Letters in Mathematical Physics 53: 11-27, 2000. 11
© 2000 Kluwer Academic Publishers. Printed in the Netherlands.

Unitary Quasi-finite Representations of W,

VICTOR G. KAC! and JOSE I. LIBERATI?*

! Department of Mathematics, MIT, Cambridge, MA 02139, U.S.A.
e-mail: kac@math.mit.edu

2FAMAF, Universidad Nacional de Cordoba - (5000) Cordoba, Argentina.
e-mail: liberati@mate.uncor.edu

(Received: 28 April 2000)

Abstract. We classify the unitary quasi-finite highest-weight modules over the Lie algebra W,
and realize them in terms of unitary highest-weight representations of the Lie algebra of infinite
matrices with finitely many nonzero diagonals.

Mathematics Subject Classifications (2000). 17Bxx, 81R10.

Key words. graded Lie algebras, unitary quasi-finite highest-weight modules.

1. Introduction

The W-infinity algebras naturally arise in various physical theories, such as con-
formal field theory, the theory of the quantum Hall effect, etc. The W, algebra,
which is the central extension of the Lie algebra D of differential operators on
the circle, is the most fundamental among these algebras.

When we study the representation theory of a Lie algebra of this kind, we
encounter the difficulty that, although it admits a Z-gradation, each of the graded
subspaces is still infinite-dimensional, and therefore the study of highest-weight
modules which satisfy the quasi-finiteness condition that its graded subspaces have
finite dimension, becomes a nontrivial problem.

The study of representations of the Lie algebra W, was initiated in [5], where a
characterization of its irreducible quasi-finite highest-weight representations was
given, these modules were constructed in terms of irreducible highest-weight
representations of the Lie algebra of infinite matrices, and the unitary ones were
described. On the basis of this analysis, further studies were made within the frame-
work of vertex algebra theory for the W, algebra [4, 6], and for its matrix version
[3]. The case of orthogonal subalgebras of W}, was studied in [7]. The symplectic
subalgebra of W,, was considered in [2] in relation to number theory.

The paper [1] developed a theory of quasi-finite highest-weight representation of
the subalgebras Wy, of Wije, Where W, (p € C[x]) is the central extension
of the Lie algebra Dp(td,) of differential operators on the circle that are a multiple

*Current address: Department of Mathematics, MIT, Cambridge, MA 02139, U.S.A. e-mail:
liberati@math.mit.edu



12 VICTOR G. KAC AND JOSE 1. LIBERATI

of p(t9;). The most important of these subalgebras is Wy, = W  that is obtained by
taking p(x) = x. In this Letter we develop in Section 2 a general approach to these
problems, which makes the basic ideas of [5] much clearer. In Section 3, we give
a description of parabolic subalgebras of W, ,, which we use in Section 4 to classify
all its irreducible quasi-finite highest-weight modules, recovering the main result of
[1]. In Section 5, we describe the relation of W, to the central extension of the
Lie algebra of infinite matrices with finitely many nonzero diagonals and, using this
relation, we establish the main result of this article in Section 6: the classification
and construction of all unitary irreducible quasi-finite modules over W,
Surprisingly, the list of unitary modules over Wy, is much richer than that over
Wiioo-

2. Quasi-finite Representations of 7Z-Graded Lie Algebras
Let g be a Z-graded Lie algebra over C:

g= @Qj . lai 6] € 6igs
JeZ

where g; is not necessarily of finite dimension. Let g, = @®;-08,,. A subalgebra p of g
is called parabolic if it contains gy @ g, as a proper subalgebra, that is

p= @pj, where p; = g; for j > 0, and p; # 0 for some j < 0.
Jjez

We assume the following properties of g:

(P1) g, is commutative,
(P2) if a € g_; (k> 0)and [a, g;] =0, then a = 0.

LEMMA 2.1. For any parabolic subalgebrap of g, p_; # 0, k > 0, implies p_; # 0.
Proof. If p_; 1 =0, then [p_j, g;] =0, i.e. for all a € p_y, [a, g;] =0, and using
(P2), we get a = 0. O

Given a € g_;, a # 0, we define p* = Bjezp;, where pi =g for all j > 0, and
p= [ llagod gl -, P =%, P

LEMMA 2.2. (a) p* is the minimal parabolic subalgebra containing a.
() g == [P, pIN gy = [a. g1l



UNITARY QUASI-FINITE REPRESENTATIONS OF W, 13

Proof. (a) We have to prove that p“ is a subalgebra. First, [p?,, p*,] € p%, ,
(k,[ > 0) is proved by induction on k:

%% p 0 = e ) p, 1 0 )]
= [ ) ) 0 1+ 1) Iy, )]

SHCE AR 1 B S (VAN AN
< (.

