
Unitary Quasi-¢nite Representations of W1

VICTOR G. KAC1 and JOSË I. LIBERATI2*
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1. Introduction

The W-in¢nity algebras naturally arise in various physical theories, such as con-
formal ¢eld theory, the theory of the quantum Hall effect, etc. The W 1�1 algebra,
which is the central extension of the Lie algebra D of differential operators on
the circle, is the most fundamental among these algebras.

When we study the representation theory of a Lie algebra of this kind, we
encounter the dif¢culty that, although it admits a Z-gradation, each of the graded
subspaces is still in¢nite-dimensional, and therefore the study of highest-weight
modules which satisfy the quasi-¢niteness condition that its graded subspaces have
¢nite dimension, becomes a nontrivial problem.

The study of representations of the Lie algebraW 1�1 was initiated in [5], where a
characterization of its irreducible quasi-¢nite highest-weight representations was
given, these modules were constructed in terms of irreducible highest-weight
representations of the Lie algebra of in¢nite matrices, and the unitary ones were
described. On the basis of this analysis, further studies were made within the frame-
work of vertex algebra theory for theW 1�1 algebra [4, 6], and for its matrix version
[3]. The case of orthogonal subalgebras of W1�1 was studied in [7]. The symplectic
subalgebra of W 1�1 was considered in [2] in relation to number theory.

The paper [1] developed a theory of quasi-¢nite highest-weight representation of
the subalgebras W1;p of W1�1, where W1;p (p 2 C�x�) is the central extension
of the Lie algebra Dp�t@t� of differential operators on the circle that are a multiple
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of p�t@t�. The most important of these subalgebras isW1 �W1;x that is obtained by
taking p�x� � x. In this Letter we develop in Section 2 a general approach to these
problems, which makes the basic ideas of [5] much clearer. In Section 3, we give
a description of parabolic subalgebras ofW1;p, which we use in Section 4 to classify
all its irreducible quasi-¢nite highest-weight modules, recovering the main result of
[1]. In Section 5, we describe the relation of W1 to the central extension of the
Lie algebra of in¢nite matrices with ¢nitely many nonzero diagonals and, using this
relation, we establish the main result of this article in Section 6: the classi¢cation
and construction of all unitary irreducible quasi-¢nite modules over W1.
Surprisingly, the list of unitary modules over W1 is much richer than that over
W1�1.

2. Quasi-¢nite Representations of Z-Graded Lie Algebras

Let g be a Z-graded Lie algebra over C:

g �
M
j2Z

gj ; �gi; gj� � gi�j;

where gi is not necessarily of ¢nite dimension. Let g� � �j>0g�j . A subalgebra p of g
is called parabolic if it contains g0 � g� as a proper subalgebra, that is

p �
M
j2Z

pj; where pj � gj for jX 0; and pj 6� 0 for some j < 0:

We assume the following properties of g:

(P1) g0 is commutative,
(P2) if a 2 gÿk �k > 0� and �a; g1� � 0, then a � 0.

LEMMA 2.1. For any parabolic subalgebra p of g, pÿk 6� 0, k > 0, implies pÿk�1 6� 0.
Proof. If pÿk�1 � 0, then �pÿk; g1� � 0, i.e. for all a 2 pÿk, �a; g1� � 0, and using

(P2), we get a � 0. &

Given a 2 gÿ1, a 6� 0, we de¢ne pa � �j2Zpaj , where paj � gj for all jX 0, and

paÿ1 �
X
�. . . ��a; g0�; g0�; . . .� ; paÿkÿ1 � �paÿ1; paÿk�:

LEMMA 2.2. (a) pa is the minimal parabolic subalgebra containing a.
(b) ga0 :� �pa; pa� \ g0 � �a; g1�.
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Proof. (a) We have to prove that pa is a subalgebra. First, �paÿk; paÿl � � paÿlÿk
�k; l > 0� is proved by induction on k:

�paÿk; paÿl � � ���paÿ1�kÿ1; paÿ1�; �paÿ1�l �
� ���paÿ1�kÿ1; �paÿ1�l �; paÿ1� � ��paÿ1�kÿ1; �paÿ1; �paÿ1�l ��
� ��paÿ1�l�kÿ1; paÿ1� � ��paÿ1�kÿ1; �paÿ1�l�1�
� �paÿ1�k�l :

And �paÿk; gm� � pamÿk (m < k) also follows by induction on k:

�paÿk; gm� � ���paÿ1�kÿ1; paÿ1�; gm�
� ���paÿ1�kÿ1; gm�; paÿ1� � ��paÿ1�kÿ1; �paÿ1; gm��
� �pamÿk�1; paÿ1� � ��paÿ1�kÿ1; gmÿ1�
� pamÿk:

