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The subvariety of commutative residuated lattices
represented by twist-products

Manuela Busaniche and Roberto Cignoli

Abstract. Given an integral commutative residuated lattice L, the product L×L can
be endowed with the structure of a commutative residuated lattice with involution
that we call a twist-product. In the present paper, we study the subvariety K of
commutative residuated lattices that can be represented by twist-products. We give
an equational characterization of K, a categorical interpretation of the relation among
the algebraic categories of commutative integral residuated lattices and the elements
in K, and we analyze the subvariety of representable algebras in K. Finally, we
consider some specific class of bounded integral commutative residuated lattices G,
and for each fixed element L ∈ G, we characterize the subalgebras of the twist-product
whose negative cone is L in terms of some lattice filters of L, generalizing a result by
Odintsov for generalized Heyting algebras.

1. Introduction

By a commutative residuated lattice we mean a residuated lattice-ordered
commutative monoid, i.e., an algebra A = (A,∨,∧, · ,→, e) of type (2, 2, 2, 2, 0)
such that (A,∨,∧) is a lattice, (A, · , e) is a commutative monoid and the
following residuation condition is satisfied:

x · y ≤ z if and only if x ≤ y → z, (1.1)

where x, y, z denote arbitrary elements of A and ≤ is the order given by the
lattice structure.

It is well known that commutative residuated lattices form a variety that
we shall denote by CRL (see, for instance, [3, 12,14]).

An involution on L ∈ CRL is a unary operation ∼ satisfying the equations
∼∼x = x and x → ∼ y = y → ∼x. If f := ∼ e, then ∼x = x → f and f

satisfies the equation
(x → f) → f = x. (1.2)

The element f in equation (1.2) is called a dualizing element.
Conversely, if f ∈ L is a dualizing element and we define ∼x = x → f

for all x ∈ L, then ∼ is an involution on L and ∼ e = f . Hence, there is a
bijective correspondence between involutions on L and dualizing elements in
L (see [13,22] for details).
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6 M. Busaniche and R. Cignoli Algebra Univers.

Taking f = e in (1.2), we obtain an equation in the language of residuated
lattices that determines a subvariety IeCRL of CRL. We call the elements
of this subvariety e-involutive commutative residuated lattices or e-lattices for
short (they were called residuated lattices with involution in [4, 6]).

By a twist-product of a lattice L, we mean the cartesian product of L with
its order-dual L∂ equipped with the natural order involution (x, y) 	→ (y, x)
for all (x, y) ∈ L×L∂ . As far as we know, the idea of considering this kind of
construction to deal with order involutions on lattices goes back to Kalman’s
1958 paper [15], but the name “twist” appeared thirty years later in Kracht’s
paper [16].

Kalman only referred to bare lattices, but later on several authors con-
sidered lattices with additional operations which allow the definition of new
operations on the basic twist-product [4–8,11,16,19–23].

Tsinakis and Wille [22], inspired by Chu’s work on category theory [2,
Appendix], endowed the twist-product of a residuated lattice L having greatest
element 
 with a residuated monoid structure with unit (e,
) and such that
the pair (
, e) is the dualizing element for the natural involution as a twist-
product. Hence, when L is integral, i.e., when e is the greatest element of L,
the dualizing pair is (e, e) and if L is also commutative, we obtain an e-lattice
that we denote K(L).

We define a K-lattice as an e-lattice isomorphic to a subalgebra of K(L)
for some integral L ∈ CRL.

Our first aim is to show that the class of K-lattices is a subvariety K of CRL

(more precisely, a proper subvariety of IeCRL), characterized by a simple set of
equations. Moreover, we show that the correspondence L 	→ K(L) can be lifted
to a functor K from the algebraic category of integral commutative residuated
lattices into the algebraic category of K-lattices, and that the functor K has
a left adjoint (see Section 4).

An important property is that L is isomorphic to the negative cone of K(L).
From this, it follows that the congruence lattices of L and K(L) are isomorphic.
On the other hand, although K(L) is distributive if and only if L is distributive
(Corollary 3.9), in general, equations are not transferred from L to K(L), as
is shown by the equations characterizing representability (see Section 5).

By a K-expansion of an integral L ∈ CRL, we mean a K-lattice A such
that the negative cone of A is isomorphic to L. The K-expansions of L are
in one to one correspondence with some subalgebras of K(L) that we call
admissible. A natural question is whether it is possible to associate each ad-
missible subalgebra with a substructure of L. We could not solve this problem
in full generality, but we found partial solutions inspired by previous works on
Heyting algebras.

A generalized Heyting algebra (called implicative lattice by Odintsov [18–
20]) is an integral residuated lattice that satisfies the equation x · y = x ∧ y.
Generalized Heyting algebras can be thought as the bottom-free reducts of
Heyting algebras.
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 Commutative residuated lattices represented by twist-products 7

The subvariety of K formed by the isomorphic copies of subalgebras of K(L)
for generalized Heyting algebras L was introduced in [4, 6] under the name
of NPc-lattices to provide an algebraic semantics for paraconsistent Nelson
logic [1] based on residuated lattices. NPc-lattices can be characterized as
K-lattices that satisfy the equation (x∧e)2 = x∧e. The e-less reducts of NPc-
lattices are termwise equivalent to Odintsov’s N4-lattices [18–20], the original
algebraic semantics for paraconsistent Nelson logic. As a consequence, we
obtained that for a generalized Heyting algebra L, the admissible subalgebras
of K(L) are in bijective correspondence with the Peirce filters of L.

