                                            (c) 

Figure 6: Identification of (a) faces, (b) edges, and (c) vertices. 

 
All equations to be implemented have the form of equation (9), but for each pair of nodes it is necessary 
to specify the associated vector P . As an example, consider a couple of faces, such as R and L in Figure 
6, and corresponding nodes on each face. Equation (9) establishes the condition for this pair of nodes, 
and for any other pair of corresponding nodes on faces R and L with vector of periodicity P1 : 
 

1 2 31 1 1 0R L
i i i x i y i zu u U P U P U P  (11) 

 
 A summary of the P  vectors to be used with each pair of nodes on faces, edges, and vertices is given 
in Tables 1 to 3 for the first and second degree of freedom (DOF) in equation (11). This procedure al-
lows implementation of any macroscopic strain. 
 

1st DOF 2nd DOF P   1st DOF 2nd DOF P   1st DOF 2nd DOF P  

R L P1   V2 V1 P1   E3 E1 P2  
S I P2   V5 V1 P2   E11 E1 P3  
F P P3   V3 V1 P3   E12 E1 P2 +P3  

    V4 V1 P1  + P3   E8 E5 P1  
    V7 V1 P2  + P3   E7 E5 P2  
    V6 V1 P1  + P2   E10 E5 P1  +P2  
    V8 V1 P1  +P2  + P3   E4 E2 P1  

        E6 E2 P3  

        E9 E2 P1+P3  

 

Table 1, 2 and 3: P  vectors of different pairs of faces, edges and vertices. 

 

2.5 Load Cases 

Under compression in direction x1, a single lamina can freely deform in the transverse directions. How-
ever, if it is used as part of a laminate, then it cannot deform transversely in the same way because oth-
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er laminae produce an effect of transverse constraint. The question arises regarding how this may in-
fluence the micro-buckling of a fiber which is part of a laminate? To distinguish between possible situa-
tions, two loading cases are considered in this work: one with constrained transverse strain and anoth-
er one without such constraint. Notice that the first case is not fully representative of the strain state of 
a lamina in a laminate, but it may be seen as a limiting condition. 
 Both loading cases are deformations without macroscopic distortions, i.e. the macroscopic strain 
tensor has zero off-diagonal components and a compressive component 11. In one case (which is iden-
tified as case A) the transverse strain components are not specified, so that the UC can expand in the 
transverse directions while being under 11 compression. In the other load case (identified as case B) 
the transverse strain components are zero, with the consequence that no lateral expansion occurs un-
der axial compression. 
 Implementation of load cases A and B described above is done through boundary conditions, eq. 
(10), applied on displacements at control nodes since they are directly related to macro strain compo-
nents. In load case B, all displacements are specified; this means that all macroscopic strain compo-

nents 0
ij  are imposed. For load case A, boundary conditions related to 0

11  diagonal component and 

zero off-diagonal components are imposed; whereas the displacements of control nodes related to 

transverse strains 0
22  and 0

33  
are kept as degree of freedoms in the model, and they can be obtained 

from the numerical solution of the UC. 
  
2.6 Fiber and matrix materials 

In order to investigate imperfection sensitivity, this model includes two sources of non-linearity: The 
epoxy matrix is modeled as a non-linear material, whereas the strain-displacement relations are geo-
metrically non-linear. The nonlinear equilibrium paths are followed using the Riks algorithm in 
ABAQUS (2009). 
 To illustrate the micro-buckling behavior, a composite made of glass fibers and epoxy matrix was 
considered having Rf = 3.5 x10-6 m. Both constituent materials were assumed to be isotropic: the fiber 
was modeled as linear elastic with modulus Ef = 84 GPa, and Poisson’s ratio f = 0.22, whereas the ma-
trix was modeled as an elasto-perfectly plastic material with Em = 4 GPa and m = 0.38. Two yield 
stresses for the matrix material were considered with values given by y = 48.26 MPa and y =100 
MPa. An associative flow rule was used together with von Mises yield surface. 
 