Finally, it is obviously the minimal one, proving (a).
(b) For any k > 1:

�paÿk; gk� � ���paÿ1�kÿ1; gk�; paÿ1� � ��paÿ1�kÿ1; �paÿ1; gk��
� �g1; paÿ1� � ��paÿ1�kÿ1; gkÿ1�:

Therefore, by induction, ga0 � �g1; paÿ1�. But

�g1; paÿ1� � linear span f�. . . ��a; c1�; c2�; . . .�; x� : ci 2 g0; x 2 g1g (using (P1))
� linear span f�a; �c1; . . . �ckÿ1; �ck; x� . . .� : ci 2 g0; x 2 g1g
� �a; g1�:

proving the lemma. &

In the particular case of the central extension of the Lie algebra of matrix
differential operators on the circle (see [3], Remark 2.2), we observed the existence
of some parabolic subalgebras p such that pÿj � 0 for j >> 0. Having in mind that
example, we give the following de¢nition:

DEFINITION 2.3. (a) A parabolic subalgebra p is called nondegenerate if pÿj has
¢nite codimension in gÿj, for all j > 0.

(b) An element a 2 gÿ1 is called nondegenerate if pa is nondegenerate.

Now, we begin our study of quasi-¢nite representations over g. A g-module V is
called Z-graded if V � �j2ZVj and giVj � Vi�j. A Z -graded g-module V is called
quasi-¢nite if dimVj <1 for all j.
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Given l 2 g�0, a highest-weight module is aZ-graded g-moduleV �g; l� generated by
a highest-weight vector vl 2 V �g; l�0 which satis¢es

hvl � l�h�vl �h 2 g0�; g�vl � 0:

A nonzero vector v 2 V �g; l� is called singular if g�v � 0.
The Verma module over g is de¢ned as usual:

M�g; l� � U�g� 
U�g0�g�� Cl;

where Cl is the one-dimensional �g0 � g��-module given by h 7! l�h� if h 2 g0,
g� 7! 0, and the action of g is induced by the left multiplication in U�g�. Here
and further U�q� stands for the universal enveloping algebra of the Lie algebra
q. Any highest-weight module V �g; l� is a quotient module of M�g; l�. The
irreducible module L�g; l� is the quotient of M�g; l� by the maximal proper graded
submodule. We shall write M�l� and L�l� in place of M�g; l� and L�g; l� if no ambi-
guity may arise.

Consider a parabolic subalgebra p � �j2Zpj of g and let l 2 g�0 be such that
ljg0\�p;p� � 0. Then the �g0 � g��-module Cl extends to a p-module by letting pj
act as 0 for j < 0, and we may construct the highest-weight module

M�g; p; l� � U�g� 
U�p� Cl

called the generalized Verma module.
We will also require the following condition on g:

(P3) If p is a nondegenerate parabolic subalgebra of g, then there exists a
nondegenerate element a such that pa � p.

Remark 2.4. In all the examples considered in [3, 5, 7] and Section 3 of this work,
property (P3) is satis¢ed.

THEOREM 2.5. The following conditions on l 2 g�0 are equivalent:

(1) M�l� contains a singular vector a:vl in M�l�ÿ1, where a is nondegenerate;
(2) There exist a nondegenerate element a 2 gÿ1, such that l��g1; a�� � 0.
(3) L�l� is quasi-¢nite;
(4) There exist a nondegenerate element a 2 gÿ1, such that L�l� is the irreducible

quotient of the generalized Verma module M�g; pa; l�.

Proof. �1� ) �4� : Denote by a vl the singular vector, where a 2 gÿ1, then (4) holds
for this particular a. �4� ) �3� is immediate. Finally, L�l� quasi-¢nite implies
dim�gÿ1:vl� <1, then there exist an a 2 gÿ1 such that a vl � 0 in L�l�, so
0 � g1:�avl� � a�g1:vl� � �g1; a�vl � l��g1; a�� vl, getting �3� ) �2� ) �1�. &
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3. The Lie Algebra W1;p and its Parabolic Subalgebras

We turn now to a certain family ofZ-graded Lie algebras. LetD be the Lie algebra of
regular differential operators on the circle, i.e. the operators on C�t; tÿ1� of the form

E � ek�t�@kt � ekÿ1�t�@kÿ1t � � � � � e0�t�; where ei�t� 2 C�t; tÿ1�;

The elements

Jl
k � ÿtl�k�@t�l �l 2 Z�; k 2 Z�

form its basis, where @t denotes d=dt. Another basis of D is

Ll
k � ÿtkDl �l 2 Z�; k 2 Z�;

where D � t@t. It is easy to see that

Jl
k � ÿtk�D�l : �3:1�

Here and further, we use the notation

�x�l � x�xÿ 1� . . . �xÿ l � 1�:

Fix a linear map T: C�w� ! C. Then we have the following 2-cocycle on D, where
f �w�; g�w� 2 C�w� [5]:

CT�zrf �D�; zsg�D�� �
T
� P
ÿrWmWÿ1

f �w�m�g�w�m� r�
�
; if r=-s X 0;

0; if r+s 6=0.

