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1. Introduction

This paper deals with the problem of obtaining precisenumerical solutions to the Helmholtz equation, which gov-erns the vibration modes of a classical object in one or twodimensions (a string or a membrane)1. In two dimensions,for the case of a membrane with variable density ρ(x, y),
∗E-mail: paolo.amore@gmail.com
†E-mail: fernande@quimica.unlp.edu.ar
‡E-mail: martinalexander.rv@gmail.com1 It also applies to the quantum mechanical problem of
the Schrödinger equation of a free particle confined in a
finite two dimensional region.

the Helmholtz equation reads
−∆Ψn(x, y) = En ρ(x, y)Ψn(x, y) , (1)

where En and Ψn(x, y) are the eigenvalues and eigenfunc-tions of Eq. (1) respectively.From a mathematical point of view both problems reduceto eigenvalue equations, which can be solved exactly onlyfor a few special cases: the spectra of an uniform string orof a square or a circular membrane (just to mention twocases) are known exactly.Most cases of practical interest cannot be solved exactlyand one is forced to resort to alternative approaches thatproduce approximate solutions, either analytically or nu-merically. In this paper we focus on obtaining numericalsolutions to those eigenvalue equations via a collocation(pseudospectral) approach. Typically in this approach one
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Accurate calculation of the eigenvalues of non-uniform strings and membranes

uses the interpolation properties of a given set of functionsto derive a discretized version of the problem originallyformulated in a continuum space. The approximate solu-tions are then found as eigenvalues and eigenvectors ofa matrix whose dimension depends on the size of the setused for the collocation. The collocation approach is aconvenient alternative to the widely used Rayleigh-Ritzmethod when the integrals have be carried out numeri-cally (a time–consuming process). The reader may find ageneral introduction to pseudospectral methods in the re-markable book by Boyd [1] and several examples of theirapplication to a variety of fields elsewhere [2–10].Apart from these common features, the accuracy of a pseu-dospectral calculation depends on both the particular setof functions and their number. From a computational pointof view it is desirable to keep the number of functions assmall as possible, since it is directly related to the dimen-sion of the collocation matrix and to the amount of com-puter memory required for its storage. Obviously, somesets of functions are more convenient than others for agiven problem. For instance, Boyd et al. [10] comparedthe performance of the Fourier–sine mapped pseudospec-tral method [4] with the pseudospectral methods based onLaguerre functions or Chebyshev polynomials and con-cluded that the latter are preferable for the numerical so-lution of the problem of the hydrogen atom.The approach that we describe in this paper is similar tothe mapped Fourier method of Fattal et al. [4], where theefficiency of the uniform sampling of the Fourier grid isenhanced through a mapping of the coordinates. In theirapproach the appropriate map is found by allowing anoptimal covering of the classical phase space associatedwith a given state. On the other hand, present strategyis motivated by the principle of minimal sensitivity (PMS)[11]. Here the map may depend on one or more artificialparameters (i.e. parameters which are not in the originalproblem) that would not affect the result if it were exact. Inan approximate calculation there will be a residual depen-dence on such dummy parameters and we set their valuesso that their effect on the approximate result is minimal.This is the essence of the PMS [11].The PMS has been used with remarkable success in manyanalytical calculations: one example is the ”linear deltaexpansion” (LDE), which combines a perturbative expan-sion in an artificial parameter and the PMS for the phys-ical observable, leading to accurate results [12–18].It is our purpose to investigate whether the PMS enablesus to obtain optimal grids with little computational effort.We compare our results with some others in the literatureto test the efficiency of our approach.Our paper is organized as follows: in Section 2 we de-scribe the general collocation approach on non–uniform

grids obtaining explicit matrix representations of theHamiltonian operator in one and more dimensions; in Sec-tion 3 we describe a simple procedure which allows one torestore the variational nature of the collocation approach;in Section 4 we apply the method to several examples andcompare our results with those available in the literature.Finally in Section 5 we draw conclusions.
2. Collocation on arbitrary grids
In this section we explicitly show how to build a set of ”lit-tle sinc functions” (LSF) [19] that satisfy Dirichlet bound-ary conditions at the endpoints of a given finite coordi-nate interval. The generalization of these results to otherboundary conditions is straightforward.Let ρ(x) be a positive function on the interval x ∈ (−L, L)and define the functions

ψn(x) ≡√ 2
σ (L) ρ(x)1/4 sin [nπ σ (x)

σ (L)
]
, (2)

where n = 1, 2, . . . and
σ (x) ≡ ∫ x

−L

√
ρ(y)dy .

These functions, which are closely related to the WKBsolutions for a string of variable density (see, for ex-ample, page 490 in Ref. [20]), have been recently dis-cussed by Amore [21]. By means of the change of variable
u = σ (x)/σ (L) it is straightforward to verify that thesefunctions are orthonormal in [−L, L]:

∫ +L
−L

ψn(x)ψm(x)dx = δnm .

