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1. Introduction

This paper deals with the problem of obtaining precise
numerical solutions to the Helmholtz equation, which gov-
erns the vibration modes of a classical object in one or two
dimensions (a string or a membrane)’. In two dimensions,
for the case of a membrane with variable density p(x, y),

*E-mail: paolo.amore@gmail.com
TE-mail: fernande@quimica.unlp.edu.ar
#E-mail: martinalexander.rv@gmail.com

' It also applies to the quantum mechanical problem of
the Schrédinger equation of a free particle confined in a
finite two dimensional region.

the Helmholtz equation reads
=AW, (x,y) = E, plx, y)¥Wa(x, y) . (1)

where E,, and W, (x, y) are the eigenvalues and eigenfunc-
tions of Eq. (1) respectively.

From a mathematical point of view both problems reduce
to eigenvalue equations, which can be solved exactly only
for a few special cases: the spectra of an uniform string or
of a square or a circular membrane (just to mention two
cases) are known exactly.

Most cases of practical interest cannot be solved exactly
and one is forced to resort to alternative approaches that
produce approximate solutions, either analytically or nu-
merically. In this paper we focus on obtaining numerical
solutions to those eigenvalue equations via a collocation
(pseudospectral) approach. Typically in this approach one
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uses the interpolation properties of a given set of functions
to derive a discretized version of the problem originally
formulated in a continuum space. The approximate solu-
tions are then found as eigenvalues and eigenvectors of
a matrix whose dimension depends on the size of the set
used for the collocation. The collocation approach is a
convenient alternative to the widely used Rayleigh-Ritz
method when the integrals have be carried out numeri-
cally (a time—consuming process). The reader may find a
general introduction to pseudospectral methods in the re-
markable book by Boyd [1] and several examples of their
application to a variety of fields elsewhere [2-10].

Apart from these common features, the accuracy of a pseu-
dospectral calculation depends on both the particular set
of functions and their number. From a computational point
of view it is desirable to keep the number of functions as
small as possible, since it is directly related to the dimen-
sion of the collocation matrix and to the amount of com-
puter memory required for its storage. Obviously, some
sets of functions are more convenient than others for a
given problem. For instance, Boyd et al. [10] compared
the performance of the Fourier—sine mapped pseudospec-
tral method [4] with the pseudospectral methods based on
Laguerre functions or Chebyshev polynomials and con-
cluded that the latter are preferable for the numerical so-
lution of the problem of the hydrogen atom.

The approach that we describe in this paper is similar to
the mapped Fourier method of Fattal et al. [4], where the
efficiency of the uniform sampling of the Fourier grid is
enhanced through a mapping of the coordinates. In their
approach the appropriate map is found by allowing an
optimal covering of the classical phase space associated
with a given state. On the other hand, present strategy
is motivated by the principle of minimal sensitivity (PMS)
[11]. Here the map may depend on one or more artificial
parameters (i.e. parameters which are not in the original
problem) that would not affect the result if it were exact. In
an approximate calculation there will be a residual depen-
dence on such dummy parameters and we set their values
so that their effect on the approximate result is minimal.
This is the essence of the PMS [11].

The PMS has been used with remarkable success in many
analytical calculations: one example is the "linear delta
expansion” (LDE), which combines a perturbative expan-
sion in an artificial parameter and the PMS for the phys-
ical observable, leading to accurate results [12-18].

It is our purpose to investigate whether the PMS enables
us to obtain optimal grids with little computational effort.
We compare our results with some others in the literature
to test the efficiency of our approach.

Our paper is organized as follows: in Section 2 we de-
scribe the general collocation approach on non-uniform

grids obtaining explicit matrix representations of the
Hamiltonian operator in one and more dimensions; in Sec-
tion 3 we describe a simple procedure which allows one to
restore the variational nature of the collocation approach;
in Section 4 we apply the method to several examples and
compare our results with those available in the literature.
Finally in Section 5 we draw conclusions.

2. Collocation on arbitrary grids

In this section we explicitly show how to build a set of "lit-
tle sinc functions” (LSF) [19] that satisfy Dirichlet bound-
ary conditions at the endpoints of a given finite coordi-
nate interval. The generalization of these results to other
boundary conditions is straightforward.