8><>:
�3:2�

We letC � CT if T: C�w� ! C is the evaluation map at w � 0. The central extension
ofD by a one-dimensional centerCC, corresponding to the 2-cocycleC is denoted by
W1�1. The bracket in W1�1 is given by

�trf �D�; tsg�D��

� tr�s�f �D� s�g�D� ÿ f �D�g�D� r�� �C�trf �D�; tsg�D��C: �3:3�
Consider the following family of Lie subalgebras of D (p 2 C�x�):

Dp :� D p�D�:

Denote by W1;p the central extension of Dp by CC corresponding to the
restriction of the 2-cocycleC. Observe that W1;x is the well-known W1 subalgebra
ofW1�1 and, more generally, using (3.1) we have thatW1;xn is the central extension
of the Lie algebra of differential operators on the circle that annihilate all
polynomials of degree less than n.
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Letting wt tkf �D� � k, wt C � 0 de¢nes the principal gradation of W1�1 and of
W1;p:

W1;p �
L

j2Z�W1;p�j;
where �W1;p�j � ftjf �D�p�D� j f �w� 2 C�w�g � dj0C:

It is easy to check that the Z-graded Lie algebras W1;p satisfy the properties
(P1)^(P2).

Remark 3.4. The Lie algebraW1;p contains aZ-graded subalgebra isomorphic to
the Virasoro algebra if and only if deg pW 1. Indeed, from the commutator:

�tf �D�p�D�; g�D�p�D�� � t g�D�p�D� ÿ g�D� 1�p�D� 1�� �f �D�p�D�;
it is immediate that if the relation �L1;L0� � L1 is satis¢ed (for some elements
Li 2 �W1;p�i, i � 0; 1), then deg pW 1. The existence of Virasoro subalgebras for
deg pW 1 was observed in [5].

Let p be a parabolic subalgebra of W1;p. Observe that for each j 2N we
have

pÿj � ftÿj f �D� j f �w� 2 Iÿjg;
where Iÿj is a subspace of p�w�C�w�. Since

�f �D�p�D�; tÿkq�D�� � tÿk�f �Dÿ k�p�Dÿ k� ÿ f �D�p�D��q�D�;
we see that Iÿk satis¢es Ap;k : Iÿk � Iÿk where

Ap;k � f f �wÿ k�p�wÿ k� ÿ f �w�p�w� j f �w� 2 C�w�g:

LEMMA 3.5. (a) Iÿk is an ideal for all k 2N if deg pW 2 (there are examples of
parabolic subalgebras where Iÿ1 is not an ideal for any deg p > 2).

(b) If Iÿk 6� 0, then it has ¢nite codimension in C�x�.

Proof. Observe that if deg pW 1, then Ap;k � C�w� for all kX 1, and if deg p � 2,
Ap;k is a subspace which contains a polynomial of degree l for all lX 1, proving
the ¢rst part. Now, observe that for p�x� � �x�n, we have Ap;1 � C�w��wÿ 1�nÿ1,
and take

Iÿ1 � C �w�n �C w�w�n � Ap;1�w�n � Ap;1w�w�n;
Iÿk � C�w��wÿ k� 1�n . . . �wÿ 1�n�w�n; k > 1:

Then, after some computation, it is possible to see that these subspaces de¢ne a
parabolic subalgebra p � �k2Zpk, where pÿk � ftÿj f �D� j f �w� 2 Iÿjg for kX 1.
Observe that for n > 2, Iÿ1 is no longer an ideal.
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Finally, since Ap;k contains a polynomial of degree l for all lXm, for somem 2N,
part (b) follows. &

Remark 3.6. Due to Lemma 3.5, we no longer have the situation of parabolic
subalgebras described in terms of ideals, as in the Lie algebras considered in
[3, 5, 7]. But for the algebra W1 the parabolic subalgebras are as in these
references.

We shall need the following proposition to study modules overW1;p induced from
its parabolic subalgebras.