And [p?,, g,] € p%,_, (m < k) also follows by induction on k:

(CSD Ay A

D) gl p ) 0%, 6]
[0t D]+ LR ]
Pk

0% 6l
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Finally, it is obviously the minimal one, proving (a).
(b) For any k > 1:

[P od = M) ad P+ 1) ), i)
C o1, p4 ]+ [(D‘il)kil, S—1]-

Therefore, by induction, gj = [g;, p*,]. But

[glv pa_l] = linear span {[ B [[av Cl]s C2]7 . ']7 x] 1Ci € gOs X € gl} (uSing (Pl))
= linear span {[a, [c1, . - . [cx—1, [¢k> X] - - ] : ¢i € 8y, X € g1}
= [a7 gl]

proving the lemma. O

In the particular case of the central extension of the Lie algebra of matrix
differential operators on the circle (see [3], Remark 2.2), we observed the existence
of some parabolic subalgebras p such that p_; = 0 for j >> 0. Having in mind that
example, we give the following definition:

DEFINITION 2.3. (a) A parabolic subalgebra p is called nondegenerate if p_; has
finite codimension in g_;, for all j > 0.
(b) An element a € g_; is called nondegenerate if p* is nondegenerate.

Now, we begin our study of quasi-finite representations over g. A g-module V is
called Z-graded if V = @jezV; and ¢;V; C Viy;. A Z -graded g-module V is called
quasi-finite if dim V; < oo for all j.



14 VICTOR G. KAC AND JOSE 1. LIBERATI

Given A € g, a highest-weight module is a Z-graded g-module V' (g, /) generated by
a highest-weight vector v, € V (g, 1), which satisfies

th = /I(h)v;, (h S go), g v, = 0.

A nonzero vector v € V(g, A) is called singular if g, v =0.
The Verma module over g is defined as usual:

M(g, /L) = L{(g) ®Z/{(goe9g+) C;,a

where C; is the one-dimensional (gy @ g,)-module given by hi— A(h) if h € g,
g, — 0, and the action of g is induced by the left multiplication in U(g). Here
and further U(q) stands for the universal enveloping algebra of the Lie algebra
g. Any highest-weight module V(g, 4) is a quotient module of M(g, ). The
irreducible module L(g, 4) is the quotient of M (g, ) by the maximal proper graded
submodule. We shall write M (1) and L(Z) in place of M(g, A) and L(g, A) if no ambi-
guity may arise.

Consider a parabolic subalgebra p = @jezp; of g and let 4 € gj be such that
Algnipp) = 0- Then the (gy @ g;)-module C; extends to a p-module by letting p;
act as 0 for j < 0, and we may construct the highest-weight module

M(g, p, 1) = U(8) Quy) Cs

called the generalized Verma module.
We will also require the following condition on g:

(P3) If p is a nondegenerate parabolic subalgebra of g then there exists a
nondegenerate element a such that p* C p.

Remark 2.4. In all the examples considered in [3, 5, 7] and Section 3 of this work,
property (P3) is satisfied.

THEOREM 2.5. The following conditions on A € g are equivalent:

(1) M(A) contains a singular vector a.v, in M(A)_,, where a is nondegenerate;

(2) There exist a nondegenerate element a € g_;, such that 2([g, a]) = 0.

(3) L(2) is quasi-finite;

(4) There exist a nondegenerate element a € g_,, such that L(1) is the irreducible
quotient of the generalized Verma module M(g, p*, /).