Inspired in this result, we consider bounded integral commutative residuated
lattices satisfying the Glivenko condition (see Theorem 6.4). For such an L,
we find a correspondence between a class of lattice filters of L and some special
admissible subalgebras of K(L). When L is a Heyting algebra, our results are
analogous to those of Odinstov.

Although we assume that the reader is familiar with the theory of residuated
lattices, in the first section we recall some basic notions to fix the notations and
we give some details on congruences, stressing the role played by implicative
filters. In Section 5, before considering the relations between filters and admis-
sible subalgebras, we establish properties of negation in bounded residuated
lattices of independent interest.

2. Preliminaries

We recall for later reference some basic properties of commutative residu-
ated lattices. For details, see [3], [12] and [14].

The residuated condition (1.1) can be replaced by the following set of equa-
tions:

(R1) x · (y ∨ z) = (x · y) ∨ (x · z),
(R2) x → (y ∧ z) = (x → y) ∧ (x → z),
(R3) (x · (x → y)) ∨ y = y,
(R4) (x → (x · y)) ∧ y = y.

If the underlying lattice of A ∈ CRL is distributive, we say that A is a
commutative distributive residuated lattice.

Lemma 2.1. Let A be a commutative residuated lattice, and let x, y, z ∈ A.
The following hold.

(RL1) x ≤ y iff x → y ≥ e,

(RL2) x ≤ y implies x · z ≤ y · z,

(RL3) x → (y → z) = (x · y) → z = y → (x → z),
(RL4) (x ∨ y) → z = (x → z) ∧ (y → z).

A residuated lattice A is called integral provided x ≤ e for all x ∈ A.
The negative cone of A ∈ CRL is the set A− = {x ∈ A : x ≤ e}. From

RL2 in Lemma 2.1, A− is closed under the operations ∨,∧, · , and if the binary
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8 M. Busaniche and R. Cignoli Algebra Univers.

operation →e is defined as x →e y = (x → y)∧ e, then it is easy to check that
A− = (A−,∨,∧, · ,→e, e) is an integral commutative residuated lattice.

A convex subalgebra of A ∈ CRL is a subalgebra S of A such that if
x, y ∈ S, then the whole segment [x, y] = {z ∈ A : x ≤ z ≤ y} is in S. Given
a congruence θ of A, Sθ = {x ∈ A : (x, e) ∈ θ} is a convex subalgebra of A.
The following result is proved in [14, Section 2].

Theorem 2.2. The correspondence θ 	→ Sθ establishes an order isomorphism
from the set Cong(A) of congruences of A onto the set Subc(A) of convex
subalgebras of A when both sets are ordered by inclusion.

An implicative filter (i-filter for short) of an integral commutative residuated
lattice A is a subset F ⊆ A such that e ∈ F and is closed under modus ponens:
x ∈ F and x → y ∈ F imply y ∈ F . Implicative filters can also be characterized
as subsets of A that are nonempty, upwards closed, and closed by product · .
It follows easily that implicative filters are precisely the convex subalgebras of
integral commutative residuated lattices. Hence, by Theorem 2.2, there is an
order isomorphism from Cong(A) onto the set Filt(A) of i-filters of A, ordered
by inclusion.

Observe that for an implicative filter F of an integral commutative residu-
ated lattice L, one has that

(x, y) ∈ θ(F ) if and only if x → y ∈ F and y → x ∈ F. (2.1)

Let A ∈ CRL and let F ∈ Filt(A−). It follows from [14, Lemma 2.7] that

C(F ) = {x ∈ A : z ≤ x ≤ z → e for some z ∈ F}

is the universe of a convex subalgebra of A. Moreover, from the results of [14],
the following theorem can be deduced.

Theorem 2.3. Let A ∈ CRL. The correspondence ϕ : Filt(A−) → Subc(A)
given by F 	→ C(F ) is an order isomorphism.

Proof. Let F be an i-filter of the integral residuated lattice A−. We shall see
that

F = C(F ) ∩ A−. (2.2)

Indeed, if z ∈ F , then z ∈ A− and z ≤ z ≤ z → e; thus, F ⊆ C(F ) ∩ A−. For
the opposite inclusion, take x ∈ C(F )∩A−. By definition, there is z ∈ F such
that z ≤ x ≤ z → e. Since F is upwards closed, we get x ∈ F . From (2.2), we
conclude that ϕ is injective.

To check surjectivity, let S ∈ Subc(A). First we see that F = S ∩ A− is
an implicative filter of the negative cone of A. Clearly, e ∈ S ∩ A− and if
x, y ∈ S ∩ A−, then x · y ∈ S ∩ A−. To see that S ∩ A− is upwards closed, let
x ∈ S ∩ A− and x ≤ y ≤ e. Then x · y ≤ e · e = e, and y ≤ x → e. Hence, we
have x ≤ y ≤ x → e, and since S is convex, we get y ∈ S ∩ A−.

Now we prove that S = C(F ) = C(S ∩ A−). The inclusion C(F ) ⊆ S

follows immediately from the convexity of S. For the opposite inclusion, take
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 Commutative residuated lattices represented by twist-products 9

s ∈ S. Since S is a subalgebra of A, the element h = s ∧ e ∧ (s → e) belongs
to S ∩ A−. We have

s · h = s · (s ∧ e ∧ (s → e)) ≤ s · (s → e) ≤ e.

Then h ≤ s ≤ h → e and S ⊆ C(F ).
The reader can easily corroborate that ϕ is order preserving. �

Notice that the inverse of the isomorphism ϕ in the above theorem is the
correspondence S 	→ S ∩ A−. As an immediate corollary we get the following
(see [14]).

Corollary 2.4. The lattices Cong(A) and Cong(A−) are isomorphic.