PROPOSITION 3.7. (a) Any nonzero element d 2 �W1;p�ÿ1 is nondegenerate.
(b) Any parabolic subalgebra of W1;p is nondegenerate.
(c) Let d � tÿ1b�D� � tÿ1a�D�p�D� 2 �W1;p�ÿ1, then
�W1;p�d0 : � ��W1;p�1; d�

� spanfp�Dÿ 1�g�D�b�D� ÿ p�D�g�D� 1�b�D� 1��
� g�0�p�ÿ1�b�0�C j g 2 C�w�g:

Proof. Let 0 6� d 2 �W1;p�ÿ1, then pdÿj 6� 0 for all jX 1. So, by Lemma 3.5 (b), part
(a) follows . Let p be any parabolic subalgebra of W1;p, using Lemma 2.1 we get
pÿ1 6� 0. Then, using (a) and pd � p (for any nonzero d 2 pÿ1), we obtain (b). Finally,
part (c) follows by Lemma 2.2 (b) and the commutator:

�tg�D�p�D�; tÿ1b�D��

� p�Dÿ 1�g�Dÿ 1�b�D� ÿ p�D�g�D�b�D� 1� � g�0�p�ÿ1�b�0�C: &

4. Quasi-¢nite Highest-Weight Modules over W1;p

By Proposition 3.7, W1;p also satis¢es property (P3), hence we can apply Theorem
2.5.

Let L�l� be a quasi-¢nite highest-weight module overW1;p. By Theorem 2.5, there
exists some monic polynomial b�w� � a�w�p�w� such that �tÿ1b�D��vl � 0: We shall
call such monic polynomial of minimal degree, uniquely determined by the
highest-weight l, the characteristic polynomial of L�l�.

A functional l 2 �W1;p��0 is described by its labels Dl � ÿl�Dl p�D��, where
l 2 Z�, and the central charge c � l�C�. We shall consider the generating
series

Dl�x� �
X1
l�0

xl

l!
Dl : �4:1�
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Recall that a quasi-polynomial is a linear combination of functions of the form
p�x�eax, where p�x� is a polynomial and a 2 C. Recall the well-known
characterization: a formal power series is a quasi-polynomial if and only if it satis¢es
a nontrivial linear differential equation with constant coef¢cients. One has the
following characterization of quasi-¢nite highest-weight modules over W1;p, which
extends that for W1;1 �W1�1 obtained in [5].

THEOREM 4.2 [1]. A W1;p-module L�l� is quasi-¢nite if and only if there exist a
quasi-polynomial fl�x� with fl�0� � 0, such that

Dl�x� � p
d

dx

� �
fl�x�
ex ÿ 1

� �
: �4:3�

For completeness, we give a proof of this Theorem, which is probably more clear
than the one in [1]. As always, the basic idea is the original one in [5].

Proof. From Proposition 3.7 (a) and (c), and Theorem 2.5(2), we have that L�l� is
quasi-¢nite if and only if there exist a polynomial b�w� � p�w�a�w� such that

l p�Dÿ 1�g�D�b�D� ÿ p�D�g�D� 1�b�D� 1� � g�0�p�ÿ1�b�0�C� � � 0

for any polynomial g or, equivalently,

0 � l b�D�p�Dÿ 1�exD ÿ b�D� 1�p�D�ex�D�1�ÿ �� g�0�p�ÿ1�b�0�c: �4:4�

Now, take Gl�x� �
P1

i�0 bix
i a solution of

Dl�x� � p
d

dx

� �
Gl�x�: �4:5�

Using Dl�x� � ÿl�p d=dx�exDÿ �
, and the identities

�D�exD � f
d

dx

� �
exD
ÿ �

; p�D�ex�D�1� � exp�D�exD � exp
d

dx

� �
exD;

exp
d

dx

� �
f �x� � p

d

dx
ÿ 1

� �
exf �x�
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condition (4.4) can be rewritten as

0 � l b�D�p�Dÿ 1�exD ÿ b�D� 1�p�D�ex�D�1�ÿ �� p�ÿ1�b�0�c

� l b
d

dx

� �
p

d

dx
ÿ 1

� �
�exD� ÿ b

d

dx

� �
p�D�ex�D�1�ÿ �� �

� p�ÿ1�b�0�c

� l b
d

dx

� �
p

d

dx
ÿ 1

� �
�exD� ÿ b

d

dx

� �
exp

d

dx

� �
exD

� �� �
� p�ÿ1�b�0�c

� ÿa d

dx

� �
p

d

dx
ÿ 1

� �
ÿ p

d

dx

� �
ex

� �
Dl�x�

� �
� p�ÿ1�b�0�c

� a
d

dx

� �
p

d

dx

� �
ex ÿ p

d

dx
ÿ 1

� �� �
Dl�x� � p�ÿ1�p�0�c

� �
� a

d

dx

� �
p

d

dx

� �
exp

d

dx

� �
ÿ p

d

dx
ÿ 1

� �
p

d

dx

� �� �
Gl�x� � p�ÿ1�p�0�c

� �
� a

d

dx

� �
p

d

dx

� �
p

d

dx
ÿ 1

� �
�ex ÿ 1�Gl�x� � c� �:

Thus, L�l� is quasi-¢nite if and only if there exists a polynomial a�w� such that

a
d

dx

� �
p

d

dx

� �
p

d

dx
ÿ 1

� �
�ex ÿ 1�Gl�x� � c� � � 0: �4:6�

Therefore, L�l� is quasi-¢nite if and only if �ex ÿ 1�Gl�x� � c is a quasi-polynomial,
proving the theorem. &

DEFINITION 4.7. The quasi-polynomial fl�x� � c, where fl�x� is from (4.3) and c
is the central charge, can be (uniquely) written in the form

fl�x� � c �
X
r2I

pr�x�erx; �4:8�

where all r are distinct numbers. The numbers r appearing in (4.8) are called
exponents of the W1;p-module L�l�, and the polynomial pr�x� is called the
multiplicity of r, denoted by mult(r). Note that, by de¢nition, c �Pr pr�0�:

COROLLARY 4.9. Let L�l� be a quasi-¢nite irreducible highest-weight module over
W1;p, let b�w� � p�w�a�w� be its characteristic polynomial, let Gl�x� be a solution
of (4.5) and let Fl�x� � �ex ÿ 1�Gl�x� � c. Then

a
d

dx

� �
p

d

dx

� �
p

d

dx
ÿ 1

� �
F �x� � 0

is the minimal order homogeneous linear differential equation with constant
coef¢cients of the form

f
d

dx

� �
p

d

dx

� �
p

d

dx
ÿ 1

� �
;
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satis¢ed by F �x�. Moreover, the exponents appearing in (4.8) are all roots of the
polynomial p�wÿ 1�p�w�a�w�.

Now, we will consider the restriction of quasi-¢nite highest-weight modules over
W1�1 to W1;p. We will need some notation.

A functional l 2 �W1�1��0 is characterized by its labels Gm � ÿl�Dm�, where
m 2 Z�, and the central charge c � l�C�, cf. (4.1). Introduce the new generating
series:

Gl�x� �
X1
m�0

xm

m!
Gm:

Observe that Gl�x� satis¢es (4.5). Recall that a W1�1-module L�W1�1; l� is
quasi-¢nite if and only if Gl�x� � �f�x��=�ex ÿ 1�, where f�x� is a quasi-polynomial
such that f�0� � 0 [5]. We have the following partial restriction result:

PROPOSITION 4.10. Any quasi-¢nite W1;p-module L�l� can be obtained as
a quotient of the W1;p-submodule generated by the highest-weight vector
of a quasi-¢nite W1�1-module L�W1�1; ~l�, for some quasi-¢nite functional
~l 2 �W1�1��0 such that ~lj�W1;p �0 � l.

Proof. Given

Dl�x� � p
d

dx

� �
f�x�

ex ÿ 1

� �
;

consider ~l 2 �W1�1��0 determined by G~l�x� � f�x�=�ex ÿ 1�, and the proposition
follows. &

Let O be the algebra of all holomorphic functions on C with the topology of
uniform convergence on compact sets. We consider the vector space DO spanned
by the differential operators (of in¢nite order) of the form tkf �D�, where f 2 O.
The bracket in D extends to DO. Then the cocycle C extends to a 2-cocycle on
DO by formula (3.2). Let WO

1�1 � DO �CC be the corresponding central extension
with the principal gradation as in W1�1.

Consider the Lie subalgebras of DO:

DOp :� DO p�D�: �4:11�
We shall denote by WO

1;p the central extension of DOp by CC corresponding to the
restriction of the cocycle C. And we shall use de notation WO

1 �WO
1;x (i.e. the case

p�x� � x). Observe that WO
1;p inherit a Z -gradation from WO

1�1.
In the following section, we shall need the following proposition:

PROPOSITION 4.12. Let V be a quasi-¢nite W1;p-module. Then the action of W1;p
on V naturally extends to the action of �WO

1;p�k on V for any k 6� 0.
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Proof. The proof is analogous to that of Proposition 4.3 in [5]. &

5. Embedding of W1 into bgl1.
In the following, we will suppose that p�x� � x, i.e. we consider the algebra W1. We
shall use the notation Dx :� Dp and DOx :� DOp .

