
ARTICLE IN PRESS
0378-4371/$ - se

doi:10.1016/j.ph

�Correspond
E-mail addr
Physica A 371 (2006) 76–79

www.elsevier.com/locate/physa
Ontogenetic growth of multicellular tumor spheroids

C.A. Condat�, S.A. Menchón

CONICET and FaMaF, Universidad Nacional de Córdoba, 5000-Córdoba, Argentina
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Abstract

In ontogenetic growth models, the basal metabolic rate is usually assumed to depend on the individual mass following a

power law. Here it is shown that, in the case of multicellular tumor spheroids, the emergence of a necrotic core invalidates

this assumption. The implications of this result for spheroid growth are discussed, and a procedure to determine the

growth parameters using macroscopic measurements is proposed.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The process of the individual development of an organism is called ontogenesis. The existence of universal
features characterizing ontogenetic growth has been suspected for many years. In a seminal 2001 paper,
West, Brown, and Enquist (WBE) showed that two hypotheses suffice to ensure universality: the conser-
vation of energy and the fractality of the nutrient distribution network [1]. In 2003 Guiot and co-workers
suggested that cancer should also follow the same growth pattern [2]. Later on, WBE’s result was gene-
ralized to include nutrient diffusion as the determining factor controlling growth. This is the case
with multicellular tumor spheroids, which are experimental systems widely used to model many aspects of
cancer growth and therapy [3]. The case for using WBE’s theory was strengthened by its application to
spheroids growing under conditions of starvation and increased medium rigidity [4] and by the bridging
between mesoscopic and macroscopic models of cancer growth achieved with the introduction of an
‘‘intermediate model’’ [5].

Even under ideal conditions, spheroids whose diameter exceeds about 0.8mm develop a necrotic core,
because oxygen and nutrients cannot get beyond a viable outer shell. After the emergence of the necrotic core,
the spheroid continues to grow, but the thickness of the live cell layer remains constant. A limitation of the
model of Ref. [4] is that it was restricted to homogeneous spheroids. The purpose of this paper is to generalize
it to spheroids containing a necrotic core.
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2. The model

Following WBE’s ideas [1], we start from the energy conservation equation, which states that the energy
income rate to the organism cells equals the energy used for the maintenance and replacement of existing cells
plus the energy devoted to the creation of new cells. If dN cells are created during a time interval dt, the energy
conservation equation is,

Bdt ¼ Nbdtþ �dN, (1)

where b and � are, respectively, the single cell metabolic rate and the energy required to create a single cell, N is
the total cell number, and B is the energy income rate to the organism cells. Defining b ¼ b=�, we can write a
differential equation for the total organism mass, m, where m ¼ Nmc, and mc is the average cell mass,

dm

dt
¼

mc

�
BðmÞ � bm. (2)

Here the basal metabolic rate BðmÞ must be modeled. In Ref. [4], BðmÞ ¼ B0m
p was chosen, with p ¼ 3

4

corresponding to fractal nutrient distribution and p ¼ 2
3
to diffusive nutrient distribution. In the case of

spheroids that never develop necrosis, which we shall call type-I spheroids, we must adopt p ¼ 2
3
. As a

consequence, the spheroid grows up to a maximum mass M ¼ ða=bÞ3, where a ¼ mcB0=�. The time
dependence of the spheroid mass is given by

mðtÞ ¼Mð1� e�bt=3Þ
3. (3)

What happens if a necrotic core emerges? A crucial point is the realization that once the necrotic
process has begun, the thickness D of the live cancer cell shell usually remains approximately constant. This
feature had been already predicted by Burton in 1966 [6] and it has been reviewed by Mueller-Klieser [3]
(see Fig. 1). Since the mass appearing in Eq. (2) is the live cell mass, these type-II spheroids exhibit two well-
defined growth regimes: at first, the spheroid follows the p ¼ 2

3
law described above, but after a time t defined

by mðtÞ ¼ m̂ � ð4
3
ÞprD3, the live cell mass is related to the spheroid radius r through the equation

mðt4tÞ ¼ rV c, where V c is the volume occupied by live cells and r is the mass density. A simple calculation
yields,

rðmÞ ¼
D
2

1þ
1ffiffiffi
3
p 4

m

m̂
� 1

� �1=2� �
. (4)