2.7 Post-processing and Finite Element mesh 

The macroscopic Cauchy stress tensor, kij, is computed, as in many other works, as 
 

1

1 N k
ij ij k

k

V
V

 (12) 

 
where kij is the ij component of the microscopic Cauchy stress tensor at Gauss point k in the Finite 
Element mesh that covers the UC; Vk is the integration weight (in terms of volume associated with the 
Gauss point k) for a mesh with N Gauss points and, V is the current volume of the UC. 
 Approximately 30,000 elements (C3D8 in the ABAQUS library, a solid 8-node linear brick) were 
used in the Finite Element mesh. This element does not have volumetric locking when used in plasticity 
problems. Meshes with 200,000 elements were also used in some configurations to test convergence. 
The maximum stress changed less than 0.7% respect to values reported in the following Section. 
3 RESULTS AND DISCUSSION 
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Under load condition A, 384 cases were solved for this work, whereas 432 cases were computed for 
load condition B. The cases cover changes in the variables of interest, which include the type of imper-
fection (either 2D or 3D); orientation angle  of the 2D imperfection; configuration of fiber arrange-
ment; matrix yield stress y; fiber volume fraction Vf, and misalignment angle . Cases with Vf = 10%, 
30%, 50% and 70% were investigated, together with values of angle  between 0.01º and 20º and  = 
Lf/Df between 12.5 and 200 to have a wide perspective of the phenomenon covering results reported 
in experimental tests; as a reference value, Jochum and Grandidier (2004) measured values of  be-
tween 20 and 50 with misalignment angles up to 10º. 
 To facilitate the presentation of results, each case was identified with a group number ranging from 
1 to 24, a letter to identify the load case, the misalignment angle, and the yield stress of the matrix. 
Group numbers are given for a Vf value, a type of imperfection, a specific fiber arrangement, and an 
angle  (in cases of 2D imperfection). The codification is shown on Tables 4 to 7. For example, Group 4 
includes cases with Vf = 70%, Sq arrangement, 2D imperfection, and = 0. 
  

3.1 Equilibrum paths 

Equilibrium paths are shown in Figure 7 for selected cases of Groups 4A and 4B (Vf = 70%, 2D imper-
fection, square fiber array,  = 0) and y = 48.26 MPa, whereas values of misalignment angles are given 
in each case. Notice that because only compressive behavior is of interest for micro-buckling, negative 
values of strain and stress are reported. For small deviation angles, the equilibrium path is fairly linear 
and reaches a maximum value at a bifurcation load; then the path drops in the post-buckling path. For 
large deviation angles, the equilibrium path exhibits nonlinearity until a maximum is reached; this is a 
limit point in the nomenclature of the theory of elastic stability (see, for example, Godoy, 2000); then, 
the path drops in an unstable behavior. 
 

(a) 

Figure 7: Equilibrium paths for selected cases of Group 4 as a function of misalignment angle . Results for y = 48.26 
MPa. (a): Unconstrained load case A; (b): Constrained load case B. 
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(b) 

Figure 7 (cont.): Equilibrium paths for selected cases of Group 4 as a function of misalignment angle . Results for y = 
48.26 MPa. (a): Unconstrained load case A; (b): Constrained load case B. 
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Misalignement angle 

0.01º 0.1º 1º 2.5º 5º 10º 15º 20º 

1 

70 

3D 
Hx - 3.706 2.591 1.023 0.558 0.318 0.177 0.130 0.106 

2 Sq - 3.960 2.674 1.011 0.552 0.321 - - - 
3 

2D 

Hx 0º 3.752 2.639 1.158 0.592 0.372 - - - 
4 Sq 0º 3.987 2.677 1.017 0.561 0.335 - - - 
5 Hx 30º 3.624 2.636 1.087 0.575 0.336 - - - 
6 Sq 45º 3.965 2.794 1.179 0.627 0.358 - - - 
7 

50 

3D 
Hx - 2.303 1.702 0.813 0.479 0.286 0.162 0.116 0.093 

8 Sq - 2.329 1.681 0.809 0.479 0.287 0.162 0.117 0.094 
9 

2D 

Hx 0º 2.346 1.744 0.867 0.519 0.318 0.207 - - 
10 Sq 0º 2.337 1.724 0.756 0.487 0.304 0.195 - - 
11 Hx 30º 2.333 1.722 0.824 0.495 0.306 0.201 - - 
12 Sq 45º 2.379 1.787 0.878 0.516 0.312 0.241 - - 
13 

30 

3D 
Hx - 1.480 1.146 0.626 0.398 0.256 0.152 0.110 0.088 

14 Sq - 1.505 1.157 0.624 0.397 0.255 0.151 0.110 0.088 
15 

2D 

Hx 0º 1.525 1.175 0.656 0.426 0.284 0.184 0.149 0.128 
16 Sq 0º 1.515 1.150 0.643 0.417 0.280 0.179 0.142 0.121 
17 Hx 30º 1.521 1.161 0.651 0.419 0.281 0.181 0.147 0.128 
18 Sq 45º 1.529 1.177 0.660 0.425 0.283 0.184 0.150 0.130 
19 

