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Abstract: The metabolic characteristics of metastatic and non-metastatic breast carcinomas remain
poorly studied. In this work, untargeted Nuclear Magnetic Resonance (NMR) metabolomics was
used to compare two medroxyprogesterone acetate (MPA)-induced mammary carcinomas lines
with different metastatic abilities. Different metabolic signatures distinguished the non-metastatic
(59-2-HI) and the metastatic (C7-2-HI) lines, with glucose, amino acid metabolism, nucleotide
metabolism and lipid metabolism as the major affected pathways. Non-metastatic tumours appeared
to be characterised by: (a) reduced glycolysis and tricarboxylic acid cycle (TCA) activities, possibly
resulting in slower NADH biosynthesis and reduced mitochondrial transport chain activity and ATP
synthesis; (b) glutamate accumulation possibly related to reduced glutathione activity and reduced
mTORC1 activity; and (c) a clear shift to lower phosphoscholine/glycerophosphocholine ratios and
sphingomyelin levels. Within each tumour line, metabolic profiles also differed significantly between
tumours (i.e., mice). Metastatic tumours exhibited marked inter-tumour changes in polar compounds,
some suggesting different glycolytic capacities. Such tumours also showed larger intra-tumour
variations in metabolites involved in nucleotide and cholesterol/fatty acid metabolism, in tandem
with less changes in TCA and phospholipid metabolism, compared to non-metastatic tumours.
This study shows the valuable contribution of untargeted NMR metabolomics to characterise tumour
metabolism, thus opening enticing opportunities to find metabolic markers related to metastatic
ability in endocrine breast cancer.

Keywords: endocrine breast cancer; murine models; metabolism; NMR; metabolomics;
hormone-independent growth; metastatic potential; medroxyprogesterone acetate

1. Introduction

Breast cancer (BC) is the leading cause of cancer deaths among women, accounting for an
estimated 15% of all cancer deaths worldwide in 2018 [1]. BC classification and treatment are based on
common histological features and expression of estrogen receptor alpha and progesterone receptors
(ER and PR, respectively), as well as on human epidermal growth factor receptor 2 (HER2) and the
proliferation marker Ki67. Molecular gene expression signatures, besides recognising major molecular
subtypes, provide additional prognostic value, while giving insight into BC heterogeneity [2,3]. These
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approaches cannot, however, fully explain tumour metabolic characteristics [4]. Indeed, metabolic
reprogramming may lead to significant heterogeneity between and within tumours [5]. This inter- and
intra-tumour heterogeneity, usually illustrated by cellular, molecular or histopathological parameters [6],
often correlates with prognosis, therapy response and survival rates [7,8]. Therefore, characterisation
of tumour metabolism can provide valuable information about the tumour needs for survival,
while disclosing therapeutic targets and complementing tumour classification. Metabolic traits may be
identified through metabolomic strategies, that constitute the comprehensive analysis of endogenous
metabolites (in biological complex mixtures such as biofluids, tissues or cells) and their response to
perturbation (e.g., disease) [9]. Metabolomics has been used to evaluate inter-tumour (inter-individual)
heterogeneity, either in an attempt to correlate metabolic profiles of human breast tumours with
histological features or immunohistochemical markers [10–13], or to help distinguish intrinsic molecular
subtypes in murine BC models [14–16]. The identification of possible metabolomic-based subtypes,
in addition to the already established BC intrinsic subtypes, has indicated that metabolic information
may add to the understanding of BC inter-tumour heterogeneity, beyond transcriptomic-based
analyses [4]. Indeed, some studies have already suggested possible breast tumour subtyping schemes
based on metabolic profiling [17,18].

Intra-tumour heterogeneity is determined by intrinsic (e.g., genetic/epigenetic events) and
extrinsic factors (e.g., microenvironment, therapeutic intervention) and allows for phenotypic plasticity,
which leads to distinct degrees of drug resistance and metastatic potential [19]. Understanding
intra-tumour heterogeneity can lead to improvements in therapeutic interventions based on the overall
profile of tumour cell subpopulations, rather than solely on predominant ones [6]. Intra-tumour
metabolic heterogeneity has been relatively less studied than other defining characteristics, such as
gene expression or mutational landscape, albeit it constituting the functional expression of those
mutational traits in co-evolution with the tumour microenvironment [20]. Most metabolomic studies
carried out in this context have been guided by in vivo imaging techniques and magnetic resonance
spectroscopy (MRS) [21–25], and only a few high resolution ex vivo metabolomic studies have been
reported. Metabolic tumour compartmentalisation has been investigated, either in vivo and/or ex
vivo, in lymphoma (different lipid markers found to characterise necrotic and non-necrotic tumour
regions [22]), liver cancer (different metabolic profiles associated with distinct intra-tumour immune
statuses) [26], lung cancer (glucose levels differing between higher and less perfused tumour areas) [27],
sarcoma (specific lipid/protein signatures correlated with different grading characteristics within
the tumour) [24], kidney cancer (different metabolic patterns associated with tumour portions with
distinct drug sensitivity) [28] and BC (differential phospholipid intra-tumoural distribution possibly
related to different degrees of proliferation, hypoxia and inflammation) [23]. Besides the latter study,
based on mass spectrometry (MS) imaging [23], intra-tumour metabolic heterogeneity in BC has been
assessed by direct analysis of the tissue using high resolution magic angled spinning (HRMAS) nuclear
magnetic resonance (NMR) [29,30]. Central and peripheral tumour samples showed variability in
phosphocholine (PC) and phosphoethanolamine (PE) contents, whereas central specimens and core
biopsies showed variability in adipate, arginine, fumarate, glutamate, PC and PE.