Proof. (1) = (4) : Denote by a v, the singular vector, where a € g_;, then (4) holds
for this particular a. (4) = (3) is immediate. Finally, L(1) quasi-finite implies
dim(g_;.v)) < 0o, then there exist an a € g_; such that av;, =0 in L(1), so
0 =gy.(av;) = a(g1.v;) +[81, alvi = A[g1, a]) vi, getting (3) = (2) = (1). O
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3. The Lie Algebra W, , and its Parabolic Subalgebras

We turn now to a certain family of Z-graded Lie algebras. Let D be the Lie algebra of
regular differential operators on the circle, i.e. the operators on C[z, =] of the form

E = e,(3 + ex (0" + - + eg(t), where ei(1) € Clz, '],
The elements
JL=—1"%0@) (e, keZ)
form its basis, where 9, denotes d/dt. Another basis of D is
L, =—¢D" (leZ,, ke),
where D = t9,. It is easy to see that
Ji = —"[D;. (3.1)
Here and further, we use the notation
[x;=x(x—=1)...(x=1+1).
Fix a linear map T: C[w] — C. Then we have the following 2-cocycle on D, where

J(w). g(w) € Clw] [5]:

R
wrery 2o = | T, .St merem+n). i r=s > 0

0, if r+s£0.
(3.2)
Welet W = W1 if T: C[w] — Cis the evaluation map at w = 0. The central extension

of D by a one-dimensional center CC, corresponding to the 2-cocycle W is denoted by
W14 The bracket in Wy, is given by

[/ (D). rg(D)]

=1""(f(D + 5)g(D) — f(D)g(D + 1) + ¥(/f(D), 'g(D))C. (3.3)
Consider the following family of Lie subalgebras of D (p € C[x]):

D, :=Dp(D).

Denote by W, the central extension of D, by CC corresponding to the
restriction of the 2-cocycle . Observe that W , is the well-known W, subalgebra
of W1 and, more generally, using (3.1) we have that W, \» is the central extension
of the Lie algebra of differential operators on the circle that annihilate all
polynomials of degree less than n.
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Letting wt #*f(D) = k, wt C = 0 defines the principal gradation of Wy, and of
Weop:
Weop = @je%(WOO,p)ja

where (W), = {£f(D)p(D) | f(w) € Clw]} + 9,0 C.
It is easy to check that the Z-graded Lie algebras W, satisfy the properties
(P1)—(P2).

Remark 3.4. The Lie algebra W, , contains a Z-graded subalgebra isomorphic to
the Virasoro algebra if and only if deg p < 1. Indeed, from the commutator:

[t/ (D)p(D), g(D)p(D)] = t(g(D)p(D) — (D + p(D + 1)f (D)p(D),

it is immediate that if the relation [L;, Lo] = L, is satisfied (for some elements
Lie (W), i=0,1), then deg p < 1. The existence of Virasoro subalgebras for
deg p < 1 was observed in [5].

Let p be a parabolic subalgebra of W, ,. Observe that for each j € IN we
have
p_; = {7f(D) | f(w) € I},

where I_; is a subspace of p(w)C[w]. Since

F(D)p(D), 1 q(D)] = t “(f(D — k)p(D — k) = f(D)p(D))¢(D),

we see that /_; satisfies 4, . I € I_; where
Apk = {f(w—k)p(w —k) —f(w)p(w) | f(w) € Clw]}.

LEMMA 3.5. (a) I_ is an ideal for all k € N if deg p < 2 (there are examples of
parabolic subalgebras where I_| is not an ideal for any deg p > 2).
(b) If I_ # 0, then it has finite codimension in C[x].

Proof. Observe that if deg p < 1, then A, = C[w] for all k > 1, and if deg p = 2,
A, i 1s a subspace which contains a polynomial of degree / for all / > 1, proving
the first part. Now, observe that for p(x) = [x],, we have A, = C[w]w —1],_,
and take

Iy =C [w], ® Cwiwl, ® 4p1[wl, & Apa1w[wl,,
L =Cwlw—Fk+1],...[w=1],w],, k>1L1
Then, after some computation, it is possible to see that these subspaces define a

parabolic subalgebra p = @rczpr, Where p_; = {t7f(D) | f(w) € I_;} for k> 1.
Observe that for n > 2, I_; is no longer an ideal.



UNITARY QUASI-FINITE REPRESENTATIONS OF W, 17

Finally, since 4, x contains a polynomial of degree / for all / > m, for some m € N,
part (b) follows. O

Remark 3.6. Due to Lemma 3.5, we no longer have the situation of parabolic
subalgebras described in terms of ideals, as in the Lie algebras considered in
[3, 5, 7]. But for the algebra W, the parabolic subalgebras are as in these
references.

