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Square integrable representations of reductive Lie groups
with admissible restriction to SLy(R)

Michel Duflo, Esther Galina, Jorge A. Vargas*

Abstract. In this note we determine the irreducible square integrable rep-
resentations of a reductive connected Lie group which admit an H— admissible
restriction to a subgroup H locally isomorphic to SLs(R). We show that such
a representation is holomorphic and we determine the essentially unique H with
this property as well as multiplicity formulae.
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1. Introduction

Let G be a connected reductive Lie group in Harish-Chandra class. Hereafter,
we suppose G has compact center and we assume G has a square integrable
irreducible unitary representation, or, equivalently, according to Harish-Chandra
[HCDS2|, we assume that G has a compact Cartan subgroup.

From now on, in this paper, “square integrable representation” will mean
“square integrable irreducible unitary representation”, and we consider only sepa-
rable Hilbert spaces.

Let H < G be a closed subgroup. If 7 is a unitary representation of G, we
denote by resy(m) the representation of H obtained by restriction. Recall [Kbl]
that a unitary representation o of H is said to be admissible if it is a Hilbertian
direct sum of irreducible representations of H occurring with finite multiplicities.
If resy () is admissible, we say that 7 is H-admissible. Among the many problems
that may be formulated about a square integrable representation 7 of G, the
question of when it is H -admissible has attracted a lot of interest (see e.g. [Kbl],
[Kb2], [Kb4], [Kb5], [Kb6],[DV]), a solution, when (G, H) is a symmetric pair has
been obtained in [GW],[KO1],[KO2].

In this note we determine the pairs (7, H) consisting of a square integrable
representation 7w of G, and of a connected, closed subgroup H locally isomorphic
to SLy(R) such that 7 is H-admissible.

Definition 1.7 establishes what we mean by “holomorphic square integrable
representation” of G. One of our main results is:

*Partially supported by CONICET, SECYT-UNC (Argentina).
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Theorem 1.1. Let 7 be a square integrable representation of G, and H a
connected closed subgroup locally isomorphic to SLs(R).

1) Assume that 7 is H-admissible. Then 7 is holomorphic.

2) Assume that 7 is holomorphic. Then there is an H as above such that
m is H-admissible, and all such H are conjugate by inner automorphisms of G.

Note that the conjugacy class of H obtained in the second part of the
Theorem depends on 7. Let us comment on that dependence.

We write a := sl3(R). We choose a connected Lie group A with Lie algebra
a, with finite center, and such that any morphism ¢ : a — g integrates to a
morphism ¢ : A — G. In ac = sl3(C) we consider the basis {E, F, Z} with

1747 1 1/ —i 1 0 4
E:§<1—¢)’F:§(1 i)’Z:(—iO)' (1.1)
The brackets are
|E,F| =7, |Z,E|=2FE, [Z,F]=—2F. (1.2)

We denote by K4 < A the one-dimensional torus with Lie algebra €, :=
RiZ. Let x be a character of K. If dx(Z) = r with r € R, we write y := x,.
This identifies the set of characters with a discrete subgroup A4 of R which
contains 27 .

Let 7 be a unitary representation of K, in a Hilbert space V. It is the
Hilbertian direct sum of the weight spaces V., in which K4 acts by the character
Xr. We write A4 = A4 for the support of 7, that is the set of r such that V,. # {0}.

Suppose that o is a square integrable representation of A in a Hilbert space
V. We write AZ? for the support as a K 4-representation. Then it is well known
(see [La] page 123, Theorem 8) that one of two following statements holds:

Proposition 1.2. 1. There exists r > 1 such that A2 = r+2N (in this case
we say that V' has a lowest weight, and that it is E-holomorphic)

2. There exists r < —1 such that A% = 7 — 2N (in this case we say that V has
a highest weight, and that it is F'-holomorphic)

We consider a morphism ¢ : A — G. If 7 is a representation of G, then
we write resy(m) := m o ¢ for the corresponding representation of A. We say that
two such morphisms are conjugate if they are conjugate by inner automorphisms
of the target group G. Here is a small, but useful, complement to the second part
of Theorem 1.1

Theorem 1.3. Let m be a holomorphic square integrable representation of G.
1) There exists a morphism ¢ : A — G such that res, () is admissible.
2) Let ¢ : A — G be a morphism such that res,(7) is admissible. Then all
irreducible factors occurring in resy(m) are of the same type : more precisely, they
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are all E-holomorphic square integrable representations, or all F'-holomorphic
square integrable representations of A.

3) There exists a morphism ¢ : A — G such that res,(m) is admissible
and such that all irreducible factors occurring in resy(m) are E-holomorphic. Two
such morphisms are conjugate.

Remark 1.4. Consider the external x automorphism of A whose image in SLo(R)

1 . . .
1o ) If 0 is a E-holomorphic representation, then ook
is a F'-holomorphic representation. This is the reason why it is more precise to
consider morphisms ¢ : A — G than the images ¢(A) < G.

is the conjugacy by ( 0

Since G has compact center, holomorphic square integrable representations
exist exactly when the Lie algebra g of G is a direct sum of one dimensional ideals,
and of simple ideals such that the non compact simple ones give rise to irreducible
Hermitian symmetric space. Index these non compact simple ideals as g, where
u runs in a set with N elements.

The holomorphic square integrable representations of G are assembled in
2N families (in sloppy terms, deciding what is holomorphic or anti-holomorphic on
each simple factor g, ). In Theorem 1.3, the conjugacy class of ¢ depends exactly
on the family to which 7 belongs.

Corollary 1.5. Let the notations be as in Theorem 1.3 part 3. The number
of conjugacy classes of morphism ¢ : A — G obtained when considering all
holomorphic 7 is equal to 2V.

We prove in fact a Theorem more general than the first part of Theorem
1.1. This generalization makes clear what is involved.

Theorem 1.6. Let 7 be a square integrable representations of G, and H a con-
nected closed reductive subgroup with commutative maximal compact subgroups.
Assume that 7 is H-admissible. Then 7 is holomorphic.