3. e-Lattices and twist-products

As mentioned in the Introduction, by an e-lattice we mean a commutative
residuated lattice A which satisfies the equation

(x → e) → e = x, (3.1)

and it is easy to see that the involution ∼ given by the prescription ∼x = x → e

for all x ∈ A, satisfies the following properties:

(M1) ∼∼x = x,
(M2) ∼(x ∨ y) = ∼x ∧ ∼ y,
(M3) ∼(x ∧ y) = ∼x ∨ ∼ y,
(M4) ∼(x · y) = x → ∼ y.

Moreover, we have ∼ e = e.
Lattice-ordered abelian groups with x · y = x + y, x → y = y − x, and

e = 0 are examples of e-lattices. Other examples of e-lattices are given by the
following result, which is a particular case of [22, Corollary 3.6].

Theorem 3.1. Let L = (L,∨,∧, · ,→, e) be an integral commutative residuated
lattice. Then K(L) = (L × L,,�, ·K(L),→K(L), (e, e)) with the operations
,�, · ,→ given by

(a, b)  (c, d) = (a ∨ c, b ∧ d) (3.2)

(a, b) � (c, d) = (a ∧ c, b ∨ d) (3.3)

(a, b) ·K(L) (c, d) = (a · c, (a → d) ∧ (c → b)) (3.4)

(a, b) →K(L) (c, d) = ((a → c) ∧ (d → b), a · d) (3.5)

is an e-lattice. Moreover, the correspondence (a, e) 	→ a defines an isomor-
phism from (K(L))− onto L.

Definition 3.2. We call K(L) the full twist-product obtained from L, and
every subalgebra A of K(L) containing the set {(a, e) : a ∈ L} is called a
twist-product obtained from L.
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10 M. Busaniche and R. Cignoli Algebra Univers.

With the notation of the previous theorem, notice that for every element
(a, b) ∈ K(L), we have

∼(a, b) = (a, b) →K(L) (e, e) = (b, a). (3.6)

From now on, without danger of confusion, we shall omit the subscript
K(L) from the operations in K(L).

Remark 3.3. Let τ be a lattice equation, i.e., an equation that only involves
the operations ∧,∨, e. One can define the dual of τ to be the equation τd that
arises by substituting every appearance of ∧ in τ by ∨ and every appearance
of ∨ by ∧. The reader can check that if L satisfies τ and τd, then K(L)
also satisfies both equations. Since L is isomorphic to a sublattice of K(L),
L satisfies a lattice equation and its dual if and only if K(L) satisfies both
equations. In particular, L is a distributive lattice if and only if K(L) is
distributive.

Our next aim is to characterize the e-lattices that can be represented as
twist-products obtained from their negative cones.

Definition 3.4. A commutative residuated lattice L = (L,∨,∧, · ,→, e) sat-
isfies distributivity at e if the distributive laws

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (3.7)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (3.8)

hold whenever any of x, y, z is replaced by e.

Observe that any integral commutative residuated lattice L trivially satisfies
the equation

(x · y) ∧ e = (x ∧ e) · (y ∧ e). (3.9)

The reader can easily verify that (3.9) is also satisfied by the twist-product
K(L). We also leave to the reader to check that K(L) is distributive at e and
satisfies the following equation:

((x ∧ e) → y) ∧ ((∼ y ∧ e) → ∼x) = x → y, (3.10)

We shall prove that the two equations (3.9), (3.10) and distributivity at e

are sufficient to guarantee representability by twist-products.

Definition 3.5. A K-lattice is an e-lattice satisfying (3.9), (3.10) and dis-
tributivity at e.

It follows from the definition that K-lattices form a variety, which we denote
by K. Since lattice-ordered abelian groups do not satisfy (3.9), they provide
examples of e-lattices that are not K-lattices.

It is well known and easy to verify that distributivity at e implies the
quasiequation

x ∧ e = y ∧ e and x ∨ e = y ∨ e imply x = y. (3.11)
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 Commutative residuated lattices represented by twist-products 11

Since ∼ e = e, by M1 and M3, (3.11) is equivalent to

if x ∧ e = y ∧ e and ∼x ∧ e = ∼ y ∧ e, then x = y. (3.12)

Lemma 3.6. The equation

((x ∧ e) → (y ∧ e)) ∧ e = ((x ∧ e) → y) ∧ e (3.13)

holds in every K-lattice.

For the sake of completeness we reproduce a proof of this lemma given in [4].

Proof. From the fact that (x∧e) → (y∧e) ≤ (x∧e) → y, we get the inequality
((x ∧ e) → (y ∧ e)) ∧ e ≤ ((x ∧ e) → y) ∧ e. For the opposite direction, since
(x∧ e) · ((x∧ e) → y) ≤ y, we obtain ((x∧ e) · ((x∧ e) → y))∧ e ≤ y ∧ e, which
by (3.9) can be written as (x∧ e) · (((x∧ e) → y)∧ e) ≤ y ∧ e. Hence, by (1.1),
((x ∧ e) → y) ∧ e ≤ (x ∧ e) → (y ∧ e), which implies

((x ∧ e) → y) ∧ e ≤ ((x ∧ e) → (y ∧ e)) ∧ e. �

Theorem 3.7. Let A be a K-lattice. The map φA : A → K(A−) given by
x 	→ (x ∧ e,∼x ∧ e) is an injective homomorphism.

Proof. We first check that φA is a homomorphism. The preservation of the
lattice operations relies on M2 and distributivity at e. In detail, for x, y ∈ A,

φA(x ∧ y) = ((x ∧ y) ∧ e,∼(x ∧ y) ∧ e) = ((x ∧ e) ∧ (y ∧ e), (∼x ∨ ∼ y) ∧ e)

= ((x ∧ e) ∧ (y ∧ e), (∼x ∧ e) ∨ (∼ y ∧ e))

= (x ∧ e,∼x ∧ e) � (y ∧ e,∼ y ∧ e) = φA(x) � φA(y).