Let p(x) be a positive function on the interval x € (—L, L)
and define the functions

o) =155 20 sin[on 2|2
where n =1,2,... and

olx) = / L Valgidy |

These functions, which are closely related to the WKB
solutions for a string of variable density (see, for ex-
ample, page 490 in Ref. [20]), have been recently dis-
cussed by Amore [21]. By means of the change of variable
u = o(x)/a(L) it is straightforward to verify that these
functions are orthonormal in [—L, L]:

4L
/_ ) = B,

Since there is a one-to-one correspondence with the
eigenfunctions of a quantum particle in a box the func-
tions J,(x) span a complete set in that variable interval.
For this reason we can follow the procedure of Amore et al.
[19] and introduce the functions

N
v, y) = Cn ) dn(dn(y) (3)

n=1

where Cy is independent of x and y, although it depends
on the number of terms in the sum. Its precise value will
be determined later. It is not difficult to verify that
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C v p(x) ply) S‘”(

N(a(x)—a(y)) (N+1)(a(x)—a(y))
20(0) ) cos ( 20(0) )

on(x, y) o(0)

; n(o(x)—0o(y))
sin ( UZU(L()W )

AN+ (a(x)+0(y))

20(L)

sin (HN(U(XHU(y))) cos (

20(L) )

- [ #lo()+aly) '
stn( 2010) )

The function ¢y (x) in the last term of the sum exhibits the
largest number of nodes x¢(N), k =1,..., N—1 given by
Un(xk(N)) =0 or

ol (N) = g ol0) )

In some particular cases this equation may be solved ex-
actly yielding explicit expressions for the xi(N). The sim-
plest example is provided by a constant p(x), which cor-
responds to the uniform grid already discussed in ref. [19].
If the exact solution of Eq. (5) is not possible we can
calculate its roots numerically with little computational
cost.

We choose the constant Cy in such a way that it satisfies
the condition On(xx(N), xk(N)) = 1 that leads to N — 1

solutions of the form

o(L)

T k=
N~/ p(x(N))

Y =

For simplicity we will write x, instead of x((N) whenever
there is no chance of ambiguity. When p(x) = 1 we are led

|

Sk(N, L, X) = EN(X, Xk)

(

to the particular case of constant grid spacing Cy = 2L/N
discussed earlier [19]. Actually, C\¥ is roughly the grid
spacing even in the general case. If we assume that N >

1, then we may approximately write % X o' (x) =

vV P(xc), and, according to Eq. (5), we have xy — x—1 =
ah 1 = Cﬁf), confirming our statement. It is worth

N/l

noting that the grid spacing is finer where the density is
larger, a property that is most valuable for building grids
with an appropriate distribution of points.

By choosing the grid points x, as explained above we also
obtain a second useful property of the LSF: dn(x;, x¢) =
0, j+# k so that we finally have

5/\/(Xj,Xk) = 5/</' ,

7)

which is a generalization of a similar equation derived
earlier for uniform grids [19].

We are now in a position to generalize the LSF developed

earlier [19] and define what we may call the nonuniform
Little Sinc Functions (vLSF):

2N

1 [l T [sin (N + DA (x, x)  sin (2N + 1A, (x, x¢))
“{ )][ sin(A-(xx) }

Plxk

where
7t(o(x) £ o(xk))

As(x, xk) = 20(0)

and k =1,2,...,N—1. It is easy to verify that Eq. (8)
reduces to Eq. (18) of Ref. [19] when p(x) = 1 and k —
k—N/2 (note that k = —N/2+1, ..., N/2—1 in Ref. [19)).
It is worth noting that the s, (N, L, x) is obtained from the

sin (Ay(x, xk))

LSF on a uniform grid by means of the transformation

1/4
x — o(x) followed by multiplication by the factor [lf((:k))]
which ensures orthonormality.

The vLSF (8) may now be used to interpolate a given func-
tion f(x) defined on the interval [—L, L] and that vanishes
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at the endpoints f(£L) = 0 in the following way:

N-1

f(x) 2 ) Fx)se(N, L,x), (9)

k=1

where x¢ = x¢(N) are the nonuniform grid points obtained
earlier. We can justify Eq. (9) by writing the rhs as

N-1 N [N-1
Y fx)se(N Lx) =) [Z C‘Nk’f(xk)wn(xk)] Unlx)
k= k=1

1 n=1

where the term between parenthesis takes the form of a
Riemann sum because C,(\I;) is roughly the grid spacing as
argued above. Thus, one obtains the well known decom-
position of a function f(x) in the basis set {¢,(x)}:

N-1
lim N, [ZC‘Nk’f(xk)sk(/\/,L,x)] Un(x)

N—oo
k=1

e [ / L f(an(x)dx] (). (10)

The definition of the vLSF given above enables us to gen-
eralize another property of the LSF:

+L
L
[ se(N, L x)s; (N, L xydx = —2E 5

L N~/ px)

which for constant density reduces to Eq.(20) of Ref. [19].
From the approximate interpolation expression (9) we also
obtain that

+L 0
/4 f(x)sk(N, L, x)dx =~ N p(Xk)f(Xk) ,

which justifies the interpretation of si(N, L,X)/C,(\f) as an
approximate Dirac delta function on the grid.