Our next result deals with the description of the conjugacy class of mor-
phisms ¢ : A — G occurring in the third part of Theorem 1.3. For this, we need
more notations.

We fix a maximal compact subgroup K < G, and a Cartan subgroup
T < K. Our assumption on G says that T' is a Cartan subgroup of G.

The Lie algebra of a Lie group is denoted by the corresponding lowercase
Fraktur font and the complexification of a real Lie algebra, or a vector space, is
denoted by adding the subscript C.

Denote by ®(g,t) (resp. ®(¢,t)) the root system of t¢ in gc (resp. t¢ in
tc). We write also @ := ®(g,t) and ¢, := ®(¢,t). The set of non compact roots
is defined by ®,, := &\ $.. We write gc = c @ pc for the Cartan decomposition
corresponding to the pair (g, K).

Let v € ®. We denote by Z, € it the corresponding coroot, and g, < gc
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the corresponding root space. For v € ®, we have g, < £, and for v € ®,, we
have g, < pc

Let € ®,. We choose a morphism

b5ia—g (1.3)
such that its complex extension satisfies
¢s(E) € gg, 9p(F) € gp. (1.4)

Note that this implies ¢3(Z) = Zs, and note that two such morphisms are
conjugate by an inner automorphism.

Let S :={f1,...,0s} = @, aset of non compact roots consisting of strongly
orthogonal roots (that is, for all ¢ and j, §; = f; is not a root). Then we can
consider the diagonal morphism

ps:a—g (1.5)

defined for x € a by
¢s(x) = ¢p, (x) + -+ + Pp, (2). (1.6)

Recall that a system of positive roots W < & of is said to be holomorphic

if the sum « + [ is not a root for every pair o, 5 e ¥, ;=¥ n P,,.
Definition 1.7. ¥ < & a positive system. We say that a square integrable
representation of G is W-holomorphic if its underlying Harish-Chandra module
is a lowest weight module with respect to W. We say that a square integrable
representation of G is holomorphic if it is W-holomorphic for some W.

If a square integrable representation is W-holomorphic, then ¥ is holo-
morphic. Conversely, when W is holomorphic, Harish-Chandra determined which
lowest weight modules correspond to square integrable representations (see the
fundamental paper of Harish-Chandra [HC IV], which deals more generally with
irreducible unitary representations not necessarily square integrable).

Consider a holomorphic system of positive roots ¥ < ®. Harish-Chandra
described in [HC VI| a particular maximal set Spo = {f1,...,8:} = ¥, of
strongly orthogonal roots in W,,. Henceforth, we refer to Sy as Harish-Chandra
set. We denote by ¢% : a — g the corresponding morphism. We get the following
complement to Theorem 1.3.

Theorem 1.8. Let ¥ < ® be a holomorphic system of positive roots. We
set ¢ := ¢F~. Let ™ be a W-holomorphic square integrable representation of G.
Then, the representation resy(m) of A is admissible, and all irreducible factors
occurring in res,(m) are E-holomorphic square integrable representations of A.

This note is organized as follows. In this introduction (Section 1) we stated
our main results except those on multiplicities (which are presented in Section 5)
and the explicit description of the subgroups involved in Theorem 1.8 (which are
presented in Section 4). In Section 2 and 3 we present proofs of the Theorems
stated in the introduction.
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2. Proof of Theorem 1.6

2.1. Generalities about restrictions. In this subsection we recall for reference
some mostly well known facts relative to restrictions of unitary representations,
which do not depend on the special assumption of Theorem 1.6.

We consider a separable Lie group G’, a closed subgroup H < G’, an
unitary representation 7 of G’ in a separable Hilbert space, and o = resy(7) its
restriction to H. For a proof of the following statements, see [Kb1] Theorem 1.2,
[Kb3] Cor. 8.7. respectively.

Proposition 2.1.  Suppose that ¢ is admissible. Then 7 is admissible.

Proposition 2.2.  Suppose that 7 is square integrable. Let ¢ an irreducible
sub-representation of o. Then ¢ is square integrable.

We consider now the case of a connected reductive group H with compact
center, and of a maximal compact subgroup L < H. There are many interesting
examples of admissible unitary representations of H which are L admissible.

Let us recall a fundamental result of Harish-Chandra. For a proof see [Wa|
Theorem 4.5.2.11 and note on page 319.

Proposition 2.3. Let ¢ be a finite direct sum of irreducible unitary represen-
tations of H. Then o is L-admissible.

In this proposition, it is not possible to replace the word “finite ” by
“admissible”. For instance, if H is not compact, an infinite direct sum of distinct
spherical irreducible unitary representations of H is H-admissible, but the trivial
representation of L occurs with infinite multiplicity.

However, this is true in a particular case which is relevant for this note.

Proposition 2.4. Let o be an admissible Hilbertian direct sum of square
integrable representations of H. Then o is L-admissible.

Proof. We write

o=®m() ¢ (2.1)
where the ¢ are square integrable distinct representations of H, and the m(&) are
positive integers.

Since L is compact, the representation resy (o) is a Hilbertian direct sum
of irreducible representations of L. We have to prove that the multiplicities are
finite. We argue by contradiction. So let us suppose that 7 is an irreducible
representation of L occurring with infinite multiplicity in resy (7). By proposition
2.3, the multiplicity of 7 in any £ is finite; thus, there is an infinite number of ¢
such that 7 occurs in &.

However, this contradicts another Theorem of Harish-Chandra, [HCDS2]
Lemma 70, which says that the number of square integrable representations &
such that 7 occurs in £ is finite. [ |
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We come back to our reductive connected Lie group G'. Let H < G be a
closed connected reductive subgroup. We fix a maximal compact subgroup L < H.

Corollary 2.5. Suppose that 7 is a square integrable representation of G.
Suppose that 7 is H-admissible. Then it is L-admissible.