10 

3D 
Hx - 0.851 0.674 0.419 0.296 0.206 0.132 0.099 0.081 

20 Sq - 0.845 0.672 0.418 0.296 0.206 0.132 0.099 0.081 
21 

2D 

Hx 0º 0.857 0.685 0.430 0.311 0.229 0.157 0.125 0.105 
22 Sq 0º 0.852 0.681 0.430 0.311 0.228 0.157 0.123 0.104 
23 Hx 30º 0.855 0.689 0.428 0.312 0.228 0.157 0.124 0.104 
24 Sq 45º 0.862 0.681 0.429 0.313 0.228 0.157 0.125 0.105 

 
Table 4: Limit stresses in [GPa] for unconstrained load case A and y = 48.26 MPa. 
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1 

70 

3D 
Hx - 4.839 3.624 1.787 1.019 0.607 0.340 0.249 0.202 

2 Sq - 5.162 3.758 1.647 1.008 0.607 0.348 0.259 0.216 

3 

2D 

Hx 0º 4.889 3.652 1.875 1.134 0.686 - - - 

4 Sq 0º 5.157 3.701 1.722 1.008 0.617 - - - 

5 Hx 30º 4.880 3.641 1.824 1.068 0.631 - - - 

6 Sq 45º 5.293 3.973 1.932 1.098 0.676 0.432 - - 

7 

50 

3D 
Hx - 2.964 2.364 1.324 0.853 0.536 0.312 0.229 0.185 

8 Sq - 2.986 2.292 1.294 0.847 0.537 0.315 0.231 0.188 

9 

2D 

Hx 0º 2.982 2.300 1.346 0.872 0.590 0.372 0.308 - 

10 Sq 0º 2.984 2.368 1.325 0.871 0.559 0.356 0.292 - 

11 Hx 30º 2.978 2.392 1.369 0.887 0.563 0.365 - - 

12 Sq 45º 3.028 2.435 1.402 0.873 0.580 0.373 0.312 - 

13 

30 

3D 
Hx - 1.928 1.576 0.978 0.681 0.466 0.289 0.215 0.175 

14 Sq - 1.925 1.577 0.977 0.680 0.467 0.290 0.216 0.176 

15 

2D 

Hx 0º 1.943 1.594 1.015 0.717 0.504 0.333 0.272 0.236 

16 Sq 0º 1.931 1.570 0.997 0.705 0.496 0.327 0.263 0.227 

17 Hx 30º 1.943 1.585 1.006 0.710 0.498 0.330 0.271 0.237 

18 Sq 45º 1.929 1.601 1.001 0.719 0.502 0.333 0.275 0.24 

19 

10 

3D 
Hx - 1.134 0.936 0.635 0.480 0.358 0.246 0.192 0.160 

20 Sq - 1.132 0.930 0.637 0.480 0.358 0.246 0.192 0.160 

21 

2D 

Hx 0º 1.138 0.937 0.654 0.508 0.391 0.286 0.234 0.201 

22 Sq 0º 1.137 0.944 0.659 0.507 0.391 0.286 0.233 0.199 

23 Hx 30º 1.139 0.944 0.654 0.508 0.391 0.287 0.234 0.202 

24 Sq 45º 1.138 0.944 0.660 0.508 0.392 0.287 0.235 0.203 

 
Table 5: Limit stresses in [GPa] for unconstrained load case A and y = 100 MPa. 