In order to obtain a suitable matrix representation for the
kinetic—energy operator | = —;Tzz it is convenient to con-
sider the hermitian operator

1 d> 1

VAl) 2 \/p(x)’

O——

which naturally appears in the study of the vibrations of a
string with variable density [22, 23]. In the present case,
however, p(x) is not a physical density but a mathematical
tool for producing a non-uniform grid of points. Upon

operating with O on a basis function ¢, (x) given by Eq. (2)
we obtain

2.2

i [ 5600 = 4p(0)p' ()
Ounte) = 75 = gy e

This equation suggests that ,(x) tends to become an
eigenfunction of O when n — oo. In this limit the WKB
solutions, LJJLWKB)(X) = Y, (x)/n/p(x) tend to the solutions
of the corresponding inhomogeneous Helmholtz equation.
This property has already been exploited in Ref. [21] to
obtain a perturbative expansion around that basis set.

It was pointed out in Ref. [21] that in certain particular
cases the functions ,(x) are exact eigenfunctions to the
problem. An example is provided by the density p(x) that
obeys the differential equation

50/(x)” — 4p(x)p"(x) = 16Kp’(x) (1)

with k an arbitrary constant.
The general solution to this equation is of the form

256¢2
plx) = : 7 (12)
(612 (c2 4 %) + 2561()

where ¢; and ¢, are constants of integration. When x =0
this expression reduces to the problem discussed long time
ago by Borg [24], which is isospectral to a homogeneous
string (see, for example, Ref. [25]).

Another example of string with a density satisfying
Eq. (11) is the one discussed by Lord Rayleigh [26] which
has recently been studied by Gottlieb (see Eq. (4.7) of
Ref. [25], which corresponds to the form given in Eq. (12),
after setting k = 0). Gottlieb also identifies a string which
is isospectral to the Rayleigh one in terms of a transfor-
mation that leaves the spectrum invariant.

The operator

1 d? 1

VP Ao

is diagonal in the basis set {,(x)} because

50/ ()2 — 4p(x)p" (x)

>= o0

n?m

2
Syha(x) = S

We want to calculate the matrix elements of the operator

S in the basis set of normalized vLSF Sk(x) /\/ C,(\f):

1 L A
Sk[ = 7/ Sk(X)SSI(X)dX .
R /C/(j) C/(\? —L
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For convenience we also normalize the density with the
condition o(L)
[—L, L] onto a region of the same length [0, 2L].
Un(x¢) = 0 then we can write

= 2L, which maps the original interval
Since

N-1
Sk(X) = C/(\f) Zlﬂn(x)d}"(xk) ’

n=1

and

Sk[ = \/C(k C([ Zl’bn Xk (’[}n(X[ (L)

1 1 N—1
= (POl Na(L);*b"(w"(x‘)"z’r2

(2)
—Cxi

where

_ﬂ2(73CSC (”W)+2N2+1) k=1

Y

) 2412
Cri = o cos(ﬂ{k+l))stn(”k)sm( )

ZLZ(cos( zk ) cos( 7/(/[ ))

The matrix elements c(kz,) agree with the matrix elements for
the second derivative given in Ref. [19] after substituting
k—k+N/2and [ - [+ N/2.

The calculation of the matrix elements of the operator
D= M is straightforward if we take into

T6p(x)2
consideration the interpolation properties of the vLSF:

L
Dy = 17/ se(x)Ds(x)dx
A /C/(\/;) C/(\Il) —L
50/ (4)* = 4p(xi)p” (%)
6p(0)2 Ot - (13)

These results enable us to derive an expression for the
matrix elements of the kinetic—energy operator:

T = [—

2
%:l = \/p(Xk)Sk['\/p(X[) + Dk[ .
kl

1 d?
_G()dXZGZ()

=+/r'(x). Setting G(x) =

where G(x

1 1

mdxz N

¢(x)+[ (r(x))

50 (%) —

We observe that

e For a constant p(x) this matrix reduces to the one
derived earlier by Amore et al. [19].

e The matrix for the operator Sis universal; i.e. it is
not specific to a given problem and therefore it can
be calculated once for a given grid and stored.

e The matrices for D and \/p are specific to the prob-
lem under consideration and therefore they need to
be calculated each time; however they are diagonal
and such calculation is fast and efficient.

e The collocation on the grid does not require the
calculation of integrals.

o All the matrix elements can be obtained with arbi-
trary precision.

The matrix representation of the second derivative is suit-
able for the approximate calculation of the eigenvalues
and eigenfunctions of the Helmholtz and Schrédinger
equations and we discuss specific applications in the fol-
lowing sections?.