Since there is a one-to-one correspondence with theeigenfunctions of a quantum particle in a box the func-tions ψn(x) span a complete set in that variable interval.For this reason we can follow the procedure of Amore et al.[19] and introduce the functions
δ̄N (x, y) ≡ CN N∑

n=1 ψn(x)ψn(y) , (3)
where CN is independent of x and y, although it dependson the number of terms in the sum. Its precise value willbe determined later. It is not difficult to verify that
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δ̄N (x, y) = CN
4√ρ(x) ρ(y)
σ (L)

sin ( πN(σ (x)−σ (y))2σ (L)
) cos ( π(N+1)(σ (x)−σ (y))2σ (L)

)
sin ( π(σ (x)−σ (y))2σ (L)

)
−

sin ( πN(σ (x)+σ (y))2σ (L)
) cos ( π(N+1)(σ (x)+σ (y))2σ (L)

)
sin ( π(σ (x)+σ (y))2σ (L)

)  , (4)

The function ψN (x) in the last term of the sum exhibits thelargest number of nodes xk (N), k = 1, . . . , N −1 given by
ψN (xk (N)) = 0 or

σ (xk (N)) = k
N σ (L) . (5)

In some particular cases this equation may be solved ex-actly yielding explicit expressions for the xk (N). The sim-plest example is provided by a constant ρ(x), which cor-responds to the uniform grid already discussed in ref. [19].If the exact solution of Eq. (5) is not possible we cancalculate its roots numerically with little computationalcost.We choose the constant CN in such a way that it satisfiesthe condition δ̄N (xk (N), xk (N)) = 1 that leads to N − 1solutions of the form
C (k)
N = σ (L)

N
√
ρ(xk (N)) , k = 1, 2, . . . , N − 1 . (6)

For simplicity we will write xk instead of xk (N) wheneverthere is no chance of ambiguity. When ρ(x) = 1 we are led

to the particular case of constant grid spacing CN = 2L/Ndiscussed earlier [19]. Actually, C (k)
N is roughly the gridspacing even in the general case. If we assume that N �1, then we may approximately write σ (xk )−σ (xk−1)

xk−xk−1 ≈ σ ′(xk ) =√
ρ(xk ), and, according to Eq. (5), we have xk − xk−1 ≈

σ (L)
N

1√
ρ(xk ) ≡ C (k)

N , confirming our statement. It is worthnoting that the grid spacing is finer where the density islarger, a property that is most valuable for building gridswith an appropriate distribution of points.By choosing the grid points xk as explained above we alsoobtain a second useful property of the LSF: δ̄N (xj , xk ) =0 , j 6= k so that we finally have
δ̄N (xj , xk ) = δkj , (7)

which is a generalization of a similar equation derivedearlier for uniform grids [19].We are now in a position to generalize the LSF developedearlier [19] and define what we may call the nonuniformLittle Sinc Functions (νLSF):

sk (N, L, x) ≡ δ̄N (x, xk )
= 12N

[
ρ(x)
ρ(xk )

]1/4 [sin ((2N + 1)∆−(x, xk ))sin (∆−(x, xk )) − sin ((2N + 1)∆+(x, xk ))sin (∆+(x, xk ))
]
, (8)

where ∆±(x, xk ) ≡ π(σ (x)± σ (xk ))2σ (L) .

and k = 1, 2, . . . , N − 1. It is easy to verify that Eq. (8)reduces to Eq. (18) of Ref. [19] when ρ(x) = 1 and k →
k−N/2 (note that k = −N/2+1, . . . , N/2−1 in Ref. [19]).It is worth noting that the sk (N, L, x) is obtained from the

LSF on a uniform grid by means of the transformation
x → σ (x) followed by multiplication by the factor [ ρ(x)

ρ(xk )
]1/4

which ensures orthonormality.
The νLSF (8) may now be used to interpolate a given func-tion f (x) defined on the interval [−L, L] and that vanishes
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at the endpoints f (±L) = 0 in the following way:
f (x) ≈ N−1∑

k=1 f (xk )sk (N, L, x), (9)
where xk = xk (N) are the nonuniform grid points obtainedearlier. We can justify Eq. (9) by writing the rhs as
N−1∑
k=1 f (xk )sk (N, L, x) = N∑

n=1
[N−1∑
k=1 C

(k)
N f (xk )ψn(xk )]ψn(x) ,

where the term between parenthesis takes the form of aRiemann sum because C (k)
N is roughly the grid spacing asargued above. Thus, one obtains the well known decom-position of a function f (x) in the basis set {ψn(x)}:

lim
N→∞

∑N
n=1

[N−1∑
k=1 C

(k)
N f (xk )sk (N, L, x)]ψn(x)

= ∑∞
n=1

[∫ L

−L
f (x)ψn(x)dx]ψn(x). (10)

The definition of the νLSF given above enables us to gen-eralize another property of the LSF:
∫ +L
−L

sk (N, L, x)sj (N, L, x)dx = σ (L)
N
√
ρ(xk )δkj ,

which for constant density reduces to Eq.(20) of Ref. [19].From the approximate interpolation expression (9) we alsoobtain that
∫ +L
−L

f (x)sk (N, L, x)dx ≈ σ (L)
N
√
ρ(xk ) f (xk ) ,

which justifies the interpretation of sk (N, L, x)/C (k)
N as anapproximate Dirac delta function on the grid.In order to obtain a suitable matrix representation for thekinetic–energy operator T̂ = − d2

dx2 it is convenient to con-sider the hermitian operator
Ô = − 1√

ρ(x) d2
dx2 1√

ρ(x) ,
which naturally appears in the study of the vibrations of astring with variable density [22, 23]. In the present case,however, ρ(x) is not a physical density but a mathematicaltool for producing a non–uniform grid of points. Upon

operating with Ô on a basis function ψn(x) given by Eq. (2)we obtain
Ôψn(x) = [ n2π2

σ (L)2 − 5ρ′(x)2 − 4ρ(x)ρ′′(x)16ρ(x)3
]
ψn(x) .