 
 A comparison of load cases A and B shows that the slope is slightly higher in cases B, because the 
transverse strain has been constrained. 
 Equilibrium paths for various misalignment angles , for Groups 4A and 4B and y = 48.26 MPa, are 
plotted in Figure 8. The scale has been modified with respect to Figure 7 to highlight details of the 
curves. 
 For configurations with moderate imperfections  there are local maximum points in the equilibri-
um paths. But for large values of  the maximum vanishes, with the consequence that the stress in-
creases with a compressive strain without crossing a singularity in the path; micro-buckling does not 
occur in such cases and the problem is governed by large displacements. This behavior of having a lim-
iting angle  for which the maximum ceases to exist, occurs in most groups studied and is typical of 
shell buckling problems (Godoy, 2000). 
 Values of the maximum loads (a limit point in the equilibrium path) in each case are shown in Ta-
bles 4 to 7. In groups for which a value is missing means that a maximum in the path was not found, i.e. 
micro-buckling did not occur. For all cases in Tables 4 to 7 a value of  = 50 was assumed. Such value 
was selected based on results of experimental tests reported in the literature. Moreover, to illustrate 
the influence of , cases with  between 12.5 and 200 were solved for Groups 1, 7, 13, and 19 (3D im-
perfection and Hx fiber array), load case B,  = 0.01º and y = 48.26 MPa. Results of maximum stresses 
are shown in Figure 9 and they show a small change in limit stress for high  values. 
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0.01º 0.1º 1º 2.5º 5º 7.5º 10º 15º 20º 

1 

70 

3D 
Hx - 4.958 3.388 1.303 0.637 0.381 - - - - 

2 Sq - 5.156 3.363 1.145 0.633 - - - - - 

3 

2D 

Hx 0º 5.001 3.451 1.350 0.741 0.437 - - - - 

4 Sq 0º 5.203 3.387 1.257 0.675 - - - - - 

5 Hx 30º 5.021 3.419 1.302 0.679 - - - - - 

6 Sq 45º 4.559 3.242 1.375 0.730 - - - - - 

7 

50 

3D 
Hx - 3.138 2.301 1.023 0.592 0.351 - - - - 

8 Sq - 3.145 2.267 0.992 0.575 0.353 - - - - 

9 

2D 

Hx 0º 3.171 2.345 1.088 0.630 0.387 - - - - 

10 Sq 0º 3.143 2.281 1.040 0.602 0.368 - - - - 

11 Hx 30º 3.155 2.322 1.065 0.608 0.367 - - - - 

12 Sq 45º 3.224 2.346 1.102 0.625 0.375 - - - - 

13 

30 

3D 
Hx - 2.163 1.590 0.834 0.526 0.338 - - - - 

14 Sq - 2.159 1.590 0.834 0.526 0.339 - - - - 

15 

2D 

Hx 0º 2.178 1.662 0.879 0.553 0.357 - - - - 

16 Sq 0º 2.163 1.628 0.850 0.536 0.354 - - - - 

17 Hx 30º 2.171 1.659 0.858 0.536 0.351 - - - - 

18 Sq 45º 2.174 1.655 0.870 0.549 0.356 - - - - 

19 

10 

3D 
Hx - 1.656 1.288 0.771 0.538 0.380 - - - - 

20 Sq - 1.658 1.288 0.774 0.539 0.381 - - - - 

21 

2D 

Hx 0º 1.666 1.307 0.790 0.538 0.386 - - - - 

22 Sq 0º 1.659 1.296 0.782 0.536 0.386 0.317 - - - 

23 Hx 30º 1.665 1.305 0.787 0.541 0.385 0.317 - -   

24 Sq 45º 1.668 1.310 0.788 0.541 0.386 0.318 - - - 

 
Table 6: Limit stresses in [GPa] for constrained load case B and y = 48.26 MPa. 

 
 Equilibrium paths for groups 19A and 19B (Vf = 10%, 3D imperfection, hexagonal fiber arrange-
ment Hx, and y = 48.26 MPa) are plotted in Figure 10, for cases with  = 0.01º, 2.5º, and 20º.  
 In the almost-perfect case,  = 0.01º, a line is shown with the initial slope. There is a change in slope 
during the loading process of the UC which is caused by plasticity in the matrix. This change in slope 
occurs at a strain 11 = -0.012, and is more evident in load case A than in case B. Similar behavior was 
found for the other cases with Vf = 10%, but the slope change caused by plasticity is not clearly ob-
served in higher volume fractions because the matrix has less incidence in the stiffness of the UC. 
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(a) 

(b) 

Figure 8: Details of equilibrium paths for selected cases of Group 4 as a function of misalignment angle. Results for y = 
48.26 MPa. (a): Unconstrained load case A; (b): Constrained load case B. 