The present approach is equivalent to the one proposed
some time ago by Guardiola and Fernandez [27] who ap-
plied it to the one—dimensional Schrodinger equation

r) = EW(r) (14)

where r € (a,b), W(a) = W(b) = 0 and a and b can
be either finite or infinite. Under the change of variable
r = r(x), where r(x) is a monotonously increasing function
of x, Eq. (14) is transformed into the equivalent equation

G G
Gp T Gwe

](D(x) = Ed(x), (15)

p(x)'"* this equation reduces to

4p(x)p”(x)

d(x) + [V(r(x)) +

16p(x)? ] d(x) = Ed(x) , (16)
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and the connection between both approaches is evident.
However, the point of view is different because in the first
case one does not transform the equation but generates a
non-uniform grid, while in the second case one keeps the
grid uniform and transforms the equation.

In what follows we briefly show how to apply the same
approach to the Schrédinger equation in d dimensions.
We assume that the Hamiltonian operator is of the form

A 1
H = _EAd+V(X1r"~1Xd)
0? 9’
Ny = — 4+ -4+ —
¢ ox? o ox2

In this case we may, for example, resort to d density func-
tions pq(x1), ..., pa(x4) and obtain the matrix elements for
the Laplacian operator as

[_Ad]k1,...,kd;l1,...,ld

[\/ PXk ) Sk v/ p(x1y) + Dy 11] Okyly - - - Okyly +
[\/ p(Xkd)Skd’d \% p(de) + Dkdld] 6/<1 by 6kd—1 ld—1(17)

The matrix elements for the potential-energy opera-
tor take a somewhat simple form: [V]_ ., .

1

Z(ka ' Xkd)

\4 N —

V(Xky s -0 Xk ) Oyt Oty - - - Oyl

These expressions arise from a basis set of vLSF
constructed as products of one—dimensional vLSF:
Sk (N1, L1, xq)...5k,(Ng, La, x4). Besides, the j coordinate
of a point of the d—dimensional grid is obtained by means
of the ' density p;(x;), exactly as indicated above for the
one—dimensional case.

The collocation matrix for the laplacian is sparse. If there
are N—1 grid points in every spatial dimension, the num-
ber of nonzero matrix elements is d(N — 1)?*1 over a total
of (N —1)%¢ elements.

Note that present approach applies straightforwardly to
more complicated forms of the Hamiltonian operator, such
as

1 1 1

. A
23500, xa) A0 xa

H:

which appears in the solution of the Helmholtz equation in
an inhomogeneous medium with density X(xi,...,x4). In
two dimensions (x4, x2) may be the conformal density ob-
tained when an arbitrary domain is mapped onto a square
one [22, 28]. In such a case the matrix representation of
A on the arbitrary grid will be

1

..... kgilh,...l
4 d Z(X[1,...,X[d)

= {[\/ (Xt ) Sk, V/ pxy,) + Dy, 11] Okyly - - - Okyly +
Z()(k1 ’ Xkd

1

2
[v P(Xig) Skt PX1,) + Dkdzd] Okyty - - Oy IH} — (18)

Z(X[1,...,X[d)

Note that the matrix containing the physical (or conformal) density is diagonal.

3. Improved collocation

Each  s¢(N,L,x) is a linear combination of
Un,yn, ..., Yn_1; therefore the basis sets {sk}/kV;1
and {L/Jk},/:/;11 span the same vector subspace. For this
reason each si(N, L, x) can be exactly written as a linear
combination of the functions in the set {s,(M, L, x)}i-,",
provided that M > N. For convenience in what follows

we resort to the bra—ket notation |N, k) meaning that

sie(N, L x) = (x [N, k)y/C

We assume that the Hamiltonian operator is of the form

(

A = T+ V. It is not difficult to calculate the matrix

elements T,(;V) = (i, N|TIN,j) by means of the LSF as

discussed above. However, the matrix elements \/,/
(i, N] VN, j) may not be so easily calculated and for that
reason we have resorted to the following property of the
LSF:

lim VY = vig,,

N—-oco i
For practical purposes we have carried out the approxi-
mation V) ~ V;i0;; which we have assumed to be valid

ij
if N is large enough. However, it has been pointed out
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that in some cases this approximation may not particularly
good [5]-
When we diagonalize the Hamiltonian matrix Hz(,/;/) =
T,-(V;V)—i- Vi0;,; the approximate eigenvalues may not be upper
bounds to the actual ones because of the use of approxi-
. (N
mate matrix elements V;;
way and define the projection operators

) We may proceed in a different

N-1
Pn=>INk)(k,N]|. (19)

k=1

According to what was stated above it is obvious that
ﬁ’Nﬁ)M = I5MI5N = ﬁ’/\/ for all M > N.
Since Py [N, k) = [N, k) then we have

(6 NTHIN, ) = (& NITING ) + (i NPV PN )
(20)
If M is large enough we may carry out the approximation