Let gl1 be the Z-graded Lie algebra of all matrices �aij�i;j2Z with ¢nitely
many nonzero diagonals (deg Eij � j ÿ i). Consider the central extensionbgl1 � gl1 �CC de¢ned by the cocycle:

F�A;B� � tr ��J;A�B�; J �
X
iW 0

Eii:

Given s 2 C, we will consider the natural action of the Lie algebra Dx (resp. DOx ) on
tsC�t; tÿ1�. Taking the basis vj � tÿj�s � j 2 Z� of this space, we obtain a
homomorphism of Lie algebras js : Dx ! gl1 (resp. js : DOx ! gl1):

js�tkf �D�D� �
X
j2Z

f �ÿj � s��ÿj � s�Ejÿk;j:

This homomorphism preserves gradation and it lifts to a homomorphism bjs of the
corresponding central extensions as follows [5] (cf. [1]):

bjs�DexD� � js�DexD� ÿ esx ÿ 1
ex ÿ 1

� �0
C; bjs�C� � C:

Let s 2 Z and denote by bgl1;s the Lie subalgebra of bgl1 generated by C and
fEijji 6� s and j 6� sg. Observe that bgl1;s is naturally isomorphic to bgl1. Let
ps:bgl1 ! bgl1;s be the projection map. If s 2 Z, we rede¢nebjs by the homomorphism
p �bjs : W1 ! bgl1;s.

Given s � �s1; . . . ; sm� 2 Cm, we have a homomorphism of Lie algebras over C:

bjs � �m
i�1bjsi :W1 ! gs � �m

i�1gsi �5:1�

where gsi � bgl1 if si 62 Z, and gsi � bgl1;si if si 2 Z. The proof of the following prop-
osition is similar to that of Proposition 3.2 in [5].

PROPOSITION 5.2. The homomorphism bjs extends to a homomorphism of Lie
algebras over C, which is also denoted by bjs:

bjs : WO
1 ! gs:

The homomorphism bjs is surjective provided that si ÿ sj 62 Z for i 6� j.

UNITARY QUASI-FINITE REPRESENTATIONS OF W1 21



Remark 5.3. For s 2 Z the image ofWO
1 under the homomorphismbjs is nk�bgl1;sÿk�

for any k 2 Z, where n is the automorphism de¢ned by

n�Eii� � Ei�1;i�1: �5:4�

Hence, we may (and will) assume that 0WRe s < 1 throughout the paper.

6. Unitary Quasi-¢nite Highest-Weight Modules over W1

The algebra Dx acts on the space V � C�t; tÿ1�=C. One has a nondegenerate
Hermitian form on V :

B� f ; g� � Rest f dg;

where �P aiti� �
P

aitÿi, ai 2 C, (cf. [2]).
Consider the additive map o : Dx !Dx, de¢ned by:

o�tkf �D�D� � tÿkf �Dÿ k�D

where for f �D� �Pi fiD
i, we let f �D� �Pi fiD

i�fi 2 C�.

PROPOSITION 6.1. The mapo is an anti-involution of the Lie algebraDx, i.e.o is an
additive map such that

o2 � id; o�la� � �lo�a�; and o��a; b�� � �o�b�;o�a��; for l 2 C; a; b 2 Dx:

Furthermore, the operators o�a� and a are adjoint operators on V with respect to B,
and o��Dx�j� � �Dx�ÿj .

Proof. The properties o2 � id; o�la� � �lo�a� are obvious. Now,

o��tkf �D�D; tlg�D�D��
� o�tk�l�f �D� l��D� l�g�D� ÿ g�D� k��D� k�f �D��D�
� tÿ�k�l���f �Dÿ k��Dÿ k��g�Dÿ kÿ l� ÿ �g�Dÿ l��Dÿ l��f �Dÿ kÿ l��D:

On the other hand,

�o�tlg�D�D�;o�tkf �D�D�� � �tÿl �g�Dÿ l�D; tÿkf �Dÿ k�D�
� tÿ�k�l���g�Dÿ kÿ l��Dÿ k��f �Dÿ k� ÿ �f �Dÿ kÿ l��Dÿ l��g�Dÿ l��D:

Hence, o is an anti-involution. Now we compute

B�tkf �D�D tl; tn� � B�l f �l� tk�l; tn� � n l f �l�dk�l;n:
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We also have

B�tl;o�tkf �D�D� tn�
� B�tl; tÿkf �Dÿ k�D tn�
� B�tl; n f �nÿ k�tnÿk� � n l f �nÿ k�dl;nÿk;

proving the proposition. &

This anti-involution o extends to the whole algebraDOx , de¢ned in (4.11). Observe
that

C�o�A�;o�B�� � o�C�B;A��; A;B 2 DOx :
Therefore, the anti-involution o of the Lie algebras Dx and DOx lifts to an
anti-involution of their central extensions W1 and WO

1, such that o�C� � C, which
we again denote by o.