This NMR metabolomics work builds on the previously described NMR studies of BC tissue [29,30]
and on MS studies of different BC types [12,31], by reporting an untargeted metabolomics study of
tumour extracts, to unravel the underlying biochemical aspects of inter- and intra-tumour heterogeneity.
In particular, proton 1H-NMR metabolomics was used to characterise polar and lipophilic extracts
obtained from mouse mammary adenocarcinomas induced by medroxyprogesterone acetate (MPA),
a model that closely resembles human hormone receptor-positive BC. The MPA model comprises
several ductal adenocarcinoma tumour lines and, here, we have focused on two hormone-independent
(HI) tumour lines that express ER and PR [32] but have different metastatic capacity [33]. The aim
of this work was, therefore, to assess metabolic differences between non-metastatic 59-2-HI and
metastatic C7-2-HI tumour lines (inter-line heterogeneity), as well as between tumours from each
line (inter-tumour heterogeneity), and within different areas of each individual tumour (intra-tumour
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heterogeneity). In this work, we identified the main metabolites defining the different levels of
heterogeneity, discussed the potential underlying differences in metabolic pathways and advanced
possible markers of metastatic behaviour for the murine tumours under study.

2. Materials and Methods

2.1. Syngeneic Tumour Model and Procedures Carried Out in Mice

The MPA-induced mouse mammary tumour model consists of several ductal adenocarcinoma
tumour lines obtained in BALB)/c (Bagg Albino) mice by continuous administration of MPA [33].
After several passages, these initially hormone-dependent tumours (HD) develop the ability to
grow independently of exogenous hormone administration (and, eventually, develop resistance to
endocrine therapy throughout serial transplantation). In this work, two tumour lines that grow
without exogenous hormone supply (hormone-independent, HI) were used (59-2-HI and C7-2HI)
(Figure 1a). These tumours are invasive carcinomas that express ER and PR. They are both inhibited by
antiprogestin treatment, although only C7-2-HI gives rise to lymph node and lung metastasis. Thus,
in terms of histology and endocrine growth, the MPA tumour model is one of a few murine models
that closely resemble human hormone receptor-positive BC. Both 59-2-HI and C7-2-HI tumour lines
were subcutaneously transplanted into the left inguinal flank of two-month-old BALB/c female mice
(3 animals for each tumour line) using a trocar and the resulting tumours were allowed to grow up to
1 cm in their longest dimension. One tumour was implanted per animal. Mice were fed ad libitum
and kept in 12 h light/dark cycles. Tumours were excised and immediately stored in −80 ◦C until
analysis. All animal procedures were performed at the IByME Animal facility, having been approved
by the local Institutional Animal Care and Use Committee (Approval no. 030/2016, dated 24 June 2016)
and complying with regulatory standards of animal ethics. To study intra-tumour heterogeneity,
each frozen tumour was placed on a Petri dish on dry ice and quickly cut into sections with a scalpel.
The spatial location of the incisions depended on the shape of the tumours (Figure 1b). All sections
were stored at−80 ◦C. The letters A–F were used to distinguish between different tumours and numbers
1–4 identify the four sections (or octants) randomly chosen for analysis of each tumour, in this work
(Figure 1).

2.2. Tumour Extracts

Frozen tumour octants (average 50 mg per sample) were ground to a fine powder by mechanical
maceration in cooled liquid N2 using a pestle and mortar. Upon grinding, each sample was returned
to an Eppendorf tube and extracted using methanol-chloroform-water, as described elsewhere [34].
Briefly, each octant sample was homogenised in 500 µL of a cold solution of methanol and milliQ
water (4:1, vortexed for 1 min), 400 µL of cold chloroform and 200 µL of cold milliQ water (vortexed
for 1 min). After resting for 10 min at 4 ◦C, samples were centrifuged (5 min, 8000 rpm), phases were
separated, lipophilic and hydrophilic (aqueous) extracts were dried under a nitrogen flow and under
vacuum, respectively, and stored at −80 ◦C until analysis.
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Figure 1. Brief description of the medroxyprogesterone acetate (MPA)-induced model of BC and 
mammary adenocarcinomas considered in this study. (a) Tumours were transplanted into syngeneic 
mice inoculated with an MPA depot to support hormone-dependent (HD) growth and into mice 
without MPA as control; some tumours began to grow without requiring MPA thus giving rise to 
hormone-independent (HI) lines: 59-2-HI (tumours A, B and C) and C7-2-HI (tumours D, E and F); 
(b) schematic representation of tumour sectioning criteria, depending on sample shape; every section 
included both peripheral and central parts; four sections of each tumour (1 to 4) were randomly 
chosen for NMR metabolomics. 