M-=1
PuVPy =y M k) Vi(k,M]. (21)
k=1
so that
M-1
VI > (i NI ML K) Vi (k, MI N, ) (22)
k=1

If M is large enough we may recover the variational prop-
erties of the Rayleigh-Ritz method because we have a
better representation of the operator V and its matrix el-
ements.
The matrix A with elements A;; = (i, M| Py M, j) satis-
fies

A=A, tr(A) =N —1. (23)

We can formally write /5N < IA’M < 7 in the sense that
(Wl P ) < (ol P 1) < (] )-

The collocation matrix of the Hamiltonian operator on the
original N—grid is expressed in terms of a representation
of the Hamiltonian operator on a finer M—grid. The eigen-
values of the (N — 1) x (N — 1) Hamiltonian matrix are
exact upper bounds only when M — co. Clearly, the com-
putational cost of using this improved matrix instead of the
original one discussed in the preceding section depends
on the size of the hidden grid (i.e. on M).

The idea of using more grid points than spectral basis
functions within a collocation approach is not new. For
example, we mention the works of Fresnier [37], and more
recently of Corey and Lemoine [38] and Corey and Tromp
[39]. In particular our equation (20) with the approximation
(22) is similar to Eq. (14) of Ref. [39], where however the

resulting matrix is a (M —1) x (M —1) matrix with M — N
vanishing eigenvalues. More precisely, both equations
are equivalent only in the case of a uniform grid. In fact,
the approach followed by Corey and Tromp essentially
consists of evaluating the kinetic—energy operator on the
coarser grid and the potential part on the finer grid. In the
special case of a uniform grid, i.e. py(x) = 1, the kinetic—
energy operator has an exact LSF (N —1) x (N —1) matrix
representation on the grid and its projection onto the finer
grid is exact. Under such conditions the two approaches
are equivalent.

On the other hand, in more general cases the matrix el-
ements of the kinetic—energy operator involve matrix ele-
ments of the density (either the grid density, or a physical
density, or a conformal density) and therefore the two ap-
proaches are not equivalent. A third approach, which can
also be used in these cases, consists of expressing the
operators S on the coarser grid, because its representa-
tion is exact, and only expressing the remaining matrix
elements on the finer grid. We will compare these alter-
native approaches later on.

It is worth noting that in any of these approaches, inde-
pendently of the size of the finer grid (as long as M > N),
the matrices obtained with the collocation are not sparse,
a feature which considerably increases the memory re-
quirements for large grids.

4. Applications

In this section we consider some selected applications of
the vLSF.

4.1. Strings of variable density

We first consider the application of present approach to
the Helmholtz equation for an inhomogeneous string of
length 2L:

2
~ W0 = Bl W)

where E, are the eigenvalues, p(x) > 0 is the density of

the string and we assume that the eigenfunctions W, (x)

satisfy Dirichlet boundary conditions W,(£L) = 0.

On defining ¢, (x) = \/MW"(X) we obtain the equivalent

equation [21]

A 1 d> 1

OPy(x) = —— o T 1
) == o 0

The collocation approach discussed in the preceding sec-
tions can now be straightforwardly applied to this problem.

®,(x) = E,®a(x) .
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As we have seen, the discretization of the problem may use
an arbitrary positive definite density, which here we call
Pg(x), which determines the distribution of the collocation
points on the string. This function does not need to be
the physical density of the string, p(x), although we will
see that the case py(x) = p(x) exhibits important compu-
tational advantages for the calculation of highly excited
states.

The matrix elements of the hermitian operator appearing
in the eigenvalue equation are easily obtained as

ovel il
) () dx2 \/p() |,
1

where x; (k = 1,...,N — 1) are the grid points cor-
responding to py(x). In principle one has to calculate
N(N — 1)/2 elements of the symmetric matrix for O. The
collocation matrices for D(x) and for the densities on the
grid are diagonal so that we need the N — 1 elements
for each of them. The collocation matrix for the operator
S is not sparse but it is universal and, consequently, it
is convenient to calculate and store it for later use in all
the problems of the same kind. These properties make our
collocation method highly flexible, allowing one to study
problems of different density and using grids with differ-
ent distributions of points without having to recalculate
all the matrix elements.

Obviously, the choice of a suitable grid may lead to ac-
curate results with a smaller number of grid points. We
have found that the “natural density” p,(x) = p(x) is con-
venient for the highly excited states of the string. For
n — oo the WKB wavefunctions tend to become eigen-
functions of the operator O and therefore a discretization
based on these functions is expected to be successful. On
the other hand, if one is interested in the fundamental
mode of the string, the optimal distribution of grid points
should be determined by a grid density p,4(x) that leads
to a minimal Rayleigh quotient for the fundamental WKB
eigenfunction corresponding to this density. In the spe-
cial case D(x) = 0 (the WKB wavefunctions are exact) the
natural grid also minimizes the Rayleigh quotient.