We shall need the following proposition to study modules over W, , induced from
its parabolic subalgebras.

PROPOSITION 3.7. (a) Any nonzero element d € (Wu)_; is nondegenerate.
(b) Any parabolic subalgebra of Wy, is nondegenerate.
(c) Let d = t7'b(D) = t"'a(D)p(D) € (Wxop)_,, then

(Woo,p)g L= [( Woo,p)lv d]
= span{p(D — 1)g(D)b(D) — p(D)g(D + 1)b(D + 1)+
+g0)p(=1)b(0)C | g € Clw]}.

Proof. Let0 # d € (Wyp)_;, then pﬂj # 0forallj > 1. So, by Lemma 3.5 (b), part
(a) follows . Let p be any parabolic subalgebra of W, ,, using Lemma 2.1 we get
p_; # 0. Then, using (a) and p? C p (for any nonzero d € p_,), we obtain (b). Finally,
part (c) follows by Lemma 2.2 (b) and the commutator:

[tg(D)p(D), t~'b(D)]

=p(D — Dg(D — Db(D) — p(D)g(D)b(D + 1) + g(0)p(=1h(0)C. U

4. Quasi-finite Highest-Weight Modules over W, ,

By Proposition 3.7, W, , also satisfies property (P3), hence we can apply Theorem
2.5.

Let L(2) be a quasi-finite highest-weight module over W, ,. By Theorem 2.5, there
exists some monic polynomial b(w) = a(w)p(w) such that (r~'b(D))v; = 0. We shall
call such monic polynomial of minimal degree, uniquely determined by the
highest-weight 4, the characteristic polynomial of L(1).

A functional 1 € (W) is described by its labels A; = — (D! p(D)), where
leZ,, and the central charge ¢ = A(C). We shall consider the generating
series

00 I
Ayx) = Z%A,. (4.1)
=0 °*



18 VICTOR G. KAC AND JOSE 1. LIBERATI

Recall that a quasi-polynomial is a linear combination of functions of the form
p(x)e™, where p(x) is a polynomial and o€ C. Recall the well-known
characterization: a formal power series is a quasi-polynomial if and only if it satisfies
a nontrivial linear differential equation with constant coefficients. One has the
following characterization of quasi-finite highest-weight modules over W, ,, which
extends that for W, 1 = Wiy obtained in [3].

THEOREM 4.2 [1]. 4 Wy, p-module L(2) is quasi-finite if and only if there exist a
quasi-polynomial ¢,(x) with ¢,(0) =0, such that

Ayx)=p (dd—x> (i(_x)1> (4.3)

For completeness, we give a proof of this Theorem, which is probably more clear
than the one in [1]. As always, the basic idea is the original one in [5].

Proof. From Proposition 3.7 (a) and (c), and Theorem 2.5(2), we have that L(4) is
quasi-finite if and only if there exist a polynomial 5(w) = p(w)a(w) such that

Ap(D — 1)g(D)b(D) — p(D)g(D + 1)b(D + 1) + g(0)p(—=1)b(0)C) = 0
for any polynomial g or, equivalently,
0 = A(b(D)p(D — 1)e* — b(D + 1)p(D)e*P ) + g(0)p(—1)b(0)c. (4.4)

Now, take I';(x) = Y 7, b;x' a solution of

d
Aix)=p <dx> (). (4.5)

Using A;(x) = —A(p(d/dx)e*”), and the identities

(D)exD :f<di) (exD)’ p(D)eX(D-H) — exp(D)exD — exp(—)CXD,

()0 = (- 1)er

=
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condition (4.4) can be rewritten as

0 = A(bD)p(D — e — b(D + Dp(D)e" P+ + p(—1)b(0)c

= i(b(5 ) (5~ 1) = 85 (D)) -0
e Dot s
)2 o) o

A A A )

N PEAL) ALK 50
o )r(5)r (- 1)@ = o+

Thus, L(Z) is quasi-finite if and only if there exists a polynomial a(w) such that

Il
2

d d d .
a<a>p<a)p<a — 1)((e - DI(x)+c)=0. (4.6)
Therefore, L(4) is quasi-finite if and only if (¢* — 1)I";(x) + ¢ is a quasi-polynomial,
proving the theorem. ]

DEFINITION 4.7. The quasi-polynomial ¢,(x) + ¢, where ¢,(x) is from (4.3) and ¢
is the central charge, can be (uniquely) written in the form

$i(x)+ = px)e™, 4.8)

rel

where all r are distinct numbers. The numbers r appearing in (4.8) are called
exponents of the W, ,-module L(4), and the polynomial p.(x) is called the
multiplicity of r, denoted by mult(r). Note that, by definition, ¢ = }_, p,(0).