Similarly, one can prove that φA preserves the supremum. Observe that

φA(∼x) = (∼x ∧ e,∼∼x ∧ e) = (∼x ∧ e, x ∧ e) = ∼(x ∧ e,∼x ∧ e).

Due to M4, it is only left to check that φA preserves · . To that end, notice
that φA(x · y) = ((x · y) ∧ e,∼(x · y) ∧ e), that thanks to equation (3.9) and
M4, can be rewritten as

((x ∧ e) · (y ∧ e), (x → ∼ y) ∧ e). (3.14)

On the other hand,

φA(x) · φA(y) =

((x ∧ e) · (y ∧ e), ((x ∧ e) →e (∼ y ∧ e)) ∧ ((y ∧ e) →e (∼x ∧ e))). (3.15)

Since the first components of (3.14) and (3.15) coincide, to see that φA(x ·y) =
φA(x) · φA(y) it remains to prove that the second components also coincide.
Observe that from the definition of →e, Lemma 3.6, and (3.10), we have

((x ∧ e) →e (∼ y ∧ e)) ∧ ((y ∧ e) →e (∼x ∧ e))

= ((x ∧ e) → (∼ y ∧ e)) ∧ ((y ∧ e) → (∼x ∧ e)) ∧ e

= ((x ∧ e) → (∼ y)) ∧ e ∧ ((y ∧ e) → (∼x)) = (x → ∼ y) ∧ e.

Finally, the injectivity of φA follows at once from (3.11). �
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12 M. Busaniche and R. Cignoli Algebra Univers.

Remark 3.8. Since for each a ∈ A− we have φA(a) = (a, e), it follows by
restriction that φA defines an isomorphism from A− onto φA(A)−.

As an immediate consequence of the above theorem and Remark 3.3, we
have the following.

Corollary 3.9. A K-lattice satisfies a lattice identity τ if and only if its neg-
ative cone satisfies τ and τd. In particular, a K-lattice is distributive if and
only if its negative cone is distributive.

We say that a K-lattice A is total provided that the homomorphism φA

defined in Theorem 3.7 is an isomorphism from A onto K(A−). Since φA is
always injective, it is an isomorphism if and only if it is surjective, i.e., if and
only if the following condition is satisfied:

for all x, y ∈ A−, there is z ∈ A such that z ∧ e = x and ∼ z ∧ e = y. (3.16)

4. Categorical interpretation

Let I and K be the algebraic categories of integral commutative residuated
lattices and K-lattices, respectively. Notice that the operator K defined on
each integral commutative residuated lattice L by K(L) can be extended to a
functor from I into K by defining K(h)(x, y) = (h(x), h(y)) for h : L1 → L2.

On the other hand, we can define a functor F : K → I by F(A) = A−, and
for each g : A1 → A2, F(g) is the restriction of g to A−1 .

For each K-lattice A, the operator φA defined in Theorem 3.7 gives an
embedding from A into K(F(A)). Moreover, the map ρL : K(L)− → L given
by ρL(a, e) = a is an isomorphism from F(K(L)) onto L.

Therefore, we can define

φ : IdK → K ◦ F (4.1)

by φ(A) = φA, and
ρ : F ◦ K → IdI (4.2)

by ρ(K(L)−) = ρL. A simple verification shows that the operators φ and
ρ define natural transformations and, since ρ is an isomorphism, (4.2) is an
equivalence.

For A ∈ K, if a ∈ F(A) = A−, then F(φA)(a) = (a, e) and ρF(A)((a, e)) =
a. Hence, we have

F
Fφ−→ FKF

ρF−→ F = IdF. (4.3)

For all integral L ∈ CRL, if (a, e) ∈ F(K(L)) = K(L)−, then

φK(L)(a, e) = ((a, e) � (e, e), (e, a) � (e, e)) = ((a, e), (e, e)),

and K(ρL)((a, e), (e, e)) = (a, e). Hence,

K
φK−→ KFK

Kρ−→ K = IdK. (4.4)
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 Commutative residuated lattices represented by twist-products 13

Recalling now [17, Section IV.1, Theorem 2 (v)], from (4.1)–(4.4) we obtain
the following theorem.

Theorem 4.1. The functor F : K → I is the left adjoint to K : I → K. The
natural transformation φ is the unit of the adjunction, and the counit is the
natural equivalence ρ.

If we denote by T the full subcategory of K whose objects are the total
K-lattices, and by Ft the restriction of F to T , we have the following.

Corollary 4.2. The quadruple (Ft,K, φ, ρ) defines an equivalence between the
categories I and T .

5. Representable K-lattices

A residuated lattice is representable if it is a subdirect product of linearly
ordered residuated lattices. Given a subvariety V ⊆ CRL, it is shown in
[22] that the representable residuated lattices in V form a subvariety of V

characterized by the equations

e ∧ (x ∨ y) = (e ∧ x) ∨ (e ∧ y) (5.1)

and
e ∧ ((x → y) ∨ (y → x)) = e. (5.2)

We will characterize representable K-lattices. To achieve this aim, we will
investigate the possible structure of totally ordered K-lattices. Obviously, the
trivial K-lattice whose only element is e is totally ordered.