We will illustrate these aspects of our collocation ap-
proach by means of the specific example of inhomogeneous
string, which was first studied by Horgan and Chan [29]:

(0(-}—2)2
ala+2)(x+3)+1) "’

o = 57 (25)

where |[x| < 1/2. These authors have shown that the
frequencies of this string are given by w = aA where

A is a zero of the transcendental equation
LhYil(a + 1)) = YiA (@ +1)4) =0

and J and Y are the well known Bessel functions of first
and second kind.

Fig. 1 shows the error = = |1 — E/""™E™Y| for the
first 2499 states of that string with @ = 1. The solid
and dashed lines are respectively given by N = 2500
points distributed according to the natural density and
the uniform grid. The accuracy of the numerical results
obtained with the natural grid are mostly of the order of
the 12 digits—precision used in the calculation (hence the
large plateaux).

Present LSF—collocation results for large n are useful for
the numerical calculation of the coefficients of the asymp-
totic expansion of the energy of the string, which for an
arbitrary density is of the form

E,m A4+ A+ Asln + ... . (26)

There are explicit formulas for the first three coefficients
and Amore [21] has recently derived a general formula for
A3 in terms of an infinite series. This author has also
calculated the first 5 coefficients A; numerically for the
density (25) with a = 1 by fitting the expansion (26) to
the first 10000 energies of the string calculated with 200-
digits precision. The three leading coefficients estimated
in this way are in perfect agreement with the theoretical
results given by well-known explicit formulas.

By straightforwardly fitting the asymptotic formula (26)
to the first 2499 energies calculated numerically with the
natural grid and N = 2500 we found

E, ~ 9.869604401n" + 0.375027633
— 0.032450258/n° + 0.005933450/n".

This result compares quite favorably with the formula ob-
tained using the extrapolated values:

9.869604401n° + 0.375
0.03265233457  0.009170584905
S + e +....

n
I
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Figure 1. Relative error = = |1 — E{™™ /EL**Y| for the first 2499
states of the string of Horgan and Chan [29] with a = 1.
The solid line corresponds to a grid with N = 2500 and
its points distributed according to the natural density. The
dashed line corresponds to a uniform grid with the same
number of points.

4.2. Circular membrane

The conformal collocation method (CCM) devised else-
where [22, 28] can be used to obtain precise numerical
approximations to the eigenvalues and eigenfunctions of
the Helmholtz equation on arbitrary domains in two di-

|

A 1
Ok1 kaily o

1

mensions. This method has been applied to a wide range
of domains: to the circle and to a circular wavequide with
circular ridges [28], to the cardioid and to various regular
polygons [22], to circular and asymmetric annuli [30], and
to an inhomogeneous cardioid [31]). Here we would like
to apply the present approach to a uniform circular mem-
brane of unit radius which was earlier treated by means
of a uniform grid [28]. Our purpose is to study the effect of
an inhomogeneous grid on the precision of the results and
on their rate of convergence towards the exact results.
For present numerical experiment we choose

pylx) = a csch? (\/5) cosh? (\/Ex) , (27)

where «a is a real parameter (note that the resulting grid
is uniform when a = 0). Correspondingly we have

o(x) =1+ csch (Va) sinh (Vax) .

By means of the map from the circle to the square explic-
itly given in Eq. (18) of Ref. [28] we convert the original
Helmholtz equation into an equivalent Helmoltz equation
for a square membrane with a “conformal density” Z(x, y).
Correspondingly the representation of this equation on the
grid is

1

Z(X/q i ykz) [ ]/q RSHINY) /z(xl1 i y[z)

= {[\/mskm\/m + Dy lw] Ok 1

V Z(Xlw ' ylz)

+

This expression approximates the matrix elements of the

A _ 1 1 : ;
operator O = mAm connecting a point (x,, Xi,)

to a point (x;, x;,). Labelling every point on the grid with

a single integer ranging from 1 to (N — 1) one is able
to obtain an explicit matrix representation for the operator
on the grid. The eigenvalues of this matrix are approxima-
tions to the exact eigenvalues of the circular membrane.