COROLLARY 4.9. Let L() be a quasi-finite irreducible highest-weight module over
W p, let b(w) = p(w)a(w) be its characteristic polynomial, let T'j(x) be a solution
of (4.5) and let F)(x) = (¢* — )I";(x) + ¢. Then

a(cic) (di) (dd )F(x) —0

is the minimal order homogeneous linear differential equation with constant
coefficients of the form

PR
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satisfied by F(x). Moreover, the exponents appearing in (4.8) are all roots of the
polynomial p(w — 1)p(w)a(w).

Now, we will consider the restriction of quasi-finite highest-weight modules over
Witeo to Wo . We will need some notation.

A functional 1 € (W), is characterized by its labels I', = —A(D"), where
m € 7, and the central charge ¢ = A(C), cf. (4.1). Introduce the new generating
series:

m

o)
X
T(x)=) —T
=0 m:

Observe that I';(x) satisfies (4.5). Recall that a Wi .-module L(W,n,A) is
quasi-finite if and only if I')(x) = (¢(x))/(e* — 1), where ¢(x) is a quasi-polynomial
such that ¢(0) = 0 [5]. We have the following partial restriction result:

PROPOSITION 4.10. Any quasi-finite Wy, p-module L(A) can be obtained as
a quotient of the Wy p-submodule generated by the highest-weight vector
of a quasi-finite Wi, -module L(WHOO,:I), for some quasi-finite functional
i€ (Wil such that y,, = J.

Proof. Given

a0 =r( ) ()

consider /1 € (Wiieo)y determined by I';(x) = ¢(x)/(e* — 1), and the proposition
follows. [

Let O be the algebra of all holomorphic functions on C with the topology of
uniform convergence on compact sets. We consider the vector space D° spanned
by the differential operators (of infinite order) of the form 7*f(D), where f € O.
The bracket in D extends to D. Then the cocycle ¥ extends to a 2-cocycle on
DO by formula (3.2). Let WS_OO = DY 4+ CC be the corresponding central extension
with the principal gradation as in W .

Consider the Lie subalgebras of D:

DS =D p(D). (4.11)

We shall denote by WO(Z,p the central extension of Df by CC corresponding to the
restriction of the cocycle ¥. And we shall use de notation W2 = W2 _ (i.e. the case
p(x) = x). Observe that W  inherit a 7 -gradation from W{, .

In the following section, we shall need the following proposition:

PROPOSITION 4.12. Let V be a quasi-finite Wy, ,-module. Then the action of W,
on V naturally extends to the action of(Wo(Z’p)k onV for any k # 0.



UNITARY QUASI-FINITE REPRESENTATIONS OF W, 21

Proof. The proof is analogous to that of Proposition 4.3 in [5]. O

5. Embedding of W, into Eloo.

In the following, we will suppose that p(x) = x, i.e. we consider the algebra Wo,. We
shall use the notation D, := D, and DY := Dl?.

Let gl be the Z-graded Lie algebra of all matrices (ay); ;7 with finitely
many nonzero diagonals (deg Ej; =j—i). Consider the central extension
gloo = gl + CC defined by the cocycle:

®(A4, B) = tr ([J, A]B), J=>E.

i<0

Given s € C, we will consider the natural action of the Lie algebra D, (resp. Df) on
#Clt,17']. Taking the basis v; =17" (jeZ) of this space, we obtain a
homomorphism of Lie algebras ¢, : D, — gl (resp. ¢, : ”D? — gl):

P (' f (D)D) =" f(=j + () + $)Ej .