This equation suggests that ψn(x) tends to become aneigenfunction of Ô when n → ∞. In this limit the WKBsolutions, ψ (WKB)
n (x) = ψn(x)/√ρ(x) tend to the solutionsof the corresponding inhomogeneous Helmholtz equation.This property has already been exploited in Ref. [21] toobtain a perturbative expansion around that basis set.It was pointed out in Ref. [21] that in certain particularcases the functions ψn(x) are exact eigenfunctions to theproblem. An example is provided by the density ρ(x) thatobeys the differential equation
5ρ′(x)2 − 4ρ(x)ρ′′(x) = 16κρ3(x) (11)

with κ an arbitrary constant.The general solution to this equation is of the form
ρ(x) = 256c21(

c21 (c2 + x)2 + 256κ)2 , (12)
where c1 and c2 are constants of integration. When κ = 0this expression reduces to the problem discussed long timeago by Borg [24], which is isospectral to a homogeneousstring (see, for example, Ref. [25]).Another example of string with a density satisfyingEq. (11) is the one discussed by Lord Rayleigh [26] whichhas recently been studied by Gottlieb (see Eq. (4.7) ofRef. [25], which corresponds to the form given in Eq. (12),after setting κ = 0). Gottlieb also identifies a string whichis isospectral to the Rayleigh one in terms of a transfor-mation that leaves the spectrum invariant.The operator

Ŝ = − 1√
ρ(x) d2

dx2 1√
ρ(x) + 5ρ′(x)2 − 4ρ(x)ρ′′(x)16ρ(x)3 ,

is diagonal in the basis set {ψn(x)} because
Ŝψn(x) = n2π2

σ (L)2ψn(x) .
We want to calculate the matrix elements of the operator
Ŝ in the basis set of normalized νLSF sk (x)/√C (k)

N :
Skl = 1√

C (k)
N C (l)

N

∫ L

−L
sk (x)Ŝsl(x)dx .
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For convenience we also normalize the density with thecondition σ (L) = 2L, which maps the original interval[−L, L] onto a region of the same length [0, 2L]. Since
ψN (xk ) = 0 then we can write

sk (x) = C (k)
N

N−1∑
n=1 ψn(x)ψn(xk ) ,

and
Skl = √

C (k)
N C (l)

N

N−1∑
n=1 ψn(xk )ψn(xl) n

2π2
σ (L)2

= 1(ρ(xk )ρ(xl))1/4 1
Nσ (L) N−1∑

n=1 ψn(xk )ψn(xl)n2π2
= −c(2)

kl ,

where
c(2)
kl =

 − π2(−3 csc2( πkN )+2N2+1)24L2 , k = l
− π2 cos(π(k+l)) sin( πkN ) sin( πlN )2L2(cos( πkN )−cos( πlN ))2 , k 6= l

.

The matrix elements c(2)
kl agree with the matrix elements forthe second derivative given in Ref. [19] after substituting

k → k +N/2 and l → l+N/2.The calculation of the matrix elements of the operator
D̂ ≡ − 5ρ′(x)2−4ρ(x)ρ′′(x)16ρ(x)2 is straightforward if we take intoconsideration the interpolation properties of the νLSF:

Dkl = 1√
C (k)
N C (l)

N

∫ L

−L
sk (x)D̂sl(x)dx

≈ −5ρ′(xk )2 − 4ρ(xk )ρ′′(xk )16ρ(xk )2 δkl . (13)
These results enable us to derive an expression for thematrix elements of the kinetic–energy operator:

Tkl = [− d2
dx2

]
kl

= √ρ(xk )Skl√ρ(xl) +Dkl .

We observe that
• For a constant ρ(x) this matrix reduces to the onederived earlier by Amore et al. [19].
• The matrix for the operator Ŝ is universal; i.e. it isnot specific to a given problem and therefore it canbe calculated once for a given grid and stored.• The matrices for D̂ and √ρ are specific to the prob-lem under consideration and therefore they need tobe calculated each time; however they are diagonaland such calculation is fast and efficient.
• The collocation on the grid does not require thecalculation of integrals.
• All the matrix elements can be obtained with arbi-trary precision.