We introduce the following K-lattices: let B be the two-element boolean
algebra with underlying set {0, 1}. Then K(B) is a K-lattice with universe
{(0, 1), (1, 1), (1, 0), (0, 0)}, where e = (1, 1). We define P3, as the unique non-
trivial proper subalgebra of K(B), i.e., the subalgebra with universe P3 =
{(0, 1), (1, 1), (1, 0)}. In Figure 1 one can see the lattice reduct of the alge-
bra K(B).

(1, 1) (0, 0)

(0, 1)

(1, 0)

Figure 1
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14 M. Busaniche and R. Cignoli Algebra Univers.

Lemma 5.1. Every three-element K-lattice is isomorphic to P3.

Proof. Assume that A is a K-lattice with three elements. If there is an element
a ∈ A \ A−, then A+ \ {e} �= ∅ since e �= a ∨ e ∈ A+. Besides, because of the
involution, the negative and the positive cones of A must be symmetric with
respect to e. If A = {a, e, b}, then a < e < b with e the neutral element. So the
operations ∧ and ∨ are uniquely determined by the order and the involution
is given by

x a e b

∼x b e a

Because of equation M4, it only remains to see the behavior of · .
Based on R1, we can assert that b2 = b·b ≥ b·e = b and a2 = a·a ≤ a·e = a.

Thus, b2 = b and a2 = a. Now we study a · b. If a · b = b, then from M4 and
RL1, we get a = ∼ b = ∼(a · b) = ∼(∼ b · b) = b → ∼∼ b = b → b ≥ e, which
is absurd. If a · b = e, then a · (a · b) = a · e = a while (a · a) · b = a · b = e,

another absurdity. Therefore, a · b = a.

So the product · in A is uniquely determined by

· a e b

a a a a

e a e b

b a b b

and there is only one possible structure of three-element K-lattice. It is easy
to see that A ∼= P3.

�
Theorem 5.2. P3 is the only nontrivial K-lattice in which every element is
comparable with e.

Proof. Assume that A is a K-lattice such that A = A+ ∪ A−. According to
Theorem 3.7, there is an integral commutative residuated lattice L such that
A is isomorphic to a subalgebra of K(L). We identify A with this subalgebra
of pairs. Observe that our hypothesis means that every pair of elements in
A is either of the form (a, e) or (e, a) with a ∈ L. If there are a, b ∈ L such
that a �= e, b �= e and (a, e), (b, e) are in A, then (e, a), (e, b) ∈ A. Therefore,
(a, e) · (e, b) = (a, a → b) ∈ A. Since a �= e, our hypothesis forces a → b = e;
thus, a ≤ b. Similarly, (b, e) · (e, a) = (b, b → a) ∈ A implies b ≤ a. Hence,
there is at most one element in A+ \ {(e, e)}, namely (e, a) for some a ∈ L.
The final result follows from Lemma 5.1. �

As an immediate corollary we have the following.

Theorem 5.3. The K-lattice P3 is the only nontrivial K-lattice that is totally
ordered.

Corollary 5.4. The subvariety of representable K-lattices is generated by P3

and it is characterized by Equation (5.2).
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Remark 5.5. It follows from Corollary 2.4 that P3 is a simple algebra; there-
fore, representable K-lattices are semisimple.

6. K-expansions

Throughout this section, L will denote an integral commutative residuated
lattice. We say that a K-lattice A is a K-expansion of L provided A− is
isomorphic to L. We say that a subalgebra S of K(L) is admissible provided
it is a twist-product obtained from L, that is, if S contains the elements (x, e)
for all x ∈ L. Obviously, in such case the elements of the form (e, x) are also in
S for all x ∈ L. The smallest admissible subalgebra of K(L) is the subalgebra
generated by {(x, e) : x ∈ L}, which we shall denote by S0(L), and the largest
admissible subalgebra is K(L).

By Theorem 3.1, K(L) is a K-expansion of L, and it follows from Theo-
rem 3.7 and Remark 3.8 that the K-expansions of L are in correspondence
with the admissible subalgebras of K(L). Therefore, a natural problem is to
characterize these admissible subalgebras. We aim to give a partial solution
to this problem for some classes of residuated lattices. We start with a general
result.

Lemma 6.1. The following properties are satisfied for each admissible subal-
gebra S of K(L):

(i) Let x, y, s, t ∈ L be such that x ≤ s and y ≤ t. If (x, y) ∈ S, then
(s, y) ∈ S and (x, t) ∈ S.

(ii) For all x, y ∈ L, (x → y, x) ∈ S.
(iii) For all x, y, z ∈ L, if (x, y) ∈ S, then (z, (x → z) → y) ∈ S.

Proof. (i): Since (s, y) = (x, y)  (s, e) and (x, t) = (x, y) � (e, t), we have (i).
(ii): Observe that (x, e) → (y, e) = (x → y, x).
(iii): Note that by (ii), (x → z, x) ∈ S. Hence,

(x, y) · (x → z, x) = (x · (x → z), (x → z) → y) ∈ S,

and then (z, e)  (x · (x → z), (x → z) → y) = (z, (x → z) → y) ∈ S. �

By a bounded residuated lattice we mean an algebra B = 〈B, · ,→,∨,∧, e, 0〉
of type 〈2, 2, 2, 2, 0, 0〉 such that 〈B, · ,→,∨,∧, e〉 is a commutative residuated
lattice and 0 is the smallest element with respect to the lattice order. In this
case, B also has an upper bound given by 
 := 0 → 0. If in addition B is
integral, then 
 = e. The class of all bounded residuated lattice is a variety
that will be denoted by BCRL.