2.3. NMR Spectroscopy 

Before NMR spectra acquisition, aqueous extracts were re-suspended in 650 μL phosphate 
buffered saline (100 mM phosphate, pH 7.4) previously prepared in D2O (99.9% deuterium) with 60 
mM Na2HPO4, 40 mM NaH2PO4 and 0.1 mM 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid (TSP), for 
chemical shift referencing. Lipophilic extracts were re-suspended in 650 μL deuterated chloroform 
(99.8% deuterium) with 0.03% tetramethylsilane (TMS), again for chemical shift referencing. After 
vortex homogenisation, 550 μL of the solution was transferred to the NMR tube. NMR spectra were 
recorded on a Bruker Avance DRX 500 spectrometer, Rheistetten, Germany (at 298 K. Standard 1D 
spectra were acquired with the noesypr1d pulse sequence for aqueous samples, and with the zg pulse 
sequence for lipophilic samples, using 7002.801 Hz spectral width, 32 k data points, a 2.3 s 
acquisition time, a 2 s relaxation delay (d1), 100 ms mixing time (d8) and 512 scans. Each FID (free 

Figure 1. Brief description of the medroxyprogesterone acetate (MPA)-induced model of BC and
mammary adenocarcinomas considered in this study. (a) Tumours were transplanted into syngeneic
mice inoculated with an MPA depot to support hormone-dependent (HD) growth and into mice
without MPA as control; some tumours began to grow without requiring MPA thus giving rise to
hormone-independent (HI) lines: 59-2-HI (tumours A, B and C) and C7-2-HI (tumours D, E and F);
(b) schematic representation of tumour sectioning criteria, depending on sample shape; every section
included both peripheral and central parts; four sections of each tumour (1 to 4) were randomly chosen
for NMR metabolomics.

2.3. NMR Spectroscopy

Before NMR spectra acquisition, aqueous extracts were re-suspended in 650 µL phosphate
buffered saline (100 mM phosphate, pH 7.4) previously prepared in D2O (99.9% deuterium) with
60 mM Na2HPO4, 40 mM NaH2PO4 and 0.1 mM 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid (TSP),
for chemical shift referencing. Lipophilic extracts were re-suspended in 650 µL deuterated chloroform
(99.8% deuterium) with 0.03% tetramethylsilane (TMS), again for chemical shift referencing. After vortex
homogenisation, 550 µL of the solution was transferred to the NMR tube. NMR spectra were recorded
on a Bruker Avance DRX 500 spectrometer, Rheistetten, Germany (at 298 K. Standard 1D spectra were
acquired with the noesypr1d pulse sequence for aqueous samples, and with the zg pulse sequence for
lipophilic samples, using 7002.801 Hz spectral width, 32 k data points, a 2.3 s acquisition time, a 2 s
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relaxation delay (d1), 100 ms mixing time (d8) and 512 scans. Each FID (free induction decay) was
zero-filled to 32 k points, multiplied by a 0.3 Hz exponential line-broadening function prior to Fourier
transform. Spectra were manually phased, baseline corrected, and chemical shifts referenced internally
to TSP (aqueous extracts) or TMS (lipophilic extracts) at δ = 0.00 ppm. Peak assignments were based on
literature [35–37] and spectral databases, such as the Bruker Biorefcode AMIX database and the human
metabolome database (HMDB [38]) and Chenomx NMR Suite (Chenomx Inc, Edmonton, Canada).

2.4. Statistics Analysis and Other Spectral Analysis

Multivariate analysis was applied to the full resolution 1H-NMR spectra, using SIMCA-P
11.5 (Umetrics, Umeå, Sweden), and excluding specific regions: (a) water (5.09–4.68 ppm) and
TSP (0.13–0.00 ppm) for aqueous samples; (b) chloroform (7.50–6.96 ppm), residual methanol
(3.57–3.36 ppm) and TMS (0.15–0.00 ppm) for lipophilic samples. Spectra were aligned using a
recursive segment-wise peak alignment [39], to minimise chemical shift variations, and data were
normalised to the total spectral area, which accounts for sample concentration differences. Principal
component analysis (PCA, unsupervised analysis used to detect intrinsic clusters and outliers within
the data set) and partial-least-squares discriminant analysis (PLS-DA, supervised analysis to maximise
class discrimination) were performed after unit variance (UV) scaling of the spectra, which gives
comparable weight to each data value [40]. The corresponding loading weights were obtained by
multiplying each variable by its standard deviation and were coloured according to each variable
importance to the projection (VIP) using Matlab R2012a. Relevant peaks were integrated from the
original spectra using Amix 3.9.5 (Bruker BioSpin, Rheinstetten, Germany) and normalised to the
total spectral area. The individual metabolites that most contributed to class separation were selected
based on their statistical significance (p < 0.05 in the Wilcoxon rank-sum nonparametric test [41]) and
effect size [42] (|ES| > 0.5 and ES error < 75%). For multiple testing, p values were adjusted using the
Bonferroni correction [43]. Statistical tests and heatmaps were carried out using Python 3.6.5. Statistical
total correlation spectroscopy (STOCSY) [44] was carried out in selected cases, to aid assignment of
some peaks. In the analysis of NMR spectra of lipophilic extracts, calculation of average fatty acid
chain length, unsaturation and polyunsaturation degrees was carried out as described in previous
reports [45].