The matrix representation of the second derivative is suit-able for the approximate calculation of the eigenvaluesand eigenfunctions of the Helmholtz and Schrödingerequations and we discuss specific applications in the fol-lowing sections2.The present approach is equivalent to the one proposedsome time ago by Guardiola and Fernández [27] who ap-plied it to the one–dimensional Schrödinger equation

− d2Ψ
dr2 + V (r)Ψ(r) = EΨ(r) (14)

where r ∈ (a, b), Ψ(a) = Ψ(b) = 0 and a and b canbe either finite or infinite. Under the change of variable
r = r(x), where r(x) is a monotonously increasing functionof x , Eq. (14) is transformed into the equivalent equation

− 1
G2(x) d2

dx2 1
G2(x)Φ(x) + [V (r(x))− G′′(x)

G(x)5 + 2G′(x)2G(x)6
]Φ(x) = EΦ(x) , (15)

where G(x) = √r′(x). Setting G(x) = ρ(x)1/4 this equation reduces to
− 1√

ρ(x) d2
dx2 1√

ρ(x)Φ(x) + [V (r(x)) + 5ρ′(x)2 − 4ρ(x)ρ′′(x)16ρ(x)3
]Φ(x) = EΦ(x) , (16)
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and the connection between both approaches is evident.However, the point of view is different because in the firstcase one does not transform the equation but generates anon–uniform grid, while in the second case one keeps thegrid uniform and transforms the equation.In what follows we briefly show how to apply the sameapproach to the Schrödinger equation in d dimensions.We assume that the Hamiltonian operator is of the form
Ĥ = −12∆d + V (x1, . . . , xd)
∆d = ∂2

∂x21 + · · ·+ ∂2
∂x2

d

In this case we may, for example, resort to d density func-tions ρ1(x1), . . . , ρd(xd) and obtain the matrix elements forthe Laplacian operator as
[−∆d]k1,...,kd ;l1,...,ld= [√

ρ(xk1 )Sk1l1√ρ(xl1 ) +Dk1l1
]
δk2l2 . . . δkdld + . . .

+ [√
ρ(xkd )Skdld√ρ(xld ) +Dkdld

]
δk1l1 . . . δkd−1ld−1(17)

The matrix elements for the potential–energy opera-tor take a somewhat simple form: [V ]k1,...,kd ;l1,...,ld =

V (xk1 , . . . , xkd )δk1l1δk2l2 . . . δkdld .These expressions arise from a basis set of νLSFconstructed as products of one–dimensional νLSF:
sk1 (N1, L1, x1)...skd (Nd, Ld, xd). Besides, the j th coordinateof a point of the d–dimensional grid is obtained by meansof the j th density ρj (xj ), exactly as indicated above for theone–dimensional case.The collocation matrix for the laplacian is sparse. If thereare N−1 grid points in every spatial dimension, the num-ber of nonzero matrix elements is d(N−1)d+1 over a totalof (N − 1)2d elements.Note that present approach applies straightforwardly tomore complicated forms of the Hamiltonian operator, suchas

Ĥ = −12 1√Σ(x1, . . . , xd)∆d
1√Σ(x1, . . . , xd) ,

which appears in the solution of the Helmholtz equation inan inhomogeneous medium with density Σ(x1, . . . , xd). Intwo dimensions Σ(x1, x2) may be the conformal density ob-tained when an arbitrary domain is mapped onto a squareone [22, 28]. In such a case the matrix representation of
Ĥ on the arbitrary grid will be

12 1√Σ(xk1 , . . . , xkd ) [−∆d]k1,...,kd ;l1,...,ld 1√Σ(xl1 , . . . , xld )= 12 1√Σ(xk1 , . . . , xkd )
{[√

ρ(xk1 )Sk1l1√ρ(xl1 ) +Dk1l1
]
δk2l2 . . . δkdld + . . .

+ [√
ρ(xkd )Skdld√ρ(xld ) +Dkdld

]
δk1l1 . . . δkd−1ld−1

} 1√Σ(xl1 , . . . , xld ) . (18)
Note that the matrix containing the physical (or conformal) density is diagonal.
3. Improved collocation
Each sk (N, L, x) is a linear combination of
ψ1, ψ2, . . . , ψN−1; therefore the basis sets {sk}N−1

k=1and {ψk}N−1
k=1 span the same vector subspace. For thisreason each sk (N, L, x) can be exactly written as a linearcombination of the functions in the set {sk (M, L, x)}M−1

k=1 ,provided that M > N . For convenience in what followswe resort to the bra–ket notation |N, k〉 meaning that
sk (N, L, x) = 〈x |N, k〉√C (k)

N .We assume that the Hamiltonian operator is of the form

Ĥ = T̂ + V̂ . It is not difficult to calculate the matrixelements T (N)
i,j = 〈i, N| T̂ |N, j〉 by means of the LSF asdiscussed above. However, the matrix elements V (N)

i,j =
〈i, N| V̂ |N, j〉 may not be so easily calculated and for thatreason we have resorted to the following property of theLSF: lim

N→∞
V (N)
i,j = Viδi,j

For practical purposes we have carried out the approxi-mation V (N)
i,j ≈ Viδi,j which we have assumed to be validif N is large enough. However, it has been pointed out
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that in some cases this approximation may not particularlygood [5].When we diagonalize the Hamiltonian matrix H (N)
i,j =

T (N)
i,j +Viδi,j the approximate eigenvalues may not be upperbounds to the actual ones because of the use of approxi-mate matrix elements V (N)

i,j . We may proceed in a differentway and define the projection operators
P̂N = N−1∑

k=1 |N, k〉 〈k,N| . (19)
According to what was stated above it is obvious that
P̂NP̂M = P̂MP̂N = P̂N for all M > N .Since P̂M |N, k〉 = |N, k〉 then we have
〈i, N| Ĥ |N, j〉 = 〈i, N| T̂ |N, j〉+ 〈i, N| P̂M V̂ P̂M |N, j〉(20)If M is large enough we may carry out the approximation