Table 1 shows the lowest eigenvalue of the collocation
matrix obtained with grids of different size and different
values of the parameter a which controls the distribution
of the grid points. Present results for « = 0 and N < 80

1

[V p(gkz)skzlz V p(ylz) + Dkzlz] 6/<111 } 27 . (28)

(X11 ' y’z)

correspond to those obtained earlier with a uniform grid
[28]. It is worth noticing that the collocation eigenvalues
for the largest density deformation a = 4 seem to con-
verge to the exact result from below. The greatest rate
of convergence is obtained for a = 3.2 though the re-
sults for the two largest grids seem to oscillate probably
due to round-off errors. In all the cases considered here
the rate of convergence seems to be compatible with the
asymptotic behavior 1/N* already observed in earlier cal-
culations with the uniform grid [28]. It follows from Table
1 that the rate of convergence is considerably larger when
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Figure 2. Relative error |1 — E{"*™ JEL™*“"| for the first 5000 states
of a circular drum of unit radius calculated on a grid with
N =120 and a = 0 (solid line) and a = 3.2 (dashed line).

one resorts to a deformed grid density. For example, the
result for N =20 and o = 3.2 is as accurate as the result
for N =120 and o = 0.

Fig. 2 shows the relative error for the first 5000 eigen-
values for grids with N = 120 and a = 0 (solid line)
and a = 3.2 (dashed line). The deformed grid yields
far more accurate results for the first 2000 states (ex-
cept for isolated exceptions) whereas the uniform grid is
preferable for 2000 < n < 5000 with its error increasing
gently with n. This curious behavior has a simple expla-
nation: the collocation spectrum for a = 3.2 is not linear
for n > 2000, thus departing from the behavior expected
on the grounds of Weyl's law. On the other hand, the col-
location spectrum for the uniform grid remains linear even
for the highest excited states considered here. The reason
is that in the case of the deformed grid more collocation
points are moved towards the border of the region and
for moderately excited states there is a considerable gain
in resolution in the region where the solutions are more
important, while retaining an acceptable resolution in the
central region. However, for the highest excited states in
the plot, the loss of resolution in the central part of the
collocation region affects the overall quality of the results.
No such effect takes place in the case of a uniform grid
where the collocation region is covered more uniformly.

4.3. Bound states in the continuum: crossed
wires

The present approach is not restricted to bounded domains
as previous applications may suggest. The LSF colloca-
tion method is suitable for the treatment of open domains
as shown in the following example. The configuration of

orthogonal crossed wires was originally studied by Schult
et al. [32] and later by Avishai et al. [33]. More recently,
Bulgakov et al. [34] studied scissor—shaped wavequides;
i.e. configurations with non—orthogonal arms.
Interestingly, Schult et al. discovered that despite the in-
finite extension of the cross with Dirichlet boundary con-
ditions at the border, the wavequide just mentioned sup-
ports bound states. In particular, it was found that the
fundamental mode of this wavequide falls below the con-
tinuum threshold, E; = 0.66E; (E; = h*m%/2mw?), and
that a second bound state is embedded in the continuum:
E, = 3.72E;. Those results were confirmed by Avishat
et al. [33].

In order to apply our technique to this problem we resort
to the conformal map which maps the unit disk onto the
infinite cross as shown in problem 6, page 197 in Nehari's
book [36]. Note that the there is a typo in that expression;
the correct map from the unit circle to a cross with arms
of width w =2 is:

() — V2l (1/4) \/1+z'4
(Z) - ﬂ_r 5/4) / (1_214) Z
_ o V2ran 1T 1.5 4 4
T Ar(5/4) F(Z'_§'1'Z'_Z'Z (29)

where F; is the Appell hypergeometric function. After
composing this map with the map from the square to the
unit circle, one obtains the map from the square to the
cross, which is the one needed by our collocation method.
Therefore, using this conformal map, we transform the ho-
mogeneous Helmholtz equation on the infinite cross into
an inhomogeneous Helmholtz equation on the square, with
a (conformal) density directly given in terms of the map.
The left and right panels in Fig. 3 display the square of
side 2 and its image, an infinite cross with arms of width
w = 2, respectively. The uniform grid on the square (with
N = 20) is mapped onto a deformed grid on the unit cross.
The procedure for the collocation of the Hamiltonian op-
erator on the grid is similar to the one above for the circle
and we think it unnecessary to show the steps explicitly
here.

Fig. 4 shows the ratio E1/E; for grids obtained with the
density (27) for different values of a. The case a = 0
corresponds to the uniform grid shown in the left panel of
Fig. 3, while larger values of a correspond to non—uniform
grids where the points are progressively moved towards
the extremities of the intervals.

Fig. 4 clearly shows that for fixed N the eigenvalue as a
function of o does not exhibit a minimum. We also ap-
preciate that the value o = 2 of the density parameter is
nearly optimal. The first observation illustrates the fact
that our pseudospectral approach does not obey the varia-
tional principle for finite N (although it should be satisfied
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Table 1. The energy of the fundamental mode of a circular membrane calculated with the density (27) for different values of a. The exact result is

Er = (joa)? ~ 5.7831859629467. The underlined digits are correct.