 
Figure 9: Limit stresses as a function of ratio  = Lf/Df. Results for constrained load case B, y = 48.26 MPa, 3D imperfec-

tion, Hx array (Groups 1, 7, 13, and 19).  
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0.01º 0.1º 1º 2.5º 5º 7.5º 10º 15º 20º 

1 

70 

3D 
Hx - 6.337 4.719 2.142 1.227 0.723 - - - - 

2 Sq - 6.019 4.390 2.065 1.170 0.726 - - - - 

3 

2D 

Hx 0º 6.392 4.805 2.316 1.351 0.806 - - - - 

4 Sq 0º 6.468 4.674 2.153 1.234 0.752 - - - - 

5 Hx 30º 6.378 4.765 2.240 1.253 0.738 - - - - 

6 Sq 45º 6.220 4.629 2.331 1.341 0.798 - - - - 

7 

50 

3D 
Hx - 3.874 3.014 1.682 1.041 0.652 - - - - 

8 Sq - 3.911 3.079 1.633 1.035 0.654 - - - - 

9 

2D 

Hx 0º 3.933 3.111 1.747 1.110 0.689 - - - - 

10 Sq 0º 3.937 3.042 1.687 1.041 0.669 - - - - 

11 Hx 30º 3.932 3.125 1.716 1.065 0.671 - - - - 

12 Sq 45º 3.995 3.188 1.795 1.111 0.690 - - - - 

13 

30 

3D 
Hx - 2.667 2.168 1.31 0.901 0.615 0.482 - - - 

14 Sq - 2.666 2.159 1.32 0.906 0.612 0.482 - - - 

15 

2D 

Hx 0º 2.643 2.206 1.34 0.937 0.637 - - - - 

16 Sq 0º 2.671 2.187 1.33 0.905 0.624 0.497 - - - 

17 Hx 30º 2.682 2.159 1.29 0.911 0.624 0.497 - - - 

18 Sq 45º 2.693 2.194 1.36 0.933 0.629 - - - - 

19 

10 

3D 
Hx - 2.103 1.621 1.144 0.852 0.641 - - - - 

20 Sq - 2.108 1.622 1.145 0.853 0.641 - - - - 

21 

2D 

Hx 0º 2.113 1.547 1.137 0.857 0.651 0.550 - - - 

22 Sq 0º 2.113 1.547 1.159 0.857 0.649 0.549 - - - 

23 Hx 30º 2.118 1.587 1.137 0.856 0.650 0.549 - - - 

24 Sq 45º 2.114 1.588 1.157 0.857 0.650 0.549 - - - 

 
Table 7: Limit stresses in [GPa] for constrained load case B and y = 100 MPa. 

 

3.2 Parametric studies 

Parametric studies have been performed by taking into account the limit stresses in Tables 4 to 7, and 
results are presented (as in many stability problems) in terms of a knock-down factor , i.e. the critical 
stress for a given  divided by the stress for  zero. Because of space restrictions, not all values from 
Tables 4 to 7 can be plotted. 
 The knock-down factor  has been plotted as a function of misalignment  for unconstrained load 
cases A, and constrained cases B, in Figure 11, for 3D imperfections with Sq and Hx fiber arrangement, 
and several values of misalignment . The results indicate that the fiber arrangement does not have an 
incidence on the results. A similar graph for 2D imperfections could also be plotted from values of Ta-
bles 4 to 7, and similar results are found. 
 The incidence of Vf for various misalignment angles is shown in Figure 12, for a given type of imper-
fection and fiber arrangement (3D and Hx array), and yield stress y = 48.26 MPa. The results show 
high imperfection-sensitivity to small amplitude imperfections: as an example, for  = 1º, the knock-
down factor falls to less than 50% in all cases. This sensitivity increases with increasing Vf. Similar be-
havior was obtained for 2D imperfections and for Sq configurations and y = 100 MPa. 
 The influence of the type of imperfection (2D or 3D) has been investigated for groups 1, 3, 7, 9, 13, 
15, 19, and 21, considering an hexagonal fiber configuration (Hx) and y = 100 MPa. The knock-down 
factors are shown in Figure 13, and it is clear that the curves with different types of imperfection be-
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come almost identical. The conclusion is that the type of assumed imperfection (either 2D or 3D) does 
not have a significant influence on the knock-down factor. 
 The influence of angle  (the orientation of the 2D imperfection plane), for Groups 3, 5, 9, 11, 15, 17, 
21, and 23, for both load configurations A and B and for the same fiber arrangement (Hx) and y = 100 
MPa has been plotted in Figure 14. The results indicate that  does not have an influence on the limit 
stress. The same behavior was found for square fiber arrangement (Sq) and y = 48.26 MPa. 