Proof. Proposition 2.2 says that we can apply Proposition 2.4. |

This result is an important ingredient of our paper [DV]. We provided its
simple proof, since it was not included in [DV].

It is an interesting unsolved problem (considered by Kobayashi [Kb5])
whether Corollary 2.5 remains true when 7 is assumed only to be irreducible
unitary. To our knowledge, the answer is not known even when H = SLy(R). On
this problem, see also [ZL].

Corollary 2.6. Suppose that 7 is a square integrable representation of G.
Suppose that resy(7) is admissible. Then the centralizer of L in G is compact.

Proof. Let B « G be the centralizer of L, B its connected component, and
consider the connected reductive group D := BL. Note that since B /B is finite,
it is sufficient to prove that B is compact.

By Corollary 2.5, resy () is admissible, and, by 2.1, resp(7) is admissible.
We pick an irreducible representation 7 of D which occurs in resp(w). It is square
integrable by Proposition 2.2. Moreover, resy(7) is admissible.

Assume that B is not compact. We choose a simple non compact ideal
b’ < b of b, and denote by 0 the centralizer of b’ in 0. Denote by B’ and
D’ the corresponding connected groups. The direct product B’ x D’ is a finite
covering of D, and we have L — D’. The representation 7 is the Hilbertian
tensor product 7 = 71 ® 75 where 71 is a square integrable representation of B’
and 7 a square integrable representation of D’. Thus resp/(7) is a Hilbertian
direct sum of representations isomorphic to 75, and the multiplicity is finite (i.e.
resp(7) is admissible ) if and only if 7 is finite dimensional. However, square
integrable representations of connected real non compact reductive groups are
infinite dimensional. So resp/(7) is not admissible, and so resz,(7) is not admissible.
This is a contradiction, and so, B is compact. |

2.2. Restriction to T'.

In this subsection we follow the notation of Section 1 and we consider a
particular case of Theorem 1.6. We need it in the proof of Theorem 1.6, and
moreover it deserves particular attention.

Theorem 2.7. Let 7 be a square integrable representations of G. Assume that
7w is T'-admissible. Then 7 is holomorphic.

The proof follows the line of arguments given in [Va], which uses ideas from
[Vo]. We give the details for completeness. Before going to the proof, we need
some more notations.
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We denote by P < it* the lattice of weights (the differential of characters
of T). For A\ € P we denote by y, or e* the corresponding character of T'. We
denote by R < P the subgroup generated by ®(g,t), and by Ry = R the subgroup
generated by O (¢ 1).

Let Wg be the Weyl group of K, that is the normalizer of 7' in K (or
in G, it is the same) divided by T'. We choose a positive system &} < O(¢,¢).
We denote by P* < P the set of dominant weights, and for p € P*, by 7, the
irreducible representation of K with highest root .

Let m be an unitary representation of G' in a Hilbert space V. Since K
is compact, we consider the Hilbertian decomposition of resg(7) into its isotypic
components. We denote by P+ < P* the support of the restriction of 7 to K,
that is the set of y e P* such that 7, occurs in 7. We have

V= é\')uep; ‘/7—M (22)

where V7, is a non zero K-invariant closed subspace in which K acts as a (possibly
infinite) multiple of 7,.

In a similar manner, considering the restriction to T', we write P and P,
for the support of the restriction of = and 7, to T'. For A € P, we write V), < V
the corresponding weight space. We have the corresponding Hilbertian direct sums
(the second one being also the algebraic direct sum since P;, is a finite set).

V = ®rer Vi (2.3)

Vi, = ®ier,, Vo, - (2.4)
We obtain

Pr= | P (2.5)

nePyt

The set P, is well known: We denote by conv(S) the convex hull of a subset
S < it*. We have
P, = conv(Wg - i) n (p + Ry). (2.6)

We denote by Vi _y the algebraic sum
Vi = ®Oueps Vo (2.7)

this is the space of K -finite vectors of V.

We assume now that 7 is irreducible. Since it is K -admissible each V; is
finite dimensional. The space Vk_; is contained in the space of smooth vectors
of m, and Vk_¢ is stable under the resulting representation of gc in Vx_y. We
denote by mg_; the resulting representation of gc in Vx_¢. The space Vi_¢,
equipped with its gc and K actions is called the Harish-Chandra module of .
Harish-Chandra proved that Vix_; is an irreducible gc-module.

Let v be a representation of gc in some vector space W, and b < gc¢
some complex Lie subalgebra. We say that v is b-admissible if W is an algebraic
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direct sum of simple b-modules occurring with finite multiplicities. The subject
of irreducible b-admissible modules is a very lively subject.

Suppose that H < G is a closed subgroup, and v = wx_; for some
irreducible unitary representation of G. Except for results in [Kb2],[Kb3],[Kb4],
[DV], it is difficult to compare hc-admissibility of mx_; and H-admissibility of
7w, unless H = L. However, if L € K we have the following simple well known
facts.

Proposition 2.8. Let 7 be an irreducible unitary representation of G. Let
L < K be a closed subgroup.

1) m is L-admissible if and only if 7x_f is [c-admissible.

2) 7 is L-admissible if and only if, for every irreducible unitary represen-
tation £ of L, the number of € P such that £ occurs in 7, is finite.

Proof of Theorem 2.7. For the underlying Harish-Chandra module Vi _¢ of
K -finite vectors in V, and v := mx_; the corresponding representation of gc in
V. It follows from Proposition 2.8 that v is tc-admissible, we have

Vik—f = ®rer, (Vk_f)x, (2.8)

where each weight space (Vkx_z)y = V) is finite dimensional. We must prove that
Vik—y is a lowest weight module with respect to some positive holomorphic system
Ucd.

For a noncompact root 8 € ®,, we recall the group homomorphism ¢z :
A — G as the lift of (1.3). We denote by Hz < G its image, and by Hsz < G the
group THz < G. We write Eg := ¢p(E) € pc, Fp:= ¢ps(F) € pc.