In this section we shall classify and construct all unitary (irreducible) quasi-¢nite
highest-weight modules over W1 with respect to the anti-involution o. In order
to do it, we shall need the following lemma:

LEMMA 6.2. Let V be a unitary quasi-¢nite highest-weight module over W1 and let
b�w� � wa�w� be its ¢rst characteristic polynomial. Then a�w� has only simple real
roots.

Proof. Let vl be a highest-weight vector of V . Then the ¢rst graded subspace Vÿ1
has a basis

f�tÿ1Dj�1�vl j 0W j < deg ag:

Consider the action of

S � ÿ 1
2

D2 � 1ÿ D1

1� D0

� �
D

� �
on Vÿ1. It is straightforward to check that

Sj��tÿ1D�vl� � �tÿ1Dj�1�vl for all jX 0:

It follows that a�S���tÿ1D�vl� � 0, and that fSj��tÿ1D�vl� j 0W j < deg ag is a basis of
Vÿ1. We conclude from the above that a�w� is the characteristic polynomial of the
operator S on Vÿ1. Since the operator S is self-adjoint, all the roots of a�w� are real.

Now, suppose that a�w� � �wÿ r�mc�w� for some polynomial c�w� and r 2 R. Then
v � �S ÿ r�mÿ1c�S���tÿ1D�vl� is a nonzero vector in Vÿ1, but

�v; v� � �c�S���tÿ1D�vl�; �S ÿ r�2mÿ2c�S���tÿ1D�vl�� � 0 if mX 2:

Hence, the unitarity condition forces m � 1. &
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Take 0 < s < 1. Then under the homomorphism bjs:W
O
1 ! bgl1, the

anti-involution o induces the following anti-involution on bgl1:

o0�Eij� � sÿ i
sÿ j

� �
Eji; o0�C� � C:

Indeed

js�o�tkf �D�D�� � js�tÿk �f �Dÿ k�D�
�
X
j2Z

�f �sÿ j ÿ k��sÿ j�Ej�k;j

�
X
j2Z

�f �sÿ j��sÿ j � k�Ej;jÿk

� o0
�X

j2Z
f �sÿ j��sÿ j�Ejÿk;j

�
� o0�js�tkf �D�D��:

Let ei � Ei;i�1 and fi � Ei�1;i, then

o0�ei� � lifi with li � sÿ i
sÿ i ÿ 1

:

Observe that

li < 0 if and only if i < s < i � 1: �6:3�
If we consider the linear automorphism T de¢ned by T �ei� � miei � e0i;
T � fi� � mÿ1i fi � f 0i for some mi 2 C, then o0�e0i� � o�miei� � �milifi � jmij2lif 0i . Hence,
by (6.3), o0 is equivalent to the anti-involution ~o de¢ned by

~o�ei� � fi if i 6=0,
ÿfi if i= 0.

�
After a shift by the automorphism n de¢ned in (5.4), we may assume 0 < s < 1, then
under the homomorphism bjs : WO

1 ! bgl1, the anti-involution o induces an
anti-involution on bgl1 that is equivalent to the following:

Eyij � Eji if i; j > 0 or i; jW 0; Eyij � ÿEji otherwise; and Cy � C:

As usual, for any l 2 �bgl1��0 we have the associated irreducible highest-weightbgl1-module L�bgl1; l�. An element l 2 �bgl1��0 is determined by its labels
li � l�Eii�; i 2 Z, and central charge c � l�C�. Let ni � li ÿ li�1 � di;0c �i 2 Z�.
The following classi¢cation is taken from [6] and [8]:

PROPOSITION 6.4. A nontrivial highest-weight bgl1-module with highest-weight l
and central charge c is unitary with respect to y if and only if the following properties
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hold:

ni 2 Z� if i 6� 0 and c �
X
i

ni < 0; �6:5a�

if ni 6� 0 and nj 6� 0; then ji ÿ jjW ÿ c: �6:5b�

In the case of s � 0, the homomorphismbj0 : WO
1 ! bgl1;0 ' bgl1 induces the stan-

dard anti-involution on bgl1: �A�� � t �A. The following is a very well known result:

PROPOSITION 6.6. A highest-weight bgl1-module with highest-weight l and central
charge c is unitary with respect to � if and only if ni 2 Z� and c �Pi ni.

Let li 2 �gsi ��0 such that L�gsi ; li� is a quasi-¢nite gsi -module. Then the tensor prod-
uct

L�gs; k� :� 
iL�gsi ; li�
is an irreducible gs -module.