P̂M V̂ P̂M ≈
M−1∑
k=1 |M, k〉 Vk 〈k,M| . (21)

so that
V (N)
i,j ≈

M−1∑
k=1 〈i, N| M, k〉 Vk 〈k,M| N, j〉 . (22)

If M is large enough we may recover the variational prop-erties of the Rayleigh–Ritz method because we have abetter representation of the operator V̂ and its matrix el-ements.The matrix ∆ with elements ∆i,j = 〈i,M| P̂N |M, j〉 satis-fies
∆2 = ∆, tr(∆) = N − 1. (23)

We can formally write P̂N < P̂M < 1̂ in the sense that
〈ψ| P̂N |ψ〉 < 〈ψ| P̂M |ψ〉 < 〈ψ| ψ〉.The collocation matrix of the Hamiltonian operator on theoriginal N–grid is expressed in terms of a representationof the Hamiltonian operator on a finer M–grid. The eigen-values of the (N − 1) × (N − 1) Hamiltonian matrix areexact upper bounds only when M →∞. Clearly, the com-putational cost of using this improved matrix instead of theoriginal one discussed in the preceding section dependson the size of the hidden grid (i.e. on M).The idea of using more grid points than spectral basisfunctions within a collocation approach is not new. Forexample, we mention the works of Fresnier [37], and morerecently of Corey and Lemoine [38] and Corey and Tromp[39]. In particular our equation (20) with the approximation(22) is similar to Eq. (14) of Ref. [39], where however the

resulting matrix is a (M−1)× (M−1) matrix with M−Nvanishing eigenvalues. More precisely, both equationsare equivalent only in the case of a uniform grid. In fact,the approach followed by Corey and Tromp essentiallyconsists of evaluating the kinetic–energy operator on thecoarser grid and the potential part on the finer grid. In thespecial case of a uniform grid, i.e. ρg(x) = 1, the kinetic–energy operator has an exact LSF (N−1)× (N−1) matrixrepresentation on the grid and its projection onto the finergrid is exact. Under such conditions the two approachesare equivalent.On the other hand, in more general cases the matrix el-ements of the kinetic–energy operator involve matrix ele-ments of the density (either the grid density, or a physicaldensity, or a conformal density) and therefore the two ap-proaches are not equivalent. A third approach, which canalso be used in these cases, consists of expressing theoperators Ŝ on the coarser grid, because its representa-tion is exact, and only expressing the remaining matrixelements on the finer grid. We will compare these alter-native approaches later on.It is worth noting that in any of these approaches, inde-pendently of the size of the finer grid (as long as M > N),the matrices obtained with the collocation are not sparse,a feature which considerably increases the memory re-quirements for large grids.
4. Applications
In this section we consider some selected applications ofthe νLSF.
4.1. Strings of variable density
We first consider the application of present approach tothe Helmholtz equation for an inhomogeneous string oflength 2L:

− d2
dx2 Ψn(x) = Enρ(x)Ψn(x) ,

where En are the eigenvalues, ρ(x) > 0 is the density ofthe string and we assume that the eigenfunctions Ψn(x)satisfy Dirichlet boundary conditions Ψn(±L) = 0.On defining Φn(x) ≡√ρ(x)Ψn(x) we obtain the equivalentequation [21]
ÔΦn(x) = − 1√

ρ(x) d2
dx2 1√

ρ(x)Φn(x) = EnΦn(x) .
The collocation approach discussed in the preceding sec-tions can now be straightforwardly applied to this problem.
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As we have seen, the discretization of the problem may usean arbitrary positive definite density, which here we call
ρg(x), which determines the distribution of the collocationpoints on the string. This function does not need to bethe physical density of the string, ρ(x), although we willsee that the case ρg(x) = ρ(x) exhibits important compu-tational advantages for the calculation of highly excitedstates.The matrix elements of the hermitian operator appearingin the eigenvalue equation are easily obtained as

O kl = [− 1√
ρ(x) d2

dx2 1√
ρ(x)

]
kl= 1√

ρ(xk )
[√

ρg(xk )Skl√ρg(xl) +Dkl

] 1√
ρ(xl) ,(24)

where xk (k = 1, . . . , N − 1) are the grid points cor-responding to ρg(x). In principle one has to calculate
N(N − 1)/2 elements of the symmetric matrix for Ô. Thecollocation matrices for D(x) and for the densities on thegrid are diagonal so that we need the N − 1 elementsfor each of them. The collocation matrix for the operator
Ŝ is not sparse but it is universal and, consequently, itis convenient to calculate and store it for later use in allthe problems of the same kind. These properties make ourcollocation method highly flexible, allowing one to studyproblems of different density and using grids with differ-ent distributions of points without having to recalculateall the matrix elements.Obviously, the choice of a suitable grid may lead to ac-curate results with a smaller number of grid points. Wehave found that the “natural density” ρg(x) = ρ(x) is con-venient for the highly excited states of the string. For
n → ∞ the WKB wavefunctions tend to become eigen-functions of the operator Ô and therefore a discretizationbased on these functions is expected to be successful. Onthe other hand, if one is interested in the fundamentalmode of the string, the optimal distribution of grid pointsshould be determined by a grid density ρg(x) that leadsto a minimal Rayleigh quotient for the fundamental WKBeigenfunction corresponding to this density. In the spe-cial case D(x) = 0 (the WKB wavefunctions are exact) thenatural grid also minimizes the Rayleigh quotient.We will illustrate these aspects of our collocation ap-proach by means of the specific example of inhomogeneousstring, which was first studied by Horgan and Chan [29]:

ρ(x) = (α + 2)24 (α(α + 2) (x + 12) + 1) , (25)
where |x| ≤ 1/2. These authors have shown that thefrequencies of this string are given by ω = αλ where

λ is a zero of the transcendental equation
J1(λ)Y1((α + 1)λ)− Y1(λ)J1((α + 1)λ) = 0

and J and Y are the well known Bessel functions of firstand second kind.Fig. 1 shows the error Ξ ≡ |1 − E (num)
n /E (exact)

n | for thefirst 2499 states of that string with α = 1. The solidand dashed lines are respectively given by N = 2500points distributed according to the natural density andthe uniform grid. The accuracy of the numerical resultsobtained with the natural grid are mostly of the order ofthe 12 digits–precision used in the calculation (hence thelarge plateaux).Present LSF–collocation results for large n are useful forthe numerical calculation of the coefficients of the asymp-totic expansion of the energy of the string, which for anarbitrary density is of the form
En ≈ A1n2 + A2 + A3/n2 + . . . . (26)

There are explicit formulas for the first three coefficientsand Amore [21] has recently derived a general formula for
A3 in terms of an infinite series. This author has alsocalculated the first 5 coefficients Aj numerically for thedensity (25) with α = 1 by fitting the expansion (26) tothe first 10000 energies of the string calculated with 200–digits precision. The three leading coefficients estimatedin this way are in perfect agreement with the theoreticalresults given by well–known explicit formulas.By straightforwardly fitting the asymptotic formula (26)to the first 2499 energies calculated numerically with thenatural grid and N = 2500 we found

En ≈ 9.869604401n2 + 0.375027633
− 0.032450258/n2 + 0.005933450/n4.

This result compares quite favorably with the formula ob-tained using the extrapolated values:

En = 9.869604401n2 + 0.375
− 0.03265233457

n2 + 0.009170584905
n4 + . . . .
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Figure 1. Relative error Ξ ≡ |1 − E (num)
n /E (exact)

n | for the first 2499
states of the string of Horgan and Chan [29] with α = 1.
The solid line corresponds to a grid with N = 2500 and
its points distributed according to the natural density. The
dashed line corresponds to a uniform grid with the same
number of points.

4.2. Circular membrane
The conformal collocation method (CCM) devised else-where [22, 28] can be used to obtain precise numericalapproximations to the eigenvalues and eigenfunctions ofthe Helmholtz equation on arbitrary domains in two di-

mensions. This method has been applied to a wide rangeof domains: to the circle and to a circular waveguide withcircular ridges [28], to the cardioid and to various regularpolygons [22], to circular and asymmetric annuli [30], andto an inhomogeneous cardioid [31]). Here we would liketo apply the present approach to a uniform circular mem-brane of unit radius which was earlier treated by meansof a uniform grid [28]. Our purpose is to study the effect ofan inhomogeneous grid on the precision of the results andon their rate of convergence towards the exact results.For present numerical experiment we choose
ρg(x) = α csch2 (√α) cosh2 (√αx) , (27)

where α is a real parameter (note that the resulting gridis uniform when α = 0). Correspondingly we have
σ (x) = 1 + csch (√α) sinh (√αx) .

By means of the map from the circle to the square explic-itly given in Eq. (18) of Ref. [28] we convert the originalHelmholtz equation into an equivalent Helmoltz equationfor a square membrane with a “conformal density” Σ(x, y).Correspondingly the representation of this equation on thegrid is

Ôk1,k2 ;l1,l2 = 1√Σ(xk1 , yk2 ) [−∆]k1 ,k2 ;l1,l2 1√Σ(xl1 , yl2 )= 1√Σ(xl1 , yl2 )
{[√

ρ(xk1 )Sk1l1√ρ(xl1 ) +Dk1l1
]
δk2l2

+ [√
ρ(yk2 )Sk2l2√ρ(yl2 ) +Dk2l2

]
δk1l1

} 1√Σ(xl1 , yl2 ) . (28)