3. Results

3.1. 1H-NMR Spectra of Polar and Lipophilic Extracts of Breast Tumours

A representative spectrum of aqueous extracts from a murine MPA-induced HI mammary
tumour (Figure S1a) shows the predominance of lactate, creatine, choline compounds, s-inositol,
alanine and taurine, along with many other less abundant metabolites, including in the low-field region
(ca. δ 5.5–9), namely amino acids (e.g., histidine, phenylalanine, tyrosine), nitrogenous bases (e.g., uracil,
hypoxanthine), nucleosides (adenosine/inosine and uridine) and organic acids (formate and fumarate).
Overall, 40 polar compounds were identified in tumour polar extracts (Table S1). These results were
consistent with previous reports performed on human breast tumours by HRMAS NMR and analysis
of perchloric acid extracts [46], in addition to reports on cell line extracts [47,48]. The spectra of
lipophilic extracts (Figure S1b) unveiled several different compound families (Table S1), including
specific fatty acids (FA) (namely, oleic, linoleic, arachidonic and docosahexaenoic acids), in addition to
phosphatidylethanolamine (PtdEtn), phosphatidylcholine (PTC), sphingomyelin, triglycerides (TGs),
7-lathosterol (0.55) and plasmalogen moieties (δ 5.90). To our knowledge, this is the first detailed
1H-NMR report of mammary tumour lipophilic extracts, building on previous studies, namely in vivo
MRS of breast adipose tissue in BC patients [49], ex vivo 31P-NMR of mammary tumour extracts [50,51],
1H-NMR of cell extracts [35] and HRMAS NMR of tumours [52]. In the same context, other studies of
lipophilic extracts have been carried out by MS for cell lines, animal models and human samples [53–56].
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3.2. Metabolic Differences between 59-2-HI and C7-2-HI Tumour Lines

Unsupervised analysis by PCA (Figure 2a, left) indicated a clear difference in the metabolic profile
of polar extracts between 59-2-HI and C7-2-HI tumours, and the corresponding PLS-DA model was
significantly robust (Q2

cum = 0.892) (Figure 2a, right). PLS-DA loadings plots (Figure 2b) revealed a
large number of metabolite differences between the two tumour lines and, upon integration and effect
size calculation, statistically significant changes were noted for 31 identified metabolites (and many
still unassigned resonances), mostly associated with p-values in the 10−4–10−5 range (Table 1). On the
other hand, multivariate analysis of the 1H-NMR spectra of lipophilic extracts (Figure S2) revealed
weak differences between tumour lines (Q2 < 0.5 for PLS-DA), although marked differences were
observed for sphingomyelin and an unassigned resonance at δ 8.50 (Table 1).

Overall, the results show that the levels of 13 amino acids were significantly lower in 59-2-HI
tumours, compared to C7-2-HI tumours, and glutamate was increased (Table 1). In addition, 59-2-HI
tumours showed elevated levels of pyruvate and tricarboxylic acid (TCA) cycle intermediates (succinate,
citrate and fumarate). Phospholipid metabolism exhibited distinct characteristics too, with elevated
levels of choline, glycerophosphocholine (GPC) (although only with p-value < 0.05), glycerol and
ethanolamine in 59-2-HI tumours, whereas phosphocholine (PC) levels were reduced. Other metabolite
variations related to lipid metabolism included sphingomyelin and the ketone body acetone, with higher
and lower levels, respectively, in 59-2-HI tumours. Furthermore, no changes in the average length
or degree of unsaturation/polyunsaturation of FAs were noted between tumour lines (not shown).
Nitrogen bases also showed a different pattern between tumour lines, namely including higher uracil
levels in 59-2-HI tumours and a tendency for lower uridine (p-value < 0.05), as well as higher levels of
inosine (consistently with elevated hypoxanthine levels) and, possibly, adenosine (singlet signal at δ
8.35 arises from either adenosine or inosine, Table 1). 59-2-HI tumours exhibited elevated levels of
creatine and relative lower levels of s- and m-inositols.