THEOREM 6.7. Let V be a quasi-¢nite gs-module, viewed as a W1-module via the
homomorphism bjs, where si ÿ sj 62 Z if i 6� j, and 0WRe si < 1. Then any
W1-submodule of V is also a gs-submodule. In particular, the W1-modules
L�gs; l� are irreducible, and in this way we obtain all quasi-¢nite W1-modules
L�l� with fl�x� �

P
i nie

rix, ni 2 C, ri 2 C.
Proof. Consider any W1-submodule W of V . By Proposition 4.12, the action of

W1 can be extended to �WO
1�k (k 6� 0). Using Proposition 5.2, we see that the sub-

space W is preserved by gs. Therefore, the W1-modules L�gs; l� are quasi-¢nite
and irreducible. Then it is easy to calculate the generating series of the highest-weight
(see Section 4.6 in [5]): in the case s 2 RnZ, we have

Ds;l�x� � ÿl�ĵs�DexD�� � d

dx

P
k2Z e�sÿk�xnk ÿ c

ex ÿ 1

� �
; �6:8�

in the case of s � 0, we have

D0;l�x� � d

dx

P
j>0 eÿjxnj �

P
j<0 e�ÿj�1�xnj � e2xl0 ÿ eÿxl1

ex ÿ 1

 !
; �6:9�

and the last part of the theorem follows from Equations (6.8)^(6.9). &

In fact, as in Theorem 4.6 in [5], it is possible to construct all irreducible
quasi-¢nite W1-module in terms of representations of bgl�1;Rm� (or a subalgebra
of it), where bgl�1;Rm� is the central extension of the Lie algebra of in¢nite matrices
with ¢nitely many nonzero diagonals and coef¢cients in the algebra of truncated
polynomials Rm :� C�u�=�um�1�. More precisely, we consider the homomorphism
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j�m�s : D�1� ! gl�1;Rm� given by

j�m�s �tkf �D�D� �
Xm
i�0

X
j2Z

�f �i��sÿ j��sÿ j� � if �iÿ1��sÿ j��
i!

uiEjÿk;j:

In the case where s 2 RnZ, we take g�m�s � bgl�1;Rm� and, for s 2 Z, we have to
remove the generators Er;s and umEÿs;r for all r 2 Z. All quasi-¢nite irreducible
L�l� can be obtained using representations of the Lie algebra g�m�s � �ig

�mi �
si via

the homomorphism j�m�s � �ij�mi �
si , and as in [5] the coef¢cients in m are given

by the degree of the (polynomial) multiplicities of fl�x�.

LEMMA 6.10. Only those highest-weight representations of bgl�1;Rm� that factor
through bgl�1;C� are unitary.

Proof. Indeed, let v be a highest-weight vector. Fix i 2 Z and let
e � Ei;i�1; f � Ei�1;i; h � Eii. Now take the maximal j such that �u jf �v 6� 0. We
have to show that j=0. In the contrary case, �ujf �v is a vector of norm 0:
��ujf �v; �ujf �v� � ��v; �uje��ujf �v� � ��v; �u2jh�v� � 0, since otherwise �u2jh�v 6� 0,
hence �u2j f �v 6� 0 (by applying e to it). Hence, we get a nonzero vector of zero norm,
unless the module is actually a bgl�1;C�-module. &

Therefore, using Lemma 6.10, Lemma 6.2 and Corollary 4.9, we have

LEMMA 6.11. If L�l� is a unitary quasi-¢nite W1-module, then fl�x� �
P

i nie
rix,

with ni 2 C, ri 2 R.

Nowwe can formulate the main result of this section, that follows (in the same way
as Theorem 5.2 in [5]), from Theorem 6.7, Propositions 6.4 and 6.6, and Lemma 6.11:

THEOREM 6.12. (a) Let L�l� be a nontrivial quasi-¢nite W1-module. For each
0W a < 1, let Ea denote the set of exponents of L�l� that are congruent to a mod
Z. Then L�l� is unitary if and only if the following three conditions are satis¢ed:

(1) All exponents are real numbers.
(2). The multiplicities of the exponents ri 2 E0 are positive integers.
(3) For exponents ri 2 Ea (0 < a < 1), all multiplicities mult�ri� are integers and only

one of them is negative, ma :� ÿPri2Ea
�mult�ri�� is a positive integer, and

ri ÿ rj Wma for all ri; rj 2 Ea.

(b) Any unitary quasi-¢nite W1-module L�l� is obtained by taking tensor product
of unitary irreducible quasi-¢nite highest-weight modules over gsi , i � 1; . . . ;m,
and restricting to W1 via the embedding ĵs, where s � �s1; . . . ; sm� 2 Rm,
0W si < 1 and si ÿ sj 62 Z if i 6� j.
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