Jjez

This homomorphism preserves gradation and it lifts to a homomorphism @, of the
corresponding central extensions as follows [5] (cf. [1]):

esx

-1\ .
) C, p,(C)=C.

as(DeXD) = q)s(DeXD) - (ex -1

Let s € 7Z and denote by gloo,s the Lie subalgebra of gloo generated by C and
{Ej|li # s and j # s}. Observe that gAloo,s is naturally isomorphic to glw Let
Ds: gAlC>O — QOO,S Ee the projection map. If s € 7Z, we redefine ¢, by the homomorphism
pPopy: Wo — gl s

Given s = (s1, ..., 5,) € C", we have a homomorphism of Lie algebras over C:

as = 69;":]2551: WOO — gs = 69’[1]95,- (51)

where g, = gloo ifs; ¢ 7, and g, = gloo,sl if s; € Z. The proof of the following prop-
osition is similar to that of Proposition 3.2 in [5].

PROPOSITION 5.2. The homomorphism ¢4 extends to a homomorphism of Lie
algebras over C, which is also denoted by @g:

P W3 — g

The homomorphism Qg is surjective provided that s; — s; & 7. for i # j.
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Remark 5.3. For s € 7 the image of W< under the homomorphism @, is v (gl s_)
for any k € 7, where v is the automorphism defined by

V(E;i) = Ei1,i41- 5.4

Hence, we may (and will) assume that 0 < Re s < 1 throughout the paper.

6. Unitary Quasi-finite Highest-Weight Modules over W,

The algebra D, acts on the space ¥V = C[t,+~']/C. One has a nondegenerate
Hermitian form on V:

B(f,g) = Res, fdg,

where (3 a;t) =Y @i, a; € C, (cf. [2)).
Consider the additive map w : Dy — Dy, defined by:

o(*f(D)D) = t*f(D — k)D
where for f(D) = 3, £;D', we let f(D) = Y_./:D'(f; € C).

PROPOSITION 6.1. The map w is an anti-involution of the Lie algebra Dy, i.e.  is an
additive map such that

0> =id, o(la)= o), and o(a, b)) = [wb), w(a)], for e C,a,b e D,.
Furthermore, the operators w(a) and a are adjoint operators on V with respect to B,
and o((Dx);) = (Dx)_;.

Proof. The properties w? = id, w(la) = Zw(a) are obvious. Now,

w([*f(D)D, ' g(D)D])
= (™ (f(D + I)(D + g(D) — g(D + k)(D + k)f (D)D)
=" D(F (D — kYD — k)g(D —k — 1) — g(D — I)(D — D)f (D — k — 1)) D.

On the other hand,

[w(f'g(D)D), w(i*f(D)D)] = ['g(D — DD, t™¥f(D — k)D]
= ® D@D -k —1)(D - k)f(D—k)—f(D—k—I)(D— Dg(D —1)D.

Hence, w is an anti-involution. Now we compute

B{A*f(D)D ¢, 1"y = BUF() I, ") = nl f(1)Ssssn-
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We also have

B(, o(*f(D)D) ")
= B, 7 *f(D — k)D 1"
= B(',nf(n —k)"*) = nlf(n— k)31 n s,

proving the proposition. ]

This anti-involution w extends to the whole algebra Dg, defined in (4.11). Observe
that

¥(a(A), o(B)) = o(¥(B, A)), A,BeDC.

Therefore, the anti-involution @ of the Lie algebras D, and DY lifts to an
anti-involution of their central extensions W, and WO(Z, such that w(C) = C, which
we again denote by o.

In this section we shall classify and construct all unitary (irreducible) quasi-finite
highest-weight modules over W, with respect to the anti-involution w. In order
to do it, we shall need the following lemma:

LEMMA 6.2. Let V be a unitary quasi-finite highest-weight module over Wy, and let
b(w) = wa(w) be its first characteristic polynomial. Then a(w) has only simple real
roots.

Proof. Let v, be a highest-weight vector of V. Then the first graded subspace V_;
has a basis

(¢7'DYy; | 0 <j < deg a).
Consider the action of
1/ 5 1—-A
= _5<D " (1 +A0)D>

on V_;. It is straightforward to check that

S (' Dyv;) = ('D'* v, forall j > 0.

It follows that a(S)((r~'D)v;) = 0, and that {S/((r"'D)v;) | 0 <j < deg a} is a basis of
V_1. We conclude from the above that a(w) is the characteristic polynomial of the
operator S on V_;. Since the operator S is self-adjoint, all the roots of a(w) are real.

Now, suppose that a(w) = (w — )" ¢(w) for some polynomial ¢(w) and r € R. Then
v=(S =" 'e(S)((r'D)v,) is a nonzero vector in V_;, but

(v, v) = ((S)(t D)), (S — 1" 2e(S)(r ' D)vy)) =0 if m > 2.