On a bounded residuated lattice B, we define a unary operation ¬ by the
prescription

¬x = x → 0, for all x ∈ B. (6.1)

If B is bounded with smallest element 0, then K(B) is also bounded with
smallest element (0,
), and for each (x, y) ∈ K(B), ¬(x, y) = (¬x ∧ y, x).
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In light of Theorem 3.7, the last equality implies that for each bounded
K-lattice A, we have that ¬x ≤ ∼x for all x ∈ A.

Lemma 6.2. The following properties hold true in any B ∈ BCRL:

(i) x ≤ y implies ¬y ≤ ¬x.
(ii) ¬x = ¬¬¬x.
(iii) x ≤ ¬¬x.
(iv) ¬¬(¬¬x ∧ ¬¬y) = ¬¬x ∧ ¬¬y.
(v) x → ¬y = y → ¬x.
(vi) x → ¬y = ¬¬x → ¬y.
(vii) ¬¬(x → ¬¬y) = x → ¬¬y.
(viii) ¬¬(¬¬x → ¬¬y) = ¬¬x → ¬¬y.
(ix) ¬(x · y) = x → ¬y.
(x) ¬(x ∨ y) = ¬x ∧ ¬y.

Proof. (i)–(v): Properties (i),(ii), (iii), and (v) easily follow from the defini-
tion (for a proof see [12, Lemma 2.8]), and (iv) follows immediately from the
previous ones.

Using some of the ideas of [10] we prove the remaining properties.
(vi): This is a consequence of items (ii) and (v), since

x → ¬y = y → ¬x = y → ¬¬¬x = ¬¬x → ¬y.

(vii): By (iii), we have x → ¬¬y ≤ ¬¬(x → ¬¬y). On the other hand,
observing RL3 in Lemma 2.1 together with (vi), we get

¬¬(x → ¬¬y) → (x → ¬¬y) = x → (¬¬(x → ¬¬y) → ¬¬y)

= x → ((x → ¬¬y) → ¬¬y) = (x → ¬¬y) → (x → ¬¬y) ≥ e;

thus, RL1 implies x → ¬¬y ≥ ¬¬(x → ¬¬y).
(viii): This is an easy consequence of (vii).
(ix): This is an application of RL3.
(x): This follows from the fact that (x ∨ y) → z = (x → z) ∧ (y → z) holds

for all x, y, z ∈ B. �

Let B ∈ BCRL. An element x ∈ B is said to be regular provided ¬¬x = x,
and the set of regular elements of B will be denoted by Reg(B). By an invo-
lutive residuated lattice we mean a bounded commutative residuated lattice B
such that B = Reg(B), i.e., such that B satisfies the equation ¬¬ x = x. In
other words, B is involutive if and only if 0 is a dualizing element.

Notice that if B is bounded with lowest element 0, then (x, y) ∈ Reg(K(B))
if and only if x · y = 0. Indeed, take x, y ∈ B. If x · y = 0, one gets y ≤ ¬x

and x ≤ ¬y. Then

¬¬(x, y) = ¬(¬x ∧ y, x) = ¬(y, x) = (¬y ∧ x, y) = (x, y).

On the other hand, since the second coordinate of ¬¬(x, y) is ¬x ∧ y, if the
equation ¬¬(x, y) = (x, y) holds, then y = y ∧ ¬x, and this implies x · y = 0.
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In particular, (e, e) �∈ Reg(K(B)). Hence, no (nontrivial) bounded K-lattice
is involutive.

Suppose now that B ∈ BCRL is integral, and for each � ∈ {∨,∧,→, ·},
define x �R y = ¬¬(x � y) for x, y ∈ Reg(B). It is easy to see that

Reg(B) = (Reg(B),∨R,∧R,→R, ·R, e, 0)

is an integral involutive residuated lattice.

Remark 6.3. Let B ∈ BCRL. If e is not regular, then there is no unit for
the product ·R defined on Reg(B). If B is integral, then (iii) in Lemma 6.2
guaranties that e is regular.

Since (2.1) implies that the product as well as the lattice operations of
an integral bounded commutative residuated lattices are compatible with the
congruences of its underlying BCK-algebra structure, the following result is a
consequence of [10, Lemma 3.3 and Theorem 4.6].

Theorem 6.4. For each integral bounded commutative residuated lattice B,
the following are equivalent statements:

(i) ¬¬ : B → Reg(B) is a homomorphism.
(ii) B satisfies the equation ¬¬(¬¬x → x) = e.
(iii) B satisfies the equation ¬¬(x → y) = x → ¬¬y.

By a Glivenko residuated lattice we mean an integral bounded commutative
residuated lattice satisfying any of the equivalent conditions stated in the above
theorem. The variety of Glivenko residuated lattices will be denoted by G.

Integral involutive residuated lattices are trivially Glivenko. Heyting alge-
bras are Glivenko. More generally, integral bounded commutative residuated
lattices that satisfy the hoop equation

x ∧ y = x · (x → y) (6.2)

are Glivenko (see the proof of [9, Lemma 1.3]).
Let B ∈ G. It follows from (i) in Theorem 6.4 and (iv) in Lemma 6.2 that

¬¬(x ∧ y) = ¬¬x ∧R ¬¬y = ¬¬x ∧ ¬¬y, (6.3)

and from (i) in Theorem 6.4 and (viii) in Lemma 6.2 that

¬¬(x → y) = ¬¬x →R ¬¬y = ¬¬x → ¬¬y. (6.4)

In what follows, B will denote a Glivenko residuated lattice. A lattice filter
F of B is said to be regular provided ¬¬x ∈ F implies x ∈ F .

Lemma 6.5. For each lattice filter F of B, F = F ∪ {x ∈ B : ¬¬x ∈ F} is a
regular lattice filter.