By Proposition 2.1, the restriction of 7 to H 5 is admissible. According to
Proposition 2.2, we write

V=8V, (2.9)

where o is a square integrable representation of H 3 occurring in V', and where
the action of Hg in V is a finite positive multiple of o.

Consider \ € P,. We get
VA\=8®V,n V. (2.10)

This implies that the number of ¢ such that A occurs in ¢ is finite, and we
have
V)\ =& VU M V)\. (211)

Consider a square integrable representation o of H, 3 such that A occurs in
o. Let W, be the space of T'-finite vectors of the representation o. We repeat with
more details what follows from the properties of square integrable representations
of A stated in Proposition 1.2.

e W, is a lowest weight representation, with lowest weight A,. Then the
support P, is equal to {\, + kf |k € N}, the weight spaces of W, are one-
dimensional, the action of E3 in W, is injective, and the action of Fj in W,
is locally nilpotent. Moreover, we have:

1< )\U<Zg) < )\(Zg) (212)
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e W, is a highest weight representation, with highest weight \,. Then the
support P, is equal to {\, — k5| k € N}, the weight spaces of W, are one-
dimensional, the action of Fj in W, is injective, and the action of Eg in W,
is locally nilpotent. Moreover, we have :

—1> )\G<Zg) = )\(ZB> (213)

Following [Vo], for /5 € ®,, we consider the space Vi_(5) < Vk_; of locally
Fg-nilpotent vectors. It is an invariant gc-subspace. So, one of the two following
statements holds:

o Vik_y(B) =0 and Vi_;(—8,) = Vk—y,
L4 VK_f(ﬂ) = VK_f and VK_f(—ﬁ) =0.

We denote by W, the set of 8 € @, such that the action of Fj is locally nilpotent
in U. Let A e P,. By (2.12), we have

AZs) > 1 (2.14)

for all g € ¥,,. So we can choose a positive system ¥ < & such that ¥ nd,, = V,,.
Since Vi _y is also a K-module, the set V,, is invariant by Wy . This implies that
U is holomorphic. Thus, for § and ' in U,,, we have [Fg, Fg| = 0.

Let (Vk—f)min © Vk_; be the space of elements u € Vix_y such that
Fgu = 0 for all 8 € ¥,,. It is a nonzero vector subspace, which is invariant
by €c. So we may find in (Vk_f)min & non zero vector u such that X_g u = 0
for all 8 € W, and X_pg € £c a root vector. So u is a lowest weight vector for
Vik_s with respect to the holomorphic positive system of roots ¥ In [HC IV] is
defined holomorphic discrete series representation to be a lowest weight for some
holomorphic system and unitary representation. ]

Here are some useful complements to Theorem 2.7. We compute the support
P, of the representation occurring in Theorem 2.7. For a subset S < &, we write
N S < R for the semi-group generated by S'.

Theorem 2.9. Let ¥ < & be a holomorphic system of positive roots. Let
(m, V) be a square integrable representation such that the Harish-Chandra module
Vik—¢ has a non zero lowest weight vector u € Vix_; with respect to ¥. Up to a
scalar, u is unique. We denote by A\, € P, its weight.

1) For all g€ ¥, and all A\ € P, we have

A(Zs) > 1 (2.15)

2) Let (Vk—f)min < Vik—s be the space of elements u € Vi_; such that
Fgu = 0 for all 8 € ¥,. Then it is an irreducible £c-module with lowest weight
Ar. We denote by Py i © Py the set of weights of (Vik_f)min -

3) The set Pr is computed in terms of (Vk_f)min by the formula

Pr= |J u+NO, (2.16)

MEPﬂ,min
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Proof. The uniqueness of u is a general fact about irreducible lowest weights
gc-modules.

Part 1) In [HC IV] Theorem 4 and Corollary page 776 it is shown that the
restriction of m to T  is an admissible representation, now, the argument is just a
repetition of (2.14).

Part 2) follows from the fact that any lowest weight (with respect to W¥,)
in (Vk_f)min is a lowest weight (with respect to W) in Vi_r. So it is unique.

Consider part 3). The inclusion

P.e ) w+Ny, (2.17)

,u‘epﬁ,min

follows in a standard way from the fact that u is a lowest weight vector. The
equality follows from the following assertion :

Let A€ P;. Then A + NV, c P,.

This assertion follows immediately from the fact (recall the definition of ¥,
in the proof of Theorem 2.7) that Ejg acts freely in Vi_; for all 5 e ¥,,. [ |

Remark 2.10. 1) Much more is known about the holomorphic square integrable
representations. We just stated what we need below about the support, with its
simple proofs.

2) Unfortunately, we do not know simple statements analogous to (2.16) to
describe the set of representations of K, or more generally of a closed subgroup L
with T' < L < K, which occur in .

Let U < T a closed connected subgroup. We study the U-admissible square
integrable representations of G. Since such a representation is T-admissible, it
is one of the representations considered in Theorem 2.9. We use the notations of
Theorem 2.9. In the real vector space it* we consider the polyhedral cone R, W,
generated by ¥,,, and the orthogonal subspace ut of elements which are zero on
u.

Theorem 2.11. Let 7 be a W-holomorphic square integrable representation of
G and U < T a closed connected subgroup. The representation 7 is U-admissible
if and only if we have

R, W, nut = {0}. (2.18)

Proof. Consider u* and the projection p : it* — u* which is obtained by
restriction of linear forms from t to u. The kernel of p is ut. Let Py be the set
of differential of characters of U. It is equal to p(P), and ut n P is the group of
A € P such that the restriction of x, to U is trivial.

Let £ € Py. The space V¢ in which U acts by the character x. is the
Hilbertian direct sum of the spaces V) with A € P, and p(\) = £. Since the V)
are finite dimensional, we obtain the following assertion ;

The representation 7 is U-admissible if and only if, for every A € Py, the
number of X € P, with A — X € ul is finite.