Hence, the unitarity condition forces m = 1. O
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Take 0 <s<1. Then under the homomorphism @ WS — gloo, the
anti-involution o induces the following anti-involution on gl :

(,U/(Ejj) < - l) ji> (O/(C) =C.
’ Ss—] .
Indeed

@ ((*f(D)D)) = @ (t™*f(D — k)D)
= fs—j—k)s = DEsi,

JeZ
=D S =D —j+kE
JEL
= w/< D fls=)s —J‘)Ejk,j>
JEZ
= o/ (p(*f (D)D)).

Let e = E,",'Jr] andf,- = E[Jrlqi, then

W'(e) = Af; with 4y = ——1
s—i—1
Observe that
Ai<0 ifandonlyif i<s<i+]1. (6.3)

If we consider the linear automorphism 7 defined by T(e;) = we; = e,
T(f;) = w7 'fi = f/ for some y; € C, then w'(e) = w(we;) = flif; = |,u,-|2i[f/. Hence,
by (6.3), o' is equivalent to the anti-involution @ defined by

~ i it iR,

ole) = { —f; if i=0.
After a shift by the automorphism v defined in (5.4), we may assume 0 < s < 1, then

under the homomorphism @, : WS — gl, the anti-involution ® induces an
anti-involution on gl that is equivalent to the following:

E;L =E; if i,j>0 or i,j<0, EU' = —E;; otherwise, and CJr =C.

As usual, for any /€ (gAloo)E we have the associated irreducible highest-weight
gloo—module L(Qm,i). An element /1€ @00)3 is determined by its labels
Ai = MEy), i € 7, and central charge ¢ = A(C). Let n; = A; — Aiy1 + dioc (i € 7).
The following classification is taken from [6] and [8]:

PROPOSITION 6.4. A4 nontrivial highest-weight gloo-module with highest-weight A
and central charge c is unitary with respect to l if and only if the following properties
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hold:
neZy ifi#0 and c=)» n <0, (6.5a)
if ;0 and n;#0, then l|i —jl< —c (6.5b)

In the case of s = 0, the homomorphism @, : wo — gloo,o >~ gloo induces the stan-
dard anti-involution on gl : (4)* =’ 4. The following is a very well known result:

PROPOSITION 6.6. 4 highest-weight gloo-module with highest-weight . and central
charge c is unitary with respect to * if and only if n; € Z, and c =, n;.

Let 4; € (gy,); such that L(g,,, 4;) is a quasi-finite g, -module. Then the tensor prod-
uct

L(gs’ ;L) = ®iL(gx,-’ }“i)

is an irreducible gs-module.

THEOREM 6.7. Let V be a quasi-finite gs-module, viewed as a Wy,-module via the
homomorphism @y, where s;—s; ¢ Z if i#j, and 0<Res;<1. Then any
Woo-submodule of V is also a gg-submodule. In particular, the W-modules
L(gg, A) are irreducible, and in this way we obtain all quasi-finite Weo-modules
L(2) with ¢,(x) = Z[n,-er"x, nieC, reC.

Proof. Consider any Wo,-submodule W of V. By Proposition 4.12, the action of
W can be extended to (W), (k # 0). Using Proposition 5.2, we see that the sub-
space W is preserved by g,. Therefore, the W-modules L(g,, 1) are quasi-finite
and irreducible. Then it is easy to calculate the generating series of the highest-weight
(see Section 4.6 in [5]): in the case s € R\Z, we have

A . d L e=Rxp, ¢
A i (x) = =AU (DeP)) = o <Zkez e k ) (6.8)

in the case of s =0, we have

o€ P+ Y e 4 e¥¥ ) — eV
Mgty = & (T o I o me T (69)
dx e¥ —1
and the last part of the theorem follows from Equations (6.8)—(6.9). O

In fact, as in Theorem 4.6 in [5], it is possible to construct all irreducible
quasi-finite W,-module in terms of representations of gl(oo, R, (or a subalgebra
of it), where gl(oo, R, is the central extension of the Lie algebra of infinite matrices
with finitely many nonzero diagonals and coefficients in the algebra of truncated
polynomials R, := C[u]/(u"*!). More precisely, we consider the homomorphism
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ol : DY - gl(co, R,,) given by

"¢ f (D)D) = i‘ ) (s =) —j)1+ AT

j Jj—kj
i=0 jeZ !