The heatmaps of the normalised integral values (Figure 3a,b) illustrate the differences in metabolite
levels, which distinguish the two tumour lines, while also reflecting some inter- and intra-tumour
differences for the metabolites shown (note that each row corresponds to a tumour section). The colour
scale highlights most of the changes, whereas for some metabolites (e.g., methionine, fumarate,
hypoxanthine) referral to the values in Table 1 is required, as the colour scale is not particularly
illustrative. The overlaid spectra in Figure 3c exemplifies how clear some spectral ranges are between
the two tumour lines, namely showing average lower PC/GPC ratios for 59-2-HI tumours, compared
to C7-2-HI tumours.
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Figure 2. Results of multivariate analysis for comparison of 59-2-HI and C7-2-HI tumour lines. (a) Scores
scatter plots for PCA and PLS-DA of 1H-NMR spectra of aqueous extracts from 59-2-HI and C7-2-HI
tumour lines; and (b) LV1 loadings plot, coloured according to variable importance to the projection
(VIP), corresponding to the PLS-DA model shown in (a). Q2(cum): cumulative predictive power;
Uδ/multiplicity: unassigned signal. 3-letter code used for amino acids; GPC: glycerophosphocholine,
PC: phosphocholine.
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Table 1. Statistically significant metabolic differences (|ES| > 0.50, ES error < 75% and p-value < 0.05)
between 59-2-HI and C7-2-HI tumours. d: doublet; dd: doublet of doublets; m: multiplet; t: triplet;
s: singlet; br: broad resonance; Uδ/multiplicity: unassigned resonances, albeit contributing to the
separation of the two tumour lines.

δ 1H/ppm a (Multiplicity) Metabolite
52-2-HI (A, B, C) vs. C7-2-HI (D, E, F)

Effect Size (ES) b p-Value c

Polar compounds
1.48 (d) Alanine –1.78 ± 0.94 3.23 × 10−3 d

2.84 (dd) Asparagine –1.35 ± 0.89 1.11 × 10−2 d

2.36 (m) Glutamate 1.67 ± 0.93 1.50 × 10−3 d

2.46 (m) Glutamine –1.54 ± 0.91 3.89 × 10−3 d

1.02 (d) Isoleucine –2.76 ± 1.12 8.64 × 10−5

0.97 (d) Leucine –4.12 ± 1.41 4.15 × 10−5

1.92 (m) Lysine –3.07 ± 1.18 3.23 × 10−5

2.65 (t) Methionine –1.57 ± 0.92 1.82 × 10−3 d

7.33 (m) Phenylalanine –3.37 ± 1.25 4.15 × 10−5

2.03 (m) Proline –2.77 ± 1.12 1.10 × 10−4

3.95 (dd) Serine –5.66 ± 1.79 3.23 × 10−5

4.25 (dd) Threonine –3.41 ± 1.25 3.23 × 10−5

6.91 (d) Tyrosine –2.04 ± 0.99 2.76 × 10−4

1.05 (d) Valine –2.92 ± 1.15 6.78 × 10−5

3.93 (s) Creatine 1.18 ± 0.87 2.68 × 10−3 d

2.52 (d) Citrate 6.59 ± 2.03 3.23 × 10−5

6.52(s) Fumarate 1.64 ± 0.93 1.22 × 10−3

2.39 (s) Pyruvate 1.78 ± 0.95 8.12 × 10−4

2.41 (s) Succinate 3.18 ± 1.21 3.23 × 10–5

3.21 (s) Choline 3.68 ± 1.31 3.23 × 10−5

3.22 (s) Phosphocholine –2.25 ± 1.02 2.20 × 10−4

2.23 (s) Glycerophosphocholine 1.41 ± 0.89 2.82 × 10−2 d

8.35 (s) Adenosine/Inosine 3.61 ± 1.30 3.23 × 10−5

7.86 (d) Uridine –1.27 ± 0.88 1.11 × 10−2 d

8.22 (s) Hypoxanthine 1.98 ± 0.98 5.32 × 10−4

5.81 (d) Uracil 2.38 ± 1.05 8.64 × 10−5

3.36 (s) scyllo–inositol –1.96 ± 0.97 4.29 × 10−4

3.63 (t) myo–inositol e –3.21 ± 1.21 8.64 × 10−5

3.55 (dd) Glycerol 2.48 ± 1.06 1.39 × 10−4

3.15 (t) Ethanolamine 2.00 ± 0.98 2.20 × 10−4

2.24 (s) Acetone –1.90 ± 0.96 6.58 × 10−4

0.88 (br) U0.88/br –1.97 ± 0.98 4.29 × 10−4

1.19 (m) U1.19/m –1.85 ± 0.96 1.22 × 10−3

1.30 (s) U1.30/s –1.77 ± 0.94 4.29 × 10−4

1.45 (d) U1.45/d –3.06 ± 1.18 5.31 × 10−5

2.81 (t) U2.81/t 1.28 ± 0.88 6.78 × 10−5

3.12 (s) U3.12/s 1.95 ± 0.97 9.99 × 10−4

Lipophilic compounds
5.68 (m) Sphingomyelin 2.54 ± 1.08 1.10 × 10−4

8.50 (br) U8.50/br 1.51 ± 0.85 2.21 × 10−3

a peak used for integration (part of the spin system); b Effect size (ES) calculated according to Berben et al. [42]
(positive and negative ES values correspond to variations in 59-2-HI tumours, compared to C7-2-HI tumours);
c p-values calculated according to the Wilcoxon Rank-sum test; d p-values that become no longer statistically
significant upon Bonferroni correction [43], where cut-off p-values of 1.35 × 10−3 (aqueous extracts) and 2.5 × 10−2