Because of the description (2.17) of P,, we obtain the following assertion.
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The representation 7 is U-admissible if and only if, for every A € Py, the
number of X € ut " A\+NV,, is finite. It is a standard fact about convex cones that
this condition is independent of A € P, and that it is equivalent to the condition
stated in the Theorem. [ |

We use below a special case of this Theorem :

Corollary 2.12. Let m be a ¥-holomorphic square integrable representation of
G and U < T a closed connected one-dimensional subgroup. The representation
7 is U-admissible if and only if there exists Zy € iu such that 5(Zy) > 0 for all
Lew,.

Proof of Theorem 1.6. We use the notations of Theorem 1.6. Let U ¢ H
be a maximal compact subgroup. Replacing if necessary H by a conjugate, we
assume that U < T'. By Proposition 2.4, 7 is U-admissible. By Proposition 2.1,
7 is T-admissible. By Theorem 2.7, 7 is holomorphic. |

3. Proof of Theorem 1.3 and Theorem 1.8

We consider a holomorphic system ¥ < & and a ¥-holomorphic square integrable
representation 7 of G.

Proof of Theorem 1.3, part 2 and 3.  We consider a morphism ¢ : A — G.
By replacing ¢ by a conjugate, we may and do assume that we have Ey := ¢(E) €
pe, Fy = ¢(E) € pc and Z, := ¢(Z) € it. Let K, := ¢(Ky4). Then K, is a
closed connected one-dimensional subgroup of 7', and we have Z, € i€y.

We assume now that res, () is admissible. It follows from Corollary 2.12
that either 5(Z4) > 0 for all g € U,,, or B(Z,) < 0 for all € ¥,. Recall the
external automorphism x of A defined in remark 1.4. Replacing if necessary ¢ by
¢ o k, we may and do assume that we have

B(Zy) > 0 for all B e ¥, (3.1)

We denote by p¥ < pc the space spanned by the root spaces gz with
£ € V,. It is stable under the action of K¢, where K¢ is the analytic subgroup
of the adjoint group of g¢ with Lie algebra the image of £¢.

We write Ey = > 5.4 ep With well determined ey € gy. Since [Zy, Eg] =
2E,, we see that eg = 0 if 3(Z,) # 2. It follows from (3.1) that

E,ep”. (3.2)

It follows from e.g Proposition II1.8 in [HNO] that there exists a subset
S < S¥ o such that ¢ is conjugate to ¢g. So we may and do assume that ¢ = ¢g.

We now show that S = S¥.. Suppose that S # Sp,. Then there exists
B € ¥, which is strongly orthogonal to all 3; € S. It follows that the centralizer

of Z; in G contains the non compact group ¢z(A). This contradicts Corollary
2.6. n
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Proof of Theorem 1.3, part 1, and Theorem 1.8. Let the notations be as
above, and consider ¢ = ¢} and Z,. It follows from Corollary 2.12 that part 1
of Theorem 1.3 as well, as Theorem 1.8, follows from the following:
Claim : We have §(Zy) > 0 for all e U,.

In fact, let 8 € ¥,, since the system W is holomorphic, 8 + 3; never is a root.
Hence, for every j, we have 3(Zs;) = 0. Since all the roots in the Harish-Chandra
set Sk are long and that roots of distinct length which are orthogonal are strongly
orthogonal we have that (3 is not orthogonal to some root in Sj., otherwise S}
would not be maximal, which shows the claim. [ |

Remark 3.1. We recall the Hermitian symmetric space G/K is a tube domain if
it is biholomorphic to a tube domain. In [KrW] it is shown that G/K is a tube
domain if and only if the characteristic vector Zy for ¢ = ¢}, belongs to the
center of . We also set notation for the simple roots in W,

{aq,. .., ap} where oy, ...,y 1 € ®(€,t) and ay € D,,. (3.3)

We write highest root as [y = Zj cjo; with ¢; > 1 for all 7 and ¢, = 1. Let Z,
for ¢ = ¢}fo. We have ay(Zy) = 2 and «;(Z,) =0, forall 1 < j < —1,if and
only if G/K is a tube domain. Whenever, G/K is not a tube domain, we have
ay(Zy) = 1, and a(Z,) = 0 for all the compact simple roots but one for which
we have a(Zy) = 1. Indeed, for a holomorphic system it happens that for any X
in the center of £ we have S(X) = «a(X) for any g € ¥,,. Also, by construction,
By € She which yields 8y(Zy) = 2. Thus, if Z, belongs to the center of € we
have 3(Z,) = 2 for every root in W¥,,, which gives a;(Z,) = 0 for every compact
simple root. Certainly, the hypothesis «(Z;) = 0 for every compact simple root,
together with ¥ holomorphic yields Z, lies in the center of £ The hypothesis
ay(Zy) = 1, together with y(Zy) = 2, yields Z, is not in the center of £ which
is equivalent to G/K is not a tube domain. When «a,(Z,) = 1, since fu(Z,) = 2
and the multiplicity of a, in Sy is one, we obtain that «;(Z,) = 1 for exactly one
compact simple root and the root «; has multiplicity one in the maximal root.

4. Explicit examples

In this Section, for each Hermitian symmetric pair, we give the necessary data
in order to produce an explicit example of each triple {Z,, Ey4, Fy} for ¢ as
in Theorem 1.8. We also give the values «(Z,) for each simple root for the
holomorphic system W.

In [Oh] an explicit realization of each of the classical real Lie algebras we
are dealing is given as a subalgebra of a convenient su(a,b). These realizations
have the property that a compactly embedded Cartan subalgebra of the algebras
of our interest, consists of the totality of diagonal matrices in the subalgebra. For
each classical Lie algebra, we point out the algebra t¢, a holomorphic system ¥,
the Harish-Chandra set S§., the vector Z,, the weights ;(Z,),j = 0,...,¢, for
all o; as in (3.3), the weighted Vogan diagram that corresponds to the K¢-orbit
of E, (see [Gal]) and the signed Young diagram that corresponds to Ej.
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From the tables in [Dk1], we also present on exceptional Lie algebras the
Harish-Chandra set S and the weighted Vogan diagram associated to the orbit of
Ey.