Proof. Observe that x ∈ F if and only if ¬¬x ∈ F . Clearly, e ∈ F . Suppose
x ∈ F and x ≤ y. Then ¬¬x ≤ ¬¬y, and since ¬¬x ∈ F , ¬¬y ∈ F ; therefore,
y ∈ F . Finally, suppose x, y ∈ F . Then by (6.3), ¬¬(x∧y) = ¬¬x∧¬¬y ∈ F ,
and x ∧ y ∈ F . �
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Lemma 6.6. For each lattice filter F of B,

SF = {(x, y) ∈ K(B) : ¬x → ¬¬y ∈ F}

is the universe of an admissible subalgebra SF of K(B) such that for all
x, y ∈ B, if (¬¬x,¬¬y) ∈ SF , then (x, y) ∈ SF . Moreover, SF = SF .

Proof. Clearly, SF ⊆ SF . On the other hand, if (x, y) ∈ SF , then by (vii) in
Lemma 6.2, we get ¬x → ¬¬y = ¬¬(¬x → ¬¬y) ∈ F , so (x, y) ∈ SF . Thus,
SF = SF . Also, by (ii) in Lemma 6.2, we get that (¬¬x,¬¬y) ∈ SF implies
(x, y) ∈ SF .

Since ¬x → ¬¬e = e, we have that for every x ∈ B, the pairs (x, e)
and (e, x) are in SF . It follows from (ix) in Lemma 6.2 that ¬x → ¬¬y =
¬y → ¬¬x. Hence, SF is closed under ∼. Therefore, in the light of M3 and
M4, to complete the proof we need to show that SF is closed under · and .

Suppose (x, y) and (s, t) are both in SF . From the definition of SF (1.1),
item RL2 in Lemma 2.1, and the fact that lattice filters are closed under ∧,
this is equivalent to the existence of f ∈ F such that f · ¬x ≤ ¬¬y and
f · ¬s ≤ ¬¬t.

By (ix) in Lemma 6.2, x · ¬(x · s) = x · (x → ¬s) ≤ ¬s. Hence,

f · x · ¬(x · s) ≤ f · ¬s ≤ ¬¬t,

and then taking into account (iii) in Theorem 6.4, we have

f · ¬(x · s) ≤ x → ¬¬t = ¬¬(x → t).

Analogously, we obtain that f · ¬(x · s) ≤ ¬¬(s → y). Hence, by (6.3),

f · ¬(x · s) ≤ ¬¬(x → t) ∧ ¬¬(s → y) = ¬¬((x → t) ∧ (s → y)),

implying that (x, y) · (s, t) ∈ SF . Therefore, SF is closed under · .
By (x) in Lemma 6.2 and (6.3), we have

f · ¬(x ∨ s) = f · (¬x ∧ ¬s) ≤ (f · ¬x) ∧ (f · ¬s) ≤ ¬¬y ∧ ¬¬t = ¬¬(y ∧ t),

implying that (x, y)  (s, t) ∈ SF . Therefore, SF is also closed under . �

Lemma 6.7. Let S be an admissible subalgebra of K(B). Then

FS = {x ∈ B : (0, x) ∈ S}

is a lattice filter of B.

Proof. Since S is an admissible subalgebra of B, we have that for each x ∈ B,
the elements (x, e) and (e, x) are in S. In particular (0, e) ∈ S; thus, e ∈ FS.
Clearly, if x, y ∈ FS, we have that (0, x) and (0, y) are in S and (0, x)(0, y) =
(0, x ∧ y) is in S; hence, x ∧ y ∈ FS. Finally, if x ∈ FS and y ≥ x, then
(0, x) � (e, y) = (0, y) is an element of S. �

We say that an admissible subalgebra S of K(B) is regular provided that
(¬¬x,¬¬y) ∈ S implies (x, y) ∈ S.
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Lemma 6.8. For each admissible subalgebra S of K(B), one has S ⊆ SFS
,

and the equality holds if and only if S is regular.

Proof. Let (x, y) ∈ S. Take z = 0 in Lemma 6.1(iii); then (0,¬x → y) ∈ S, and
this means that ¬x → y ∈ FS. As ¬x → y ≤ ¬x → ¬¬y, so ¬x → ¬¬y ∈ FS,
which means that (x, y) ∈ SFS

. Therefore, S ⊆ SFS
. By Lemma 6.6, SFS

is
regular; hence, if S = SFS

, then S has to be regular. Suppose that S is regular,
and let (x, y) ∈ SFS

. This means that ¬x → ¬¬y ∈ FS, which in turn means
that (0,¬x → ¬¬y) ∈ S. Then

((¬x, e) → (0,¬x → ¬¬y)) � (e,¬¬y) = (¬¬x,¬¬y) ∈ S,

and since S is regular, we have SFS
⊆ S. �

Lemma 6.9. For each regular lattice filter F of B, one has F = FSF
.

Proof. x ∈ F if and only if ¬ 0 → ¬¬x = ¬¬x ∈ F if and only if (0, x) ∈ SF

if and only if x ∈ FSF
. �

From Lemmas 6.8 and 6.9 we obtain the following two theorems.

Theorem 6.10. For each B ∈ G, the correspondence F 	→ SF defines a bijec-
tion from the set of regular lattice filters of B onto the set of regular admissi-
ble subalgebras of K(B). The inverse mapping is given by the correspondence
S 	→ FS.

Theorem 6.11. For each integral involutive residuated lattice B, the corre-
spondence F 	→ SF defines a bijection from the set of lattice filters of B onto
the set of admissible subalgebras of K(B). The inverse mapping is given by
the correspondence S 	→ FS.