This expression approximates the matrix elements of theoperator Ô = − 1√Σ(x)∆ 1√Σ(x) connecting a point (xk1 , xk2 )to a point (xl1 , xl2 ). Labelling every point on the grid witha single integer ranging from 1 to (N − 1)2 one is ableto obtain an explicit matrix representation for the operatoron the grid. The eigenvalues of this matrix are approxima-tions to the exact eigenvalues of the circular membrane.
Table 1 shows the lowest eigenvalue of the collocationmatrix obtained with grids of different size and differentvalues of the parameter α which controls the distributionof the grid points. Present results for α = 0 and N ≤ 80

correspond to those obtained earlier with a uniform grid[28]. It is worth noticing that the collocation eigenvaluesfor the largest density deformation α = 4 seem to con-verge to the exact result from below. The greatest rateof convergence is obtained for α = 3.2 though the re-sults for the two largest grids seem to oscillate probablydue to round-off errors. In all the cases considered herethe rate of convergence seems to be compatible with theasymptotic behavior 1/N4 already observed in earlier cal-culations with the uniform grid [28]. It follows from Table1 that the rate of convergence is considerably larger when
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Figure 2. Relative error |1 − E (num)
n /E (exact)

n | for the first 5000 states
of a circular drum of unit radius calculated on a grid with
N = 120 and α = 0 (solid line) and α = 3.2 (dashed line).

one resorts to a deformed grid density. For example, theresult for N = 20 and α = 3.2 is as accurate as the resultfor N = 120 and α = 0.Fig. 2 shows the relative error for the first 5000 eigen-values for grids with N = 120 and α = 0 (solid line)and α = 3.2 (dashed line). The deformed grid yieldsfar more accurate results for the first 2000 states (ex-cept for isolated exceptions) whereas the uniform grid ispreferable for 2000 < n ≤ 5000 with its error increasinggently with n. This curious behavior has a simple expla-nation: the collocation spectrum for α = 3.2 is not linearfor n > 2000, thus departing from the behavior expectedon the grounds of Weyl’s law. On the other hand, the col-location spectrum for the uniform grid remains linear evenfor the highest excited states considered here. The reasonis that in the case of the deformed grid more collocationpoints are moved towards the border of the region andfor moderately excited states there is a considerable gainin resolution in the region where the solutions are moreimportant, while retaining an acceptable resolution in thecentral region. However, for the highest excited states inthe plot, the loss of resolution in the central part of thecollocation region affects the overall quality of the results.No such effect takes place in the case of a uniform gridwhere the collocation region is covered more uniformly.
4.3. Bound states in the continuum: crossed
wires
The present approach is not restricted to bounded domainsas previous applications may suggest. The LSF colloca-tion method is suitable for the treatment of open domainsas shown in the following example. The configuration of

orthogonal crossed wires was originally studied by Schult
et al. [32] and later by Avishai et al. [33]. More recently,Bulgakov et al. [34] studied scissor–shaped waveguides;i.e. configurations with non–orthogonal arms.Interestingly, Schult et al. discovered that despite the in-finite extension of the cross with Dirichlet boundary con-ditions at the border, the waveguide just mentioned sup-ports bound states. In particular, it was found that thefundamental mode of this waveguide falls below the con-tinuum threshold, E1 = 0.66Et (Et = h̄2π2/2mw2), andthat a second bound state is embedded in the continuum:
E2 = 3.72Et . Those results were confirmed by Avishai
et al. [33].In order to apply our technique to this problem we resortto the conformal map which maps the unit disk onto theinfinite cross as shown in problem 6, page 197 in Nehari’sbook [36]. Note that the there is a typo in that expression;the correct map from the unit circle to a cross with armsof width w = 2 is:

f (z) = √2Γ(1/4)
πΓ(5/4)

∫ z

0
√1 + z′4(1− z′4) dz′

= √2Γ(1/4)
πΓ(5/4) zF1

(14 ;−12 , 1; 54 ;−z4, z4) , (29)
where F1 is the Appell hypergeometric function. Aftercomposing this map with the map from the square to theunit circle, one obtains the map from the square to thecross, which is the one needed by our collocation method.Therefore, using this conformal map, we transform the ho-mogeneous Helmholtz equation on the infinite cross intoan inhomogeneous Helmholtz equation on the square, witha (conformal) density directly given in terms of the map.The left and right panels in Fig. 3 display the square ofside 2 and its image, an infinite cross with arms of width
w = 2, respectively. The uniform grid on the square (with
N = 20) is mapped onto a deformed grid on the unit cross.The procedure for the collocation of the Hamiltonian op-erator on the grid is similar to the one above for the circleand we think it unnecessary to show the steps explicitlyhere.Fig. 4 shows the ratio E1/Et for grids obtained with thedensity (27) for different values of α . The case α = 0corresponds to the uniform grid shown in the left panel ofFig. 3, while larger values of α correspond to non–uniformgrids where the points are progressively moved towardsthe extremities of the intervals.Fig. 4 clearly shows that for fixed N the eigenvalue as afunction of α does not exhibit a minimum. We also ap-preciate that the value α ≈ 2 of the density parameter isnearly optimal. The first observation illustrates the factthat our pseudospectral approach does not obey the varia-tional principle for finite N (although it should be satisfied

922



Paolo Amore, Francisco M. Fernandez, Martin Rodriguez

Table 1. The energy of the fundamental mode of a circular membrane calculated with the density (27) for different values of α. The exact result is
E1 = (j0,1) 2 ≈ 5.7831859629467. The underlined digits are correct.