AIIl, su(p,q), p<q.
In this case

tW{Dzwmmww%mww@H2m+Z@=@.

We set €;(D) = h;,6,(D) = k.. Then for a holomorphic system ¥ we choose
U, ={e —e€s|0—0j,r <s,i<j} ¥,={e—0;]1<i<pl<j<q}
The non compact simple root is a,, = €, — d;, and another simple root we need is

g = 0q—p — Og—pt1-
The Harish-Chandra set is
She = {e&r — g1 |1 <7 < p}.
The characteristic vector is
Zy = diag(1,...,1;0,...,0,—1,...,—1) where £1 repeats p times.

The weights w; = «;(Z4) are zero for roots other than a,, oy = 04—p — Og—pi1-
w, = 0,(Zy) = 1 and w, = ay(Zy) are equal one. Whence, the weighted Vogan
diagram for the orbit K¢Fy is

w1=0 0 0 wy=1 0 0 we=1 0 0 wprg—1=0

The signed Young diagram for Ejy is

+ | —

Here, there are p rows of length two and ¢ — p rows of length one.

AIIL, su(p,q),p = q-

twﬂDzﬁmmWW%m,w@yZ@+Z@:@.
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We set €;(D) = hj,0,(D) = k,, with 1 < j,7 <p. Then for a holomorphic system
¥ we choose

U, ={e —€,0,—0;|r<s,i<j} VU,={e—09;]1<1i7<p}

The non compact simple root is o, = €, — 1.
The Harish-Chandra set is

She ={& — g-ri1 |1 <7 < p}.
The characteristic vector is
Zy =diag(1,...,1;—1,...,—1) where £1 repeats p times

Thus, the weights are w; = «;(Z4) = 0 except for w, = a,(Z) = 2. So, its
weighted Vogan diagram is

O—O0 ~-O—e—0- - 0—=0
0 0 0 wp=2 0 0 0

The signed Young diagram for E4 has p rows of length two.

+ —
+ i
BDI, s0(2p+1,2),p > 1.
t(c = {D = diag(hl, .. .,hp, —hp, ey —hl,O,ZEl, —Il)}

We set €;(D) = hj,01(D) = x;. We fix the holomorphic system of positive
roots,

Ve={en,ateg|ll<k<pl<i<j<p} V,={0,0t¢|l<j<p}

The non compact simple root is a3 = d; — €.

The Harish-Chandra set is Spo = {01 + €1,0; — €1}

The characteristic vector is Zy = 2H;, = (0,...,0,2,—-2).

The weights of the weighted Vogan diagram are zero except the first one,

- O—rD0

—0—oO-
wi=2 0 0 0 0

The signed Young diagram for Ey4 has 2p rows of length one.
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BDI, s0(2p,2),p = 2.
This case is similar the previous one.

f(c = {D = diag(hl, ceey hp, —hp, ceey —hl, O, 1, —271)}.
We set €;(D) = h;, 61(D) = z1. The the holomorphic system we consider

Ue={etell<i<j<p} Upo={dte|[l<j<ph
The non compact simple root is a, = d; — €.
The Harish-Chandra set is S}Ijo = {01 +€1,01 —€1}.
The characteristic vector is Z, = 2Hs, = (0,...,0,2,—-2).
The weights of the weighted Vogan diagram are zero except the first one.

g

Il

N

=0

o0
N
o o

The signed Young diagram for E4 has 2p — 1 rows of length one.

__l’__

CI, sp(n,R).

tc = {D = diag(h1, ..., hn, —hp, ..., —h1)}.
We set €;(D) = hj, 1 <j <n. The holomorphic system we consider is
U.={e—¢|l<i<j<s<n} V,={e+e|l<k<r<n}

The non compact simple root is a,, = 2¢,.

The set Spo = {2€1,...,2€6,}.

The characteristic vector is Zy = (1,...,1,—1,...,—1).

The weights of the weighted Vogan diagram are zero except the last one,

Wy, = an(Zy) = 2.
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0 0 0 0 “w=2

The signed Young diagram for Ey4 has n rows of length two.

+_

DIII, so*(2p), p = 2k.
te = {D = diag(hy, ..., hy, —hp, .., —h1)}.
We set €;(D) = hj, 1 < j <p. The holomorphic system we consider is
Uo={e;—¢|l1<i<j<p} V,={e+e|l<s<r<p}

The non compact simple root is o, = €,-1 + €.
The Harish-Chandra set is S}ch ={€1 + €2,63+ €4,..., €1 + €2 }.
Characteristic vector is

Zy= > Hep ryeyy = (L. 1, =1, —1).

1<j<k

The weights w; = o;(Z4) are w, = 2,w; = 0 for j + p. So the weighted
Vogan diagram is the following.

w1=2
0 0 0 0
0

The signed Young diagram for E4 has 2k rows of length two.

_l’__

DIII, so*(2p), p =2k + 1.
This case is similar to the previous one. The difference is that the charac-
teristic vector is
Zy=(1,...,1,—-1,...,—-1,0).

Thus, the weights w,_1,w, are equal to (e,_1 + €,)(Zs) = 1 and the others are
Z€ro.
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Wp=

=0
=0
=0

wp,lzl

The signed Young diagram for Ey4 has 2k rows of length two.

+ | —

EIII, 86(,14) .

We follow the notation for the simple roots as set for Bourbaki. We fix as
non compact simple root «g. The Harish-Chandra set in this case is Sy, = {1 =
122321, By = 101111}.