(lipidic extracts) were used; e tentative assignment, as identification is hindered by signal overlap particularly in
59-2-HI tumours.
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Figure 3. Heatmaps and example of spectral region representing statistically significant metabolic
differences between 59-2-HI and C7-2-HI tumour lines. Heatmaps for (a) polar metabolites,
and (b) lipophilic metabolites; the colour scale in the heatmaps varies from minimum (dark blue)
to maximum (dark red) normalised integral values; (c) visual comparison of the 1H-NMR spectral
region where choline compounds resonate. br, broad signal; d, doublet; dd, doublet of doublets;
GPC, glycerophosphocholine; m, multiplet; PC, phosphocholine; s, singlet; t, triplet; Uδ/multiplicity,
unassigned signal.
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3.3. Metabolic Differences among Tumours of The Same Line

In order to investigate the significant metabolite changes between tumours of the same line,
PCA and PLS-DA were carried out systematically for each tumour set (each set comprising four
tumour sections), compared to the remaining tumour samples. Although all PLS-DA models were
weak (Q2 < 0.3), indicative of smaller variations relative to those identified between different lines
(but also perhaps limited by the smaller group sizes), metabolites varying with statistical relevance
(p-value < 0.05) in at least one of the models were identified and integrated for all samples (Figure S3).
Interestingly, in 59-2-HI tumours, both polar and lipidic extracts showed significant variations,
whereas in C7-2-HI tumours spectral changes were only clear for polar extracts.

For 59-2-HI tumours, tumour A was distinguished from tumours B and C by higher levels of
alanine (p-value 6.6× 10−3) and proline (p-value 0.042) (and of a set of 4 unassigned aliphatic resonances,
p-values 0.010–0.042); the profiles of tumours B and C were very similar, except for lower levels of
ethanolamine in B, compared to the remaining tumours (Figure S3). Tumour A was also distinguished
by relatively lower values of oleic, linoleic and arachidonic acids, as well as triglycerides; indeed,
a lower average unsaturation degree was found for tumour A, along with a qualitative tendency for
shorter chain lengths. C7-2-HI tumours also showed changes in alanine and proline (relative lower
levels for tumour F, similarly to tumour A in the 59-2-HI family), this time accompanied by higher
levels of aspartate, glutamate and glutamine, lower levels of lactate and PC, and higher levels of
glucose. A set of unassigned resonances also contributed to distinguishing tumours E and F, from D,
with a tendency for higher intensities of aliphatic resonances at δ 1.29, 2.20 and 2.68. Although no
significant changes were picked up in lipophilic compounds for C7-2-HI tumours, tumour F showed a
higher average polyunsaturation FA degree.

3.4. Intra-Tumoural Metabolic Differences

Intra-tumour metabolic heterogeneity was evaluated mainly by careful and close inspection of
the NMR spectra of tumour sections and, also by considering the metabolites identified in Figure S3
as varying within each tumour (i.e., between lines corresponding to the different sections of each
tumour). This enabled an overall list of varying identified metabolites (and unassigned resonances) for
which the values of relative standard deviation (RSD) of intra-tumour variation could be calculated
(Figure 4). Results indicated that, compared to C7-2-HI tumours, 59-2-HI tumours exhibited (i) higher
intra-tumoural variation in asparagine, succinate, GPC and PC (and unassigned singlets at δ 1.30 and
2.89); and (ii) lower variability in histidine, uracil, hypoxanthine and adenosine/inosine, as well as in
free cholesterol, oleic, linoleic and arachidonic acids. In addition, some metabolites were seen to vary
significantly in most tumours, irrespective of the tumour line considered, namely formate, glucose,
s-inositol, acetone, acetate and TGs.
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Figure 4. Heatmaps representing the % of relative standard deviation (RSD) of metabolites observed to
vary most at the intra-tumour level. Only cases for which RSD > 20% for, at least, one of the tumours are
illustrated, for (a) polar and (b) lipophilic extracts. 3-letter code used for amino acids; AA, arachidonic
acid; DHA, docosahexaenoic acid; GPC, glycerophosphocholine; LA, linoleic acid; PC, phosphocholine;
PtdEtn, phosphatidylethanolamine; RSD, relative standard deviation; Uδ/multiplicity: unassigned signal.