Lemma 6.12. Let S be an admissible subalgebra of K(B), and let F ′ be a
regular lattice filter of B such that S ⊆ SF ′ . Then SFS

⊆ SF ′ .

Proof. Assume (x, y) ∈ SFS
. Then ¬x → ¬¬y ∈ FS and (0,¬x → ¬¬y) ∈ S.

By our hypothesis, we get (0,¬x → ¬¬y) ∈ SF ′ and ¬0 → (¬x → ¬¬y) ∈ F ′.
The integrality of B yields that

¬0 → (¬x → ¬¬y) = e → (¬x → ¬¬y) = ¬x → ¬¬y

is in F ′, and therefore (x, y) ∈ SF ′ . �

An element x in a bounded residuated lattice B is said to be dense provided
¬x = 0, and the set of dense elements of B will be denoted by D(B). It is easy
to corroborate that when the bounded residuated lattice B is integral, then
D(B) is an i-filter of B. Therefore, it is also a lattice filter of B. Observe that
if B ∈ G and x ∈ B is such that ¬¬x ∈ D(B), then ¬¬¬x = 0, and from (ii)
in Lemma 6.2, we conclude that D(B) is a regular filter of B. As a matter of
fact, for each regular filter F of B and for each x ∈ D(B), since ¬¬x = e ∈ F ,
one has that D(B) ⊆ F . Besides, due to (ii) in Theorem 6.4, for each x ∈ B,

¬¬x → x ∈ D(B); thus, any i-filter containing D(B) is regular, considered as
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a lattice filter. It follows that SD(B) is a regular admissible subalgebra of B,
and that for each regular admissible subalgebra S of B, one has SD(B) ⊆ S.
Moreover, it is easy to check that (x, y) ∈ K(B) belongs to SD(B) if and only
if ¬x · ¬y = 0. Hence, {(¬x,¬y) : (x, y) ∈ SD(B)} ⊆ Reg(K(B)). This fact
together with Lemma 6.12 yields the following.

Theorem 6.13. With the previous notation, one has SD(B)
∼= SFS0(B) .

Let A be a bounded K-lattice, and let φA : A → K(A−) be the embedding
defined in Theorem 3.7. Then the image φA(A) is the universe of a regu-
lar admissible subalgebra of K(A−) if and only if A satisfies the following
condition:

6.14. For all x, y ∈ A−, if there is z ∈ A such that

¬e¬e x = z ∧ e and ¬e¬e y = ∼ z ∧ e,

then there is w ∈ A such that x = w ∧ e and y = ∼w ∧ e., where ¬e denotes
the negation in the negative cone.

Hence, Corollary 6.10 shows that for each B ∈ G, the correspondence
F 	→ SF defines a bijection from the set of regular lattice filters of B onto
the set of K-expansions of B that satisfies condition 6.14. On the other hand,
Corollary 6.11 shows that for each integral involutive lattice B, the correspon-
dence F 	→ SF defines a bijection from the set of lattice filters of B onto the
set of all K-expansions of B.

By a pseudocomplemented residuated lattice we mean a bounded integral
commutative residuated lattice B that satisfies the equation x ∧ ¬x = 0.

Lemma 6.15. Let B be a distributive pseudocomplemented residuated lattice.
Then all admissible subalgebras of K(B) are regular.

Proof. Let S be an admissible subalgebra of B such that (¬¬x,¬¬ y) ∈ S.
Since by (ii) in Lemma 6.1, (¬x, x) ∈ S, we have that (¬x, x)�(¬¬x,¬¬ y) =
(0, x ∨ ¬¬ y) ∈ S. Then (0, x ∨ ¬¬ y)  (y,¬ y) = (y,¬ y ∧ x) ∈ S, and
(y,¬ y ∧ x) � (e, x) = (y, x) ∈ S. �

Lemma 6.16. Every pseudocomplemented residuated lattice is Glivenko.

Proof. Let B ∈ BCRL be integral. For each a ∈ B, taking into account RL3

and RL4, we have

(¬a ∨ a) → (¬¬a → a) = ¬a → (¬¬a → a)

= ¬¬a → (¬a → a) ≥ ¬¬a → ¬¬a = e.

Therefore, ¬¬(¬a ∨ a) ≤ ¬¬(¬¬a → a). Finally, observe that all pseudocom-
plemented residuated lattices satisfy the equation ¬¬(¬x ∨ x) = e. �

From Lemmas 6.10, 6.15, and 6.16 we obtain the following theorem.
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Theorem 6.17. For each pseudocomplemented distributive residuated lattice
B, the correspondence F 	→ SF defines a bijection from the set of regular filters
of B onto the set of all admissible subalgebras of K(B).

A filter of a Heyting algebra is called boolean if it contains all the dense
elements [21]. The next result should be compared with [4, Section 3].

Corollary 6.18. For each Heyting algebra H, the correspondence F 	→ SF

defines a bijection from the set of boolean filters of H onto the set of all ad-
missible subalgebras of K(H).

7. Open problems and further research

We believe that the key to understanding K-lattices is the study of twist-
products obtained from an arbitrary commutative integral residuated lattice
L. This is equivalent to the investigation of admissible subalgebras of K(L).
We list in order of complexity some of the open questions that could help to
achieve such an aim.

(1) Determine if in the statement of Lemma 6.15, the distributivity can
be relaxed.

(2) Determine if there is a Glivenko residuated lattice B such that K(B)
has an admissible subalgebra which is not regular.

(3) Characterize admissible subalgebras of the full twist-product K(B) for
B an arbitrary bounded integral commutative residuated lattice.

(4) Characterize admissible subalgebras of the full twist-product K(L) for
L an arbitrary integral commutative residuated lattice.
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