From table X of [Dkl|, we extract that there is only one characteristic
vector Zy so that ay(Zy) > 0, and we obtain a direct verification of Zy = Z,. The
weighted Vogan diagram for the nilpotent orbit determined by E is

EVII, 27(_25).
We fix the holomorphic root system such that the non compact simple root
is a7. The Harish-Chandra set is

She = {B1 = 22343221, B, = 01122221, B3 = a7 = 00000001}

From table XIII of [Dk1], we read that the unique Kc-orbit in pc with
characteristic vector Zy so that ay(Zy) > 0 is for Z, = Z,. The weighted Vogan

diagram is
Io
O O O O L ]
0

S

0 0 0 0 wy=2

5. Multiplicities

In this Section we apply the formula for multiplicities obtained in [DV] to the
particular case of the pair (G, Hy) where Hy = ¢5(A) and S = S and a holo-
morphic square integrable representation. Henceforth, ¥ denotes a holomorphic
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system of positive roots for ®(g,t). To begin with we recall the necessary notation
to state the results. In the notation of [DV] the pair (G, H) for our case is (G, Hy).
The pair (K,L = Hn K) is (K,Hyn K), We have T'c K < G as before and
U=TnH=L=HynK=HynT =exp(RiZy), u=RiZ,, we denote by 3, =
the center of €. We define ¢ € u* by ¢(Z;) = 1. Thus ®(ho,u) = {+2¢}. Let
t, = % denote the centralizer of Z, in € and @, the root system for (&, t). Thus,

O, = {ae B(e,t) | alu) = 0}.

By Remark 3.1, if the Hermitian symmetric space G/K is a tube domain, then
Zy € 3, ©; = O(E,t) and the analytic subgroup of G with Lie algebra ¢, is
K, = K. If G/K is not a tube domain, Z, ¢ 3¢, then owing to «;(Z;) = 0 for all
compact simple roots but one, the semisimple factor of € has rank ¢ —2. The list
of the triples (g, ¢, ¢;) that corresponds to non-tube domains is:

g su(p,q), p <gq s0%(2(2k +1)) | es-19)
e su(p) + su(q) + 3e su(2k + 1) + 3¢ | 50(10) + 3¢
E | su(p) +su(qg—p) +sulp) +t| su(2k)+t 50(8) +t

The set of equivalence classes of holomorphic square integrable representa-
tions of G is parameterized by the set of A € it* so that A + p lifts to a character
of T', here p is equal to one half of the sum of the elements in ¥, and

(A,a)>0forallae ¥, and (A B) >0 forall eV nd,. (5.1)

The set of Harish-Chandra parameters which corresponds to the irreducible
square integrable representations of Hy is P := {np|n € Z ~ {0} }.

The set of Harish-Chandra parameters for a compact connected Lie group
R is equal to the set of strictly dominant integral weights for R, equivalently, the
set of Harish-Chandra parameters is equal to the set of infinitesimal character of
the set of irreducible representations of R. We denote the parametrization by
po (mf V.

Hereafter, (7, V\¥) denotes a holomorphic irreducible square integrable rep-
resentation. In Theorem 1.8 we pointed out the restriction resy,(my) of 7y to the
subgroup Hj is an Hy—admissible discretely decomposable representation of Hj.
For p e P, let (o, VHHO) denote the irreducible square integrable representation of
H, of Harish-Chandra parameter p. Let m(my,0,) = Hompy,(0,,m) denote the
multiplicity of o, in resy,(my). Therefore, we have a Hilbertian direct sum

resy, (my) = Z m(m,au)VuHO.( 1)

pueP

We write the restriction to K; of the lowest K-type w3, for (my, Vi) as

K K K K
ISk, (ﬂ-)\ern) = Z m<7r)\+pn77Tﬂj3+P3)Vﬂjj‘pa
1<j<s
where p,, is the half sum of the roots in ¥,, and p; is the half sum of the roots in
®, n V. Under the notation formulated from the beginning of this subsection we
have,
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Theorem 5.1. Let (7, V\¥) be a holomorphic discrete series representation.
Let Ho := ¢gu _(A). Then resp,(m,) is a Hilbertian direct sum of holomorphic
discrete series for Hy. The description of the elements in the formula () is:

(i) For pe P, m(my,0,) > 0 if and only if 1 belongs to the set
L +0;)(Zg) +n =11 <j<s,n =0}

(ii) The multiplicity m(my, o) is equal to

e o1\ (h+d—1
Z mﬂ/\ﬂw uﬁm Z c—1 d—1 ’

j?n
Mj(Z¢)+n:m

Here ¢ = [{f e W, | 5(Zy) = 1}] and d + 1 = [{B € ¥, [ 5(Z) = 2}|.

The proof of the Theorem will take up the rest of this Section. It requires
more notation. To start, we consider the restriction ¢, : t* — u* and the multiset
A(8/lu) := q,(V(E,t) N ;). So, we have

%} if G/K is a tube domain
A(E/lu) = e if G/K is not a tube domain 5.2
(/1,u) {@ ) G/ (5.2)
Here a = [{a e ¥, | qu(@)(Zy) = 1}| =  dim(K/K;). In fact, when G/K is a tube
domain then ¢Z, € 3, and the first claim is obvious. For G/K a non-tube domain

Remark 3.1 yields that a(Zy) = 1 or a(Z,) = 0 for a € ¥.. For w in the Weyl
group Wiy of K, we compute the multiset

SHo . — [qu(w¥,) U A(E/1,u)] ~ ®(ho, u).