4. Discussion

In this study, we used two mammary ductal adenocarcinoma tumour lines that express similar
levels of ER and PR but have different metastatic potential [32,33]. Both 59-2-HI and C7-2-HI
tumour lines are invasive ductal carcinomas, but only C7-2-HI spreads to axillary lymph nodes
and lungs. This study aimed to investigate if different metabolic profiles can be associated to
different metastatic potential and which metabolites are more prone to vary between and within
tumours, for each line. As expected, profile differences were of larger magnitude between tumours of
different lines, compared to inter-tumour variability within each line and intra-tumoural variability.
The metabolite changes identified in the two tumour lines and their putative association to specific
biochemical pathways are depicted in Figure 5. The important distinguishing features seem to impact
mainly on glucose metabolism, nucleoside metabolism and lipid metabolism, possibly also involving
antioxidant mechanisms.
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bold correspond to those the levels of which were observed to change between the two lines (in the case of plasmalogens, the arrows in brackets indicate weak
tendencies). AMP, adenosine monophosphate; CDP, cytidine diphosphate; CoA, coenzyme A; DAG, diacylglycerol; DHAP, dihydroxyacetone phosphate; FA, fatty
acid; GAP, glyceraldehyde 3-phosphate; GPC, glycerophosphocholine; IMP, inosine monofosfato; PC, phosphocholine; PRPP, phosphoribosyl pyrophosphate;
PtdCho, phosphatidylcholine; PtdEtn, phosphatidylethanolamine; PtdIno, phosphatidylinositol; PtdSer, phosphatidylserine; TGs, triglycerides; THF, tetrahydrofolate;
UMP, uridine monophosphate.



Biomolecules 2020, 10, 1242 13 of 19

Regarding glucose metabolism, enhanced levels of pyruvate and TCA intermediates were
noted in 59-2-HI tumours. Higher pyruvate levels are usually indicative of higher glycolytic rates;
however, no changes were observed in lactate or glucose levels when compared to C7-2-HI. Thus,
in non-metastatic 5959-2-HI tumours, the higher consumption of alanine may explain the enhanced
pyruvate levels. Moreover, in -2-HI tumours, the clear depletion of anaplerotic amino acids, suggests
their feeding into the TCA cycle. In addition, accumulation of intermediates citrate, fumarate and
succinate may be an indication of slower TCA rates, as proposed previously in studies of the 67NR
non-metastatic breast cancer cell line [57]. Citrate inhibits phosphofructokinase 1 (PFK1), pyruvate
kinase (PK), pyruvate dehydrogenase (PDH) and succinate dehydrogenase (SDH). Therefore, the
higher citrate levels in 59-2-HI tumours would inhibit pathways producing ATP [58] and thus reduce
glycolysis. Consequently, compensation of pyruvate levels would occur through alanine consumption,
followed by pyruvate accumulation because of PDH inhibition and enhancement of succinate and
fumarate levels due to SDH inhibition [59,60]. Phe and Tyr metabolism could also contribute to
fumarate levels (Figure 5). Furthermore, TCA retardation would result in slower NADH biosynthesis
to reduce mitochondrial transport chain and ATP biosynthesis, the opposite observations being
naturally applicable to metastatic C7-2-HI tumours. Notably, detached metastatic ovarian carcinoma
cells overcome reduced glucose internalisation by elevating pyruvate intake, but also ATP synthesis
and oxygen consumption [61], and it has recently been shown, at the transcriptomic level, that breast
cancer micrometastases shift their metabolism to enhance mitochondrial oxidative phosphorylation
during seeding [62].

Glutamate was the only detected amino acid observed to increase in 59-2-HI tumours. This can
result from reduced glutamate dehydrogenase (GDH) activity and, since glutamine is not fed into the
TCA cycle, such observation is consistent with slower TCA rate. GDH is activated by mTORC1 [63]
and, given that in 59-2-HI there is a reduction of amino acids, it is likely that these tumours have
lower mTORC1 pathway activation, compared to C7-2HI [64]. Reduced overall amino acids, including
branched-chain amino acids (BCAA), and both essential and non-essential amino acids, may thus
reflect anaplerotic consumption to feed the TCA cycle, as mentioned above. Moreover, the low levels
of all three BCAAs may be due to a decrease in BCAA transaminase 1 (BCAT1) expression/activity,
consistently, again, with lower mTORC1 activation in 59-2-HI tumours [65]. On the contrary, in C7-2-HI
tumours, glutamate reduction may be related to glutamine feeding into the TCA cycle to promote
oxidative phosphorylation and ATP biosynthesis, as well as with enhanced expression of glutamine
synthetase (GS), to maintain a high glutamine pool for pyrimidine synthesis as observed in other
tumours [66]. We hypothesise that this occurs in C7-2-HI tumours, consistently with the observed
higher uridine levels. Indeed, luminal BC cells exhibit higher GS expression than basal-like BC
cells, which supports the capacity of the tumour lines studied here (luminal-like) to induce GS
expression [67]. In addition, C7-2-HI tumours may also import glutamine through solute carrier
(SLC) transporters, some of which are positively regulated by MYC, whose signalling is enhanced in
metastatic tumours [64].