 

(a) 

(b) 

Figure 10: Equilibrium paths for selected cases from Group 11 for different misalignment angles . Results for y = 48.26 
MPa. (a): Unconstrained load case A; (b): Constrained load case B. 
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(a) 

(b) 
Figure 11: Influence of fiber arrangement, considering square (Sq) and hexagonal (Hx). For 3D imperfections knock-

down factors  are given for Groups 1, 2, 7, 8, 13, 14, 19, and 20, with y = 48.26 MPa. (a): Unconstrained load cases A; 
(b): Constrained load cases B. 

 

(a) 
Figure 12: Micro-buckling sensitivity. Knock-down factor for Groups 1, 7, 13 and 19 (3D imperfection, Hx array, and y = 

48.26 MPa). (a): Unconstrained load cases A; (b): Constrained load cases B. 
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(b) 
Figure 12 (cont.): Micro-buckling sensitivity. Knock-down factor for Groups 1, 7, 13 and 19 (3D imperfection, Hx array, 

and y = 48.26 MPa). (a): Unconstrained load cases A; (b): Constrained load cases B. 
 

(a) 

(b) 
Figure 13: Influence of imperfection type: two-dimensional (2D) and three-dimensional (3D). Knock-down factors for 

Groups 1, 3, 7, 9, 13, 15, 19 and 21 (Hx array and y = 100 MPa). (a): Unconstrained load cases A; (b): Constrained load 
cases B. 
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(a) 

(b) 

Figure 14: Influence of angle  (orientation of 2D imperfection plane). Knock-down factors for cases 3, 5, 9, 11, 15, 17, 21 

and 23 (2D imperfection, y = 100 MPa, and Hx array) for  = 0º and 30º, as shown in legend. (a): Unconstrained load 
cases A; (b): Constrained load cases B. 

 

 Cases with higher matrix yield stress produced higher limit stresses. In Figure 15 results for cases 4 
and 22 (2D imperfection, Sq array,  = 0, and y = 48.26 MPa) are shown and the same trend was 
found in all cases considered in this work. The influence of matrix yield stress on knock-down factor is 
shown in Figure 16 for cases 4, 16, and 21, with 2D imperfection, Sq fiber arrangement, and  = 0. The 
results show an increase in knock-down factor but the problem is still highly sensitive to imperfection. 

3.3 Comparison with a simplified model 

Comparison of the present Finite Element results with a simplified model presented by Barbero (1998) 
is performed in this section. The analytical equation (eq. 4.93 in Barbero, 2010) is given by 
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(a) 

(b) 
Figure 15: Influence of matrix strength on limit stress for cases 4 and 22 (2D imperfection and Sq array). (a): Uncon-

strained load cases A; (b): Constrained load cases B. 
 

(a) 
Figure 16: Influence of matrix strength on knock-down factors for cases 4, 16, and 22 (2D imperfection and Sq array). (a): 

Unconstrained load cases A; (b): Constrained load cases B. 
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(b) 
Figure 16 (cont.): Influence of matrix strength on knock-down factors for cases 4, 16, and 22 (2D imperfection and Sq 

array). (a): Unconstrained load cases A; (b): Constrained load cases B. 
 

 This analytical equation approximates the limit stress  of a unidirectional composite under 
compressive load, without taking into account transverse effects. The composite properties required in 
this model are the in-plane shear strength F6 and the in-plane shear modulus G12. Such results are com-
pared in Figure 17 for groups 1 and 19 (3D configuration, Hx array, and y = 48.26 MPa). For this nu-
merical example and based on the assumed von Mises yield criterion for the matrix parameters, a value 
F6 = 27.86 MPa was adopted in concordance with y = 48.26 MPa. The elastic modulus G12 was ob-
tained using the Periodic Microstructure Model (PMM), equation (4.39) in Barbero (2010). 
 The results of the present Finite Element and the approximate analytical model are in very good 
agreement. Constrained cases A yield lower limit stresses. Similar trends are obtained for all cases con-
sidered. 
 As a reference, the limit stress for both load cases considered has been normalized in Table 8 with 
respect to bifurcation loads obtained from the model due to Rosen (1965). 