N α = 0 α = 2 α = 3 α = 3.2 α = 410 5.785633618939 5.783316758453 5.783980548966 5.784734711375 5.79562218349020 5.783347847095 5.783194258510 5.783186788303 5.783186103068 5.78318907023330 5.783218252759 5.783187596925 5.783186118919 5.783185972125 5.78318561378840 5.783196213318 5.783186479426 5.783186011997 5.783185965565 5.78318585181650 5.783190167777 5.783186174397 5.783185982981 5.783185963965 5.78318591737860 5.783187992366 5.783186064893 5.783185972593 5.783185963423 5.78318594095870 5.783187058902 5.783186017966 5.783185968148 5.783185963199 5.78318595107380 5.783186605573 5.783185995194 5.783185965994 5.783185963092 5.78318595598590 5.783186364220 5.783185983077 5.783185964848 5.783185963037 5.783185958599100 5.783186226262 5.783185976154 5.783185964194 5.783185963006 5.783185960094110 5.783186142775 5.783185972288 5.783185963856 5.783185963077 5.783185961467120 5.783186089902 5.783185969449 5.783185963555 5.783185962428 5.783185961492
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Figure 3. Square of side 2 and infinite cross of width 2 obtained with
the conformal map. The red lines correspond to a grid with
N = 20.

in the limit N →∞). For this reason, the sequences of re-sults with α ≤ 2 are monotonically decreasing, while, onthe other hand, those with α ≥ 2.1 have positive slopes forsmall grids. For large enough grids, however, one shouldobtain a negative slope even for these densities. This is

in fact the case for the values corresponding to α = 2.1,which start to decay for N ≥ 40, although this behaviorcannot be appreciated on the scale of the plot. The originof this violation of the variational principle arises from thefact that we have not calculated the integrals explicitly,and that for large enough α the grid points are mostlyconcentrated at the corners of the square, which leads toimprecise approximations. Although one cannot resort tothe variational principle or the PMS to determine the op-timal α in this case, it is possible to obtain a reasonablevalue of α by looking for values of α which do not pro-duce large changes in the energy when more grid pointsare added. Such behavior is a sound sign that the gridsampling is good. It is worth noticing that the use of non–uniform grid greatly improves the results. For example,the results for α = 0 and N = 100 are considerably lessaccurate than those given by a coarser grid (N = 20) witha nearly optimal α–value (α = 2 or α = 2.1).In Table 2 we display the values plotted in Fig. 4. The bestset of results for the optimal value α = 2.1 provides anapproximate upper bound E1/Et ≤ 0.659611 for N = 120.Although we cannot prove that this bound is rigorous (be-cause as argued above the variational principle is obeyedonly for N →∞) experience tells us that the sequence ofcollocation estimates decreases monotonically with N forfine enough grids.We have also carried out the improved collocation cal-culation described above for α = 0 (uniform grid) withmatrix grids ranging from N = 8 to N = 48 and theauxiliary grid with M = N + 2 (the rather low–order cal-culation is due to the fact the matrix is no longer sparsewhich increases the allocation–memory requirement). Astraightforward fit of the results for the lowest eigenvalueto the formula E1/Et(N) = c0 + c1/N + c2/N2 provides
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Figure 4. 8E1/π2 for grids obtained with the density (27) for different
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Table 2. Ratio E1/Et for grids obtained with the density (27) for dif-
ferent values of α.

N α = 0 α = 1 α = 2 α = 2.1 α = 320 0.669964 0.665289 0.660110 0.659525 0.65354930 0.665956 0.663127 0.659982 0.659624 0.65594340 0.664105 0.662109 0.659883 0.659630 0.65700150 0.663053 0.661528 0.659821 0.659626 0.65759960 0.662382 0.661155 0.659779 0.659622 0.65798170 0.661918 0.660897 0.659750 0.659618 0.65824780 0.661580 0.660709 0.659729 0.659616 0.65844190 0.661323 0.660566 0.659712 0.659614 0.658589100 0.661123 0.660454 0.659700 0.659613 0.658706110 0.660961 0.660364 0.659689 0.659612 0.658800120 0.660829 0.660290 0.659681 0.659611 0.658877
the estimate c0 ≈ 0.659617 with is close to the resultobtained with the standard approach. For this reason wethink that our result is more accurate than the one ob-tained by Schult et al. [32].More recently, Trefethen and Betcke [35] obtained an im-proved estimation of the second bound state found ear-lier by Schult et al.: E2/Et = 3.71648. We have carriedout a collocation calculation with α = 1 and N rangingfrom 70 to 100 and obtained E2/Et = 3.72797 for thefinest grid. A least square fit of such data to the function[E2/Et ] (N) = c0 + c1/N + c2/N2 yielded the more accu-rate estimate E2/Et ≈ 3.7161 in better agreement withthe result of Trefethen and Betcke [35].
5. Conclusions
The accuracy of a pseudospectral (collocation) methodmay be greatly enhanced using a suitable mapping of thecoordinates, in one or more dimensions. We have shownthat this map can be chosen using the PMS. For example,

the application of this procedure to the case of a cross-shaped membrane with infinite orthogonal arms confirmsthe well–known result that the fundamental mode of thissystem is bound and we were able to calculate its energywith high accuracy.From a computational point of view the present methodis both efficient and highly flexible. It allows one to ex-press the collocation matrix for a given problem in termsof a “heavy” universal matrix for the laplacian on the grid,which can be calculated once and stored, and of a “light”diagonal matrix, which is specific to the problem and canbe calculated more rapidly.
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