At times t4t, the necrotic core diameter DN satisfies the equation DN ¼ D� 2D, with D ¼ 2r. Fig. 1 shows an
example where this equation is precisely satisfied. Since diffusion is still the rate-limiting process for nutrient
Fig. 1. Viable rim thickness (squares) and necrosis diameter (circles) in spheroids of myc/ras-transfected rat embryonic fibroblasts as

functions of spheroid diameter. The dotted line has slope unity (experimental data from Ref. [3], with permission).
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arrival, B is still proportional to r2. Therefore, the live cell mass evolves following the equations,

dm

dt
¼

am2=3 � bm if mom̂;

am̂2=3

12
4

m

m̂
� 1

� �1=2
þ

ffiffiffi
3
p

� �2
� bm if m4m̂:

8><
>: (5)

Although these equations can be solved exactly, the detailed analytical form of the time-dependent solution is
not particularly illuminating. By looking at the possible steady-state solutions, we find that the spheroid
evolution at times t4t depends on the relative sizes of M and m̂:
(a)
 Unlimited growth: If m̂oð 1
27
Þða=bÞ3 ¼ ð 1

27
ÞM, the live cell shell is very thin and there is always an excess

energy that leads to continuous growth.

(b)
 Convergence to a steady state: If ð 1

27
ÞMom̂oM, the live cell mass grows monotonically until it reaches a

steady-state value mII
s ,

mII
s ¼

3

2ð1� 3QÞ2
2

3
þQþQ

ffiffiffiffiffiffiffiffiffiffiffiffi
4

Q
� 3

s !
m̂. (6)

Here Q ¼ ðm̂=MÞ1=3p1. The steady-state mass grows from mII
s ¼ m̂ when Q ¼ 1 to mII

s ¼ 1 when
Q! ð1=3Þþ.
(c)
 Homogeneous spheroid: Of course, if Mom̂, we have no necrotic core, Eq. (4) never applies and the steady
state is given by

mI
s ¼M ¼ ða=bÞ3. (7)
3. Discussion

By concentrating resource utilization in the outer rim, the emergence of necroses helps spheroids to reach
larger sizes. However, oxygen and nutrients always penetrate deep enough to ensure that condition (a) above
is never reached, and maximum spheroid diameters remain usually below 2mm. In vivo tumors often develop
necrotized regions that are likely to favor continuous growth until angiogenic development ensures tumor
thriving. Our calculations indicate that, except for its very early stages, tumor growth will not be controlled by
a pure power law, but will have a more complex form. Eq. (4) suggests that the function BðmÞ corresponding
to a tumor containing a large necrosis may have a stronger dependence on the mass than the BðmÞ�m3=4

characteristic of a fractal nutrient distribution network. In this connection, we note the recent introduction of
a ‘‘dynamical exponent’’ to characterize tumoral growth [7].

Our understanding of growth dynamics would be enhanced if we can determine the values of the parameters
a and b for various tumor cell species. We propose that these parameters may be estimated by performing
macroscopic measurements on multicellular tumor spheroids. This could be done as follows: the final radius
for a type-I spheroid is given by

R ¼
3

4pr

� �1=3
a

b

� �
. (8)

Therefore, the ratio of the parameters determining spheroid growth can be obtained by a simple geometric
measurement. According to Eq. (3), the value of b can be independently ascertained by plotting the function
�3 ln½1� ðm=MÞ1=3� versus t and determining the slope.

In the case of type-II spheroids, we must determine three parameters. While D is experimentally accessible,
the procedure to determine a and b is more cumbersome than for a type-I spheroid. Although Eq. (6) can be
used, large inaccuracies may follow. Perhaps the best method is to determine b as in the case of type-I

spheroids, using tot data, and then measure the necrosis onset time t. Since mðtÞ ¼ m̂, the parameter a can be
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determined from

a ¼
4pr
3

� �1=2

Dbð1� e�bt=3Þ. (9)

The availability of reliable estimates for these parameters would set useful constraints on cancer growth
models.
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