(a) 
Figure 17: Comparison with analytical results. Sensitivity curves for Groups 11 and 1 (3D imperfection, y = 48.26 MPa, 
and Hx array) and analytical equation (Barbero, 2010). (a): Unconstrained load cases A; (b): Constrained load cases B. 
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(b) 
Figure 17 (cont.): Comparison with analytical results. Sensitivity curves for Groups 11 and 1 (3D imperfection, y = 48.26 
MPa, and Hx array) and analytical equation (Barbero, 2010). (a): Unconstrained load cases A; (b): Constrained load cases 

B. 

  
 Only results of cases from Group 1, 7, 13, and 19 (3D imperfection and Hx array) for  = 0.01º are 
considered, and it is found that unconstrained cases A have lower values than constrained cases B. Such 
discrepancies between simplified model due to Rosen and the present one could be caused by different 
assumptions in stress states for the fiber and matrix, consideration of fiber misalignment and matrix 
plasticity, among other reasons. Similar trends were found with Sq array or 2D imperfection. 
 

 y = 48.26 MPa  y = 100 MPa 

Vf [%] Case A Case B  Case A Case B 

10 0.529 1.029  0.704 1.306 

30 0.715 1.045  0.931 1.289 

50 0.794 1.082  1.022 1.336 

70 0.767 1.027  1.002 1.312 

 
Table 8: Limit stresses normalized with respect to bifurcation loads due to Rosen (1965). Results for  = 0.01º. 

 
 Finally, Figure 17 and 15 show that there is a loss in fiber reinforcing contribution for large misa-
lignment angles. Also, for such misalignment angles, a change in the matrix yield stress produces limit 
stresses that are comparable and even higher than those generated by changing Vf. As an example, case 
22A in Table 4 (10% of fiber volume fraction, 2D imperfection, y = 48.26 MPa, and Sq array) with  = 
5º has a limit stress of 0.228 GPa. If Vf is increased up to 70% (case 4A from Table 4 is recovered), then 
a value of 0.335 GPa is obtained. If case 22A with  = 5º in Table 4 is considered again and the matrix 
yield stress is changed from 48.26 MPa to 100 MPa, recovering case 22A from Table 5, a value of 0.391 
GPa is obtained. Similar results were found for all cases considered here. Finally, the results seem to 
show that, for large misalignment angles, the matrix yield strength have a more important role than 
fiber volume fraction on limit stress. 
 
4 CONCLUSIONS 

The micro-buckling of unidirectional fiber-reinforced composites has been investigated in this re-
search by means of a computational micromechanics simulation in which misalignment imperfections 
were geometrically represented. Results were obtained by means of a Finite Element discretization of 
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the periodic Unit Cell domain, using the general purpose package ABAQUS, and assuming non-linear 
kinematic and material behavior. 
 Based on the results, it is possible to conclude that there is a high imperfection-sensitivity in the 
critical stress of fiber micro-buckling. This is in agreement with earlier results by Drapier et al. (1998) 
for a unidirectional carbon fiber/epoxy resin material for a fixed imperfection wavelength. A sharp 
drop is seen to occur for very small angles less than α = 1º, which is consistent with the 2/3 power law 
identified by Tomblin et al. (1997). For higher values of imperfection amplitude, the asymptotic model 
of Tomblin et al. (1997) is only an approximation, and more refined values are shown in this work, for 
example in Tables 4 to 7. 
 The type of imperfection (either 2D or 3D), the fiber configuration (hexagonal or square), and angle 
of the plane of 2D imperfection (orientation of 2D imperfection) do not have a great influence on the 
limit stresses due to micro-buckling. For small values of misalignment, the problem is mainly influ-
enced by fiber volume fraction and matrix yield stress. 
 For large imperfection amplitude, as given by large misalignment angle, there is a significant loss in 
the reinforcing effect that is contributed by the fiber. Also, for such imperfection level, increasing the 
matrix yield stress produces comparable or even higher limit stresses than those produced by fiber 
volume fraction changes. In other words, micro-buckling seem to be dominated by fiber volume frac-
tion for small misalignment angles, whereas, for large fiber angles it shows as a property dominated by 
matrix yield stress. A sequel of this conclusion is that increasing fiber volume fraction is not an effective 
way to increase micro-buckling capacity unless a misalignment control is introduced during the fabri-
cation process. 
 This work has been restricted to an analysis at the micro level, and no attempt has been made to 
couple micro and macro levels; this is seen as a topic for further research. The research reported aims 
to highlight which micromechanics variables play the most important influences on the micro-buckling 
phenomenon, which is a necessary ingredient before proceeding to multi-scale coupling. 
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