In terms of choline compounds, the profile of the two lines was clearly distinct, with average
lower PC/GPC ratios for 59-2-HI tumours, compared to C7-2-HI, indicating a clear shift in membrane
phospholipids metabolism. Since 59-2-HI tumours have higher free choline levels and reduced PC
levels, it is suggested that, in these tumours, choline kinase (CHK) activity may be reduced. However,
enhanced GPC may possibly be related to higher phospholipase A2 (PLA2) and lyso-PLA1 in 59-2-HI,
compared to C7-2-HI tumours, in an attempt to produce free fatty acids to compensate for lower TCA
rate through β-oxidation. This would also explain the higher choline levels [68]. Other aspects related
to lipid metabolism include higher levels of sphingomyelin in 59-2-HI tumours. Sphingomyelin is
a precursor of ceramide, sphingosine-1-P and gangliosides. Deregulation in sphingomyelin levels
can potentially impact on a variety of processes, including apoptosis, proliferation, inflammation and
metastasis [69]. However, at this stage, it is not possible to advance any further details on the specific
reasons for sphingomyelin changes.
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Interestingly, the two lines did not show any significant differences in global levels of fatty acids
(FA), or FA average unsaturation degree and chain length, which probably means that any possible
changes in the relative amounts of FA-containing families of compounds (expected when comparing
metastatic with non-metastatic cells) may, in this case, not impact significantly on the nature of the
composing FAs detected herein. Other metabolite changes are seen to distinguish 59-2-HI tumours from
C7-2-HI, namely lower levels of s- and m-inositols (possible relation to local osmotic regulation [70]
or synthesis of inositides with signalling roles in the cell [71]) and acetone, as well as higher creatine
(energy metabolism) and hypoxanthine (antioxidant capacity) levels.

As expected, differences between tumours from the same line and within tumour sections were of
lesser magnitude, compared to inter-tumour differences between lines. A distinctive feature was the
fact that 59-2-HI tumours differed importantly in oleic, linoleic and arachidonic acids and TG levels,
as well as in average FA unsaturation degree and chain length; indeed, C7-2-HI tumours did not differ
significantly in any detectable lipid moiety, only a weak variation in polyunsaturation degree having
been noted. In 59-2-HI tumours, lower levels of FAs were accompanied by higher alanine and proline
levels and changes in ethanolamine levels. Since energy requirements are variable within tumours
because of differential proliferation, angiogenesis and microenvironment crosstalk, the lipid differences
noted may reflect the higher dependence of 59-2-HI tumours on lipid catabolism to support lower TCA
rates. Interestingly, C7-2-HI tumours exhibited a more variable polar composition, where tumours
with lower levels of alanine and proline also showed higher levels of aspartate, glutamate, glutamine
and glucose, and lower levels of PC and lactate, thus suggesting an important variation in glycolytic
and fermentative rates between C7-2-HI tumours.

The magnitude of intra-tumour metabolic heterogeneity was comparable between the two tumour
lines, although partially based in distinct metabolites. Large intra-tumour variations common to the
two lines comprised changes in formate, glucose, s-inositol, acetone, acetate and TGs (although no
clear correlation was noted between these variations, they may reflect an interplay between glucose
levels and the extension of ketone body synthesis). However, 59-2-HI tumours also showed distinct
intra-tumoural metabolic patterns, compared to C7-2-HI, namely (1) larger variations in asparagine,
succinate, GPC and PC (TCA cycle activity/anaplerosis and phospholipid metabolism) and (2) lower
variations in histidine, uracil, hypoxanthine, adenosine/inosine (products of nucleotide degradation)
and free cholesterol and FAs (lipid degradation). We suggest that metastatic HI tumours may be
characterised by less changes in TCA and phospholipid metabolism and a different pattern comprising
products of nucleotide and cholesterol and FA metabolism.

5. Conclusions

This work presents, for the first time to our knowledge, an NMR metabolomics comparison of
two mammary carcinoma tumour lines of different metastatic characteristics and, hence, prognostics.
We have established a metabolic signature that strongly distinguishes the 59-2-HI (non-metastatic)
and C7-2-HI (metastatic) lines, with basis on several features of glucose and amino acid metabolism,
choline compounds profile, nucleotide metabolism and lipid metabolism. Putative interpretation of
metabolomic results suggest that, compared to non-metastatic tumours, metastatic tumours seem to be
characterised by relatively enhanced glycolysis and TCA activity, possibly resulting in faster NADH
production and, hence, higher mitochondrial transport chain activity and ATP synthesis, along with a
lesser need for lipids β-oxidation. Our results are also consistent with metastatic tumours showing
glutamate depletion, all the above changes being consistent with enhanced mTORC1 activity.

Within each tumour line, metabolic profiles differed significantly between tumours, the metastatic
C7-2-HI tumours exhibiting more marked changes in polar compounds profile, suggesting differences
in glycolytic capacity between tumours. Finally, intra-tumoural heterogeneity indicated that
metastatic C7-2-HI tumours showed less changes in TCA and phospholipid metabolism and more
marked variations related to nucleotide and cholesterol/FA metabolism, compared to non-metastatic
tumours. It is clear that future studies are required in order to demonstrate/discard the putative
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hypotheses advanced here, however, this work demonstrates the valuable contribution of untargeted
NMR metabolomics to help describe tumour metabolism at different levels, thus opening enticing
opportunities to find metabolic markers of metastatic dissemination in endocrine BC.
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characteristics for tumours of 59-2-HI and C7-2-HI lines. Table S1: 500 MHz 1H-NMR assignment of metabolites
present in MPA-induced hormone-independent breast tumours.
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