Since, ¥ is holomorphic and w € Wy it follows that wW¥,, = ¥,,. Hence, Sfo does
not depend on w. We have,

wW(¥n) =1{p,- -, 0,20,...,20}. (5.3)
N~
c d+1

If G/K is a tube domain, then ¢ = 0 and d +1 = |V, |. Indeed, in Remark

3.1 we show (Z,;) = 2 for all non compact positive root. Therefore, from (5.2),
(5.3) and the previous computation, for a tube domain we obtain,

Sho — {2% .20} (5.4)

d

If G/K is not a tube domain the values of ¢ and d are in the following
table.

g | su(p.q),p<q|s0*(22k+1)) | eg_14
c (q—p)p 2k 8
d+ 1 2 K2k —1) )
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Hence,
Sgo = {@,,@,2@7,2@}UA(E/[,L[) (55)
—_— ———
c d
For v € it* (resp. v € iu*), §, denotes the Dirac distribution on it* (resp.

on u*) defined by v. Let (qu)«(d,) be the push-forward of §, from it* to iu*.
Thus, (qy)«(0,) = 6,. Let

o0 o0
Y = 2 5nu+%7 Ry = Z On-
n=0 n=0
For a strict finite set T = {11, ..., 14} < it* we define

Y1 = Yoy ¥ %Yy, = K Yy
veT

Here » means convolution of distributions. Let @;(A) := [],cpna, % Then, in

[DV] is shown the following equality of distributions on iu*,

Z m(mx, 0,)0, = Z e(w)@;(WA) g, (wn) * YgHo- (5.6)
ueP wGW‘g\WK

where €(w) is the sign of w. The validity of the above equality follows by Theorem
4 in [DV] because Condition (C) is satisfied. We now show Theorem 5.1 for G
so that G/K is a tube domain. For a holomorphic system ¥ we always have the
equality

@, (wA) = @ (W + pa)). (5.7)

Now & = £, hence we have wy(A) = dim V) =~ which is equal to the
dimension of lowest K-type of my. Then, by (5.6), (5.4) together and the above
consideration gives

) U |—1

Z m(my, 0,)0, = dim V)\Iipn ON(Zy)p * y|2s0 -
neP

Obviously, vy, = (5% * 2y, Qu(pn) = |Vl and

[Wnl-1 _ _|¥n|-1
Yoy = 224 # 0—g * Ogu(pn)-

For r, s positive integers, it readily follows that

< o (t+s—1
ngo = Z ( s—1 >5t'r4p- (58)
t=0

Hence, we obtain

2 m(mx, 0,)0, = Z dim Vfipn

pepP t=0

t+ |0, —2
SRETE RICSREAE

Therefore, whenever G/K is a tube domain, the Harish-Chandra parameters that
contribute to resy, (my) are [(A+pn)(Zy)+2t—1]p = [M(Zy)+d+2t]p, t =0,1,...,
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and the respective multiplicities are exactly the numbers (H"P"FQ) dim VX on =

W, |—2

("t dimVE

To follow, we show the multiplicity formula when G/K is not a tube
domain. Hence, K; is a proper subgroup of K and iZ, is not in the center
of €. We manipulate on the right hand side of formulae (5.6). Since VU is a
holomorphic system, wp, = p, forw € Wi . Hence, qu(p,) = [§ +d + 1]¢ and
Yau (Ur)~D(hot) = Zqu (W)~ (hou) *5[%+d]¢. Hence, the right hand side of (5.6) becomes
equal to

e(w)w, (WA + pn))0g(wrio,)) * ko oy, o® k zg *0_,. (.9
ewz\]W (w)emy ol Nouwornn) requ(Undy) | Beq(Uanalhe) | Y (59)
w 3 K

In the language of discrete Heaviside distributions, the restriction of the
lowest K -type 7rf\(+ o, OF Ty to U is represented by

Y cw)my (A p)wiiey * F (5.10)
wWeW;NWi YEQu (Ve D;)

The restriction of 7§, , to U can be represented as the restriction of 7y, to
K, and then we decompose the resulting representation of K, as U-module.
Let p1 + p;, ..., ps + p;, denote the infinitesimal characters for the irreducible
constituents of resy, (75, o). Here we take j; dominant with respect to ¥ n ®;.
Then, we have the equality

K
resy (ﬂ{‘ipn) - Z m(ﬂ-f\ipn’ Wﬂja"‘Pz)V#[j-i-Pa'
1<j5<s
Therefore, we have that (5.10) is equal to
K K
Z m(WA""Pn’ 7Tu;+pa)5(uj+pa)(z¢)so- (5-11)
1<j5<s

Putting together the new expression for (5.10) and (5.9), we obtain that the right
hand side of (5.6) is equal to

K K,
Z m(W/\JrPn’Wﬂﬁps)d(#ﬁpa)(zo;)w * v * o Zy * Op.
1<5<s Y€qu(¥n)\P(ho,u)

After we recall (5.5) and we apply (5.11) to the previous formula, we obtain

Z m(ﬂ-M 0M>5M =

neP

K t+c—1 h + d—1
Z [Z m(ﬁf\ipn’ Wujaerz)( c—1 ) ( d—1 5[(w+p3)(2¢)+t+2h*1]<p'

t=0,h=0 j

(5.12)

Hence,

Z m(my, Uu)éu =

nepbP

s [
K K;

Z T > Ty ;)

j=1

NIE

] n—2h+c—1\/h+d—-1
c—1 d—1 5[(#,7+p5)(Z¢)+n—1]¢-

(5.13)

Vv

n=0 h=0
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Therefore a Harish-Chandra parameter m¢ of an irreducible Hy-factors for
resy, (my) belongs to the set

Ly +p)(Zs) +n=1p|n=0,1....5=1,....s},

and the respective multiplicity is

& n—2hte—1\[(h+d-1
Z m(7r/\+pn, ity Z( c—1 )( d—1 )

Mj(Z;SZn:m
Now, the proof of Theorem 5.1 has been completed.
Remark 5.2. In the above formulae for either Harish-Chandra parameters or mul-
tiplicities, if we make ¢ equal to zero, we obtain the formula for the tube type
case.
Remark 5.3. The decomposition of the adjoint representation of gc restricted to
bo is,

(i) When G/K is a tube domain,
dt1 dim t—d—1

gc=PC20) @ P (C o).

1

(i) When G/K is not a tube domain,

d+1 c dim t—d—1
ge = D (C*,2¢) © D(C*¢) @ G—) (C,0p).
1 1

Whence, the coefficients ¢ and d + 1 represent multiplicity of irreducible con-
stituents of the hy-module gc.
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