N a=0 a=2 a=3 a=32 a=4
10  5.785633618939 5.783316758453  5.783980548966 5.784734711375 5.795622183490
20 5783347847095 5.783194258510 5.783186788303 5.783186103068 5.783189070233
30 5.783218252759 5.783187596925 5.783186118919 5.783185972125 5.783185613788
40 5783196213318 5.783186479426 5.783186011997 5.783185965565 5.783185851816
50 5.783190167777 5.783186174397 5.783185982981 5.783185963965 5.783185917378
60 5783187992366 5.783186064893 5.783185972593 5.783185963423 5.783185940958
70 5783187058902 5.783186017966 5.783185968148 5.783185963199 5.783185951073
80  5.783186605573 5.783185995194 5.783185965994 5.783185963092 5.783185955985
90 5783186364220 5.783185983077 5.783185964848 5.783185963037 5.783185958599
100 5.783186226262 5.783185976154 5.783185964194 5.783185963006 5.783185960094
110 5.783186142775 5.783185972288 5.783185963856 5.783185963077 5.783185961467
120 5783186089902 5783185969449 5.783185963555 5.783185962428 5.783185961492
Lo ) in fact the case for the values corresponding to a = 2.1,
which start to decay for N > 40, although this behavior
0.5 cannot be appreciated on the scale of the plot. The origin
of this violation of the variational principle arises from the
= 00 fact that we have not calculated the integrals explicitly,
and that for large enough o the grid points are mostly
concentrated at the corners of the square, which leads to
e imprecise approximations. Although one cannot resort to
the variational principle or the PMS to determine the op-
‘1-0}1'0 1% timal a in this case, it is possible to obtain a reasonable
value of o by looking for values of @ which do not pro-
duce large changes in the energy when more grid points
4 1 are added. Such behavior is a sound sign that the grid
sampling is good. It is worth noticing that the use of non—
7 1 uniform grid greatly improves the results. For example,
the results for @ = 0 and N = 100 are considerably less
>0 accurate than those given by a coarser grid (N = 20) with
a nearly optimal a—value (@ =2 or a = 2.1).
’ In Table 2 we display the values plotted in Fig. 4. The best
Ll i set of results for the optimal value o = 2.1 provides an
approximate upper bound E;/E; < 0.659611 for N = 120.

Figure 3. Square of side 2 and infinite cross of width 2 obtained with
the conformal map. The red lines correspond to a grid with
N = 20.

in the limit N — oo). For this reason, the sequences of re-
sults with o < 2 are monotonically decreasing, while, on
the other hand, those with @ > 2.1 have positive slopes for
small grids. For large enough grids, however, one should
obtain a negative slope even for these densities. This is

Although we cannot prove that this bound is rigorous (be-
cause as argued above the variational principle is obeyed
only for N — o) experience tells us that the sequence of
collocation estimates decreases monotonically with N for
fine enough grids.

We have also carried out the improved collocation cal-
culation described above for @ = 0 (uniform grid) with
matrix grids ranging from N = 8 to N = 48 and the
auxiliary grid with M = N + 2 (the rather low—order cal-
culation is due to the fact the matrix is no longer sparse
which increases the allocation-memory requirement). A
straightforward fit of the results for the lowest eigenvalue
to the formula E;/E{(N) = ¢y + ¢1/N + c2/N? provides
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Figure 4. 8E; /= for grids obtained with the density (27) for different

Table 2. Ratio £ /E; for grids obtained with the density (27) for dif-

40

values of a.

ferent values of a.

60

80

100 120

N

a=0

a=1

a=2

a=21

a=3

20
30
40
50
60
70
80
90
100
110
120

0.669964
0.665956
0.664105
0.663053
0.662382
0.661918
0.661580
0.661323
0.661123
0.660961
0.660829

0.665289
0.663127
0.662109
0.661528
0.661155
0.660897
0.660709
0.660566
0.660454
0.660364
0.660290

0.660110
0.659982
0.659883
0.659821
0.659779
0.659750
0.659729
0.659712
0.659700
0.659689
0.659681

0.659525
0.659624
0.659630
0.659626
0.659622
0.659618
0.659616
0.659614
0.659613
0.659612

0.653549
0.655943
0.657001
0.657599
0.657981
0.658247
0.658441
0.658589
0.658706
0.658800

the application of this procedure to the case of a cross-
shaped membrane with infinite orthogonal arms confirms
the well-known result that the fundamental mode of this
system is bound and we were able to calculate its energy
with high accuracy.

From a computational point of view the present method
is both efficient and highly flexible. It allows one to ex-
press the collocation matrix for a given problem in terms
of a "heavy” universal matrix for the laplacian on the grid,
which can be calculated once and stored, and of a “light”
diagonal matrix, which is specific to the problem and can
be calculated more rapidly.
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