In the case where s € R\Z, we take gl = gl(oo, R,,) and, for s € Z, we have to
remove the generators E,, and u”E_g, for all r € Z. All quasi-finite irreducible
L(7) can be obtained using representations of the Lie algebra g™ = @igg”f] via
the homomorphism qog'“] = @i(pg??f], and as in [5] the coefficients in m are given
by the degree of the (polynomial) multiplicities of ¢,(x).

LEMMA 6.10. Only those highest-weight representations of éi(oo, R, that factor
through gl(oo, C) are unitary.

Proof. Indeed, let v be a highest-weight vector. Fix i€ Z and let
e=FE; 1, f=Ey 1 h=E; Now take the maximal j such that (u/f)v #0. We
have to show that j=0. In the contrary case, (¢/f)v is a vector of norm O:
(Wf ), Wf)Ww) = £(v, (e)@f)v) = (v, @¥h)v) = 0, since otherwise (u?h)v # 0,
hence (u¥f)v # 0 (by applying e to it). Hence, we get a nonzero vector of zero norm,
unless the module is actually a Q(oo, C)-module. O

Therefore, using Lemma 6.10, Lemma 6.2 and Corollary 4.9, we have

LEMMA 6.11. If L(A) is a unitary quasi-finite Ws-module, then ¢,(x) =) _;n;e™,
with n; € C, r; € R.

Now we can formulate the main result of this section, that follows (in the same way
as Theorem 5.2 in [5]), from Theorem 6.7, Propositions 6.4 and 6.6, and Lemma 6.11:

THEOREM 6.12. (a) Let L(X) be a nontrivial quasi-finite Wy,-module. For each
0<a<l, let E, denote the set of exponents of L(1) that are congruent to o« mod
Z.. Then L(J) is unitary if and only if the following three conditions are satisfied:

(1) Al exponents are real numbers.

(2). The multiplicities of the exponents r; € Ey are positive integers.

(3) Forexponentsr; € E, (0 < a < 1), all multiplicities mult(r;) are integers and only
one of them is negative, my, = —3_ _p (mult(r;)) is a positive integer, and
ri—r; <my forall v, r; € E,.

(b) Any unitary quasi-finite Weo-module L(A) is obtained by taking tensor product
of unitary irreducible quasi-finite highest-weight modules over g, i=1,...,m,
and restricting to Wy via the embedding (g, where s=(si,...,s,) € R",
O<si<landsi—sigZ ifi#].



UNITARY QUASI-FINITE REPRESENTATIONS OF W, 27

Acknowledgement

This research was supported in part by NSF grant DMS-9622870, Consejo Nacional
de Investigaciones Cientificas y Técnicas, and Secretria de Ciencia y Técnica
(Argentina). J. Liberati would like to thank C. Boyallian for constant help and
encouragement throughout the development of this work, and MIT for its
hospitality.

References

1.

2.

Awata, H., Fukuma, M., Matsuo, Y. and Odake, S.: Subalgebras of W, and their
quasi-finite representations, J. Phys. A 28 1995, 105-112.

Bloch, S.: Zeta values and differential operators on the circle, J. Algebra 182 (1996),
476-500.

. Boyallian, C., Kac, V., Liberati, J. and Yan, C.: Quasifinite highest-weight modules over

the Lie algebra of matrix differential operators on the circle, J. Math. Phys. 39 (1998),
2910-2928.

Frenkel, E., Kac, V., Radul, A. and Wang, W.: W, and W(gly) with central charge N,
Comm. Math. Phys. 170 (1995), 337-357.

. Kac, V. and Radul, A.: Quasifinite highest-weight modules over the Lie algebra of

differential operators on the circle, Comm. Math. Phys. 157 (1993), 429-457.

Kac, V. and Radul, A.: Representation theory of the vertex algebra Wi, ., Transformation
Groups 1 (1996), 41-70.

Kac, V., Wang, W. and Yan, C.: Quasifinite representations of classical Lie subalgebras of
Witoo, Adv. Math. 139 (1998), 56-140.

Olshanskii, G.: Description of the representations of U(p, ¢) with highest-weight, Funct.
Anal. Appl. 14 (1980), 32-44.



