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Abstract

The present study investigated the role of the N, N{0}-dimethylbiguanide metformin (50 mg/100 g body weight in 0.05 ml

water, given orally with a canulla) in the prevention of endocrine and immune disorders provoked by the hyperandrogeniza-

tion with dehydroepiandrosterone (DHEA) in prepuberal BALB/c mice. The treatment with DHEA (6 mg/100 g body weight in

0.1 ml oil) for 20 consecutive days, recreates a mouse model that resembles some aspects of the human polycystic ovary

syndrome (PCOS). The treatment with DHEA did not modify either body mass index (BMI) or blood glucose levels, but did

increase fasting insulin levels when compared with controls. Markers of ovarian function – serum estradiol (E), progesterone

(P) and ovarian prostaglandin E (PGE) – were evaluated. The treatment with DHEA increased serum E and P levels while ovar-

ian PGE diminished. When metformin was administered together with DHEA, serum insulin, E and P levels, and ovarian PGE

values did not differ when compared with controls. Using flow cytometry assays we found that the treatment with DHEA

diminished the percentage of the CD4 1 T lymphocyte population and increased the percentage of the CD8 1 T lymphocyte

population from both ovarian tissue and retroperitoneal lymph nodes. However, when metformin was administered together

with DHEA, the percentages of CD4 1 and CD8 1 T lymphocyte populations from both ovarian tissue and retroperitoneal

lymph nodes were similar to those observed in controls. Finally, when DHEA was administered alone it increased the serum

tumor necrosis factor-alpha (TNF-a) levels when compared with controls; however, when metformin was administered

together with DHEA, serum TNF-a levels were similar to controls. These results indicate that metformin is able, directly or

indirectly, to avoid the endocrine and immune alterations produced when mice are hyperandrogenized with DHEA.
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Introduction

Polycystic ovary syndrome (PCOS) – which is character-

ized by hyperandrogenemia, hirsutism, oligo- or amenor-

rhea and anovulation – is one of the most common

endocrinological diseases encountered in premenopausal

women (Franks 1995, Asuncion et al. 2000). It has been

reported that hyperinsulinemia, frequently associated with

PCOS, increases both the risk of cardiovascular diseases

and the development of diabetes mellitus (Abbott et al.

2002). Although during the last decade several clues have

emerged from human and animal studies, little is known

about the etiology and pathophysiology of PCOS. The bat-

tery of animal models used for the study of polycystic

ovaries has allowed researchers to investigate different

aspects of the pathology (Billiar et al. 1985, Szkiewicz &
Uilenbroek 1998, Weil et al. 1999, West et al. 2001,
Abbott et al. 2002). After it was found that dehydroepian-
drosterone (DHEA) levels were increased in women with
PCOS (Malesh & Greenblatt 1962), Roy et al. (1962) pro-
duced an animal model using DHEA for induction of
PCOS. Subsequent studies established that the DHEA–
PCOS murine model exhibits some of the salient features
of human PCOS, such as hyperandrogenism, abnormal
maturation of ovarian follicules and anovulation (Lee et al.
1991, 1998, Anderson et al. 1992, Henmi et al. 2001).
These findings, together with the fact that increasing evi-
dence indicates that DHEA has, in addition, potent immu-
noregulatory functions (Meikle et al. 1992, Okabe et al.
1995, Hernandez Pardo et al. 1998, Zhang et al. 1999) led
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us to use the DHEA–mice model to study some aspects
related to the endocrine and immune responses involved.

In a previous study, we have demonstrated that treat-
ment of prepuberal BALB/c mice with DHEA alters ovar-
ian morphology, induces ovarian cysts, increases serum
17 beta estradiol (E) and progesterone (P) levels, and mod-
ifies ovarian prostaglandin E (PGE) concentration. There-
fore, the treatment with DHEA led to a selective ovarian
CD4 þ and CD8 þ T lymphocyte expression character-
ized by both a diminution of the percentage of CD4 þ

lymphocytes and an increase in the percentage of
CD8 þ T lymphocytes (Luchetti et al. 2004). In view of
our previous studies and those reported by Lu et al.
(2002), who demonstrated that production of cytokines by
B cells is controlled by an enriched CD8 þ T lymphocyte
population and steroid hormones, experiments were
designed to evaluate whether DHEA was able to lead to a
selective T lymphocyte population that could, in turn,
regulate cytokine production. Considering the fact that
tumor necrosis factor-alpha (TNF-a) regulates androgen
production by theca cells (Sayin et al. 2003) and that it
has been reported to be associated with PCOS (Desh-
pande et al. 2000, Araya et al. 2002, Korhonen et al.
2002, Peral et al. 2002), the aim of this study was to inves-
tigate the concentration of serum TNF-a after treatment
with DHEA.

Multiple concomitant therapies have been applied in
PCOS to address the variety of symptoms and to achieve
better results. Recent studies have investigated the role of
a family of insulin-sensitizing agents: the biguanides.
Thus, the use of metformin (N, N{0}-dimethylbiguanide) is
becoming increasingly accepted and widespread. How-
ever, this drug is being clinically used without a complete
understanding of the mechanisms involved. Metformin
has been shown to be useful in the reduction of insulin
resistance by restoring insulin sensitivity (Fedorcsak et al.
2003, Harbone et al. 2003, Lord et al. 2003). In addition,
it has been demonstrated that metformin is able, either
directly or indirectly, to regulate ovarian steroidogenesis
(La Marca et al. 2002, Mansfield et al. 2003).

Controversial results have been reported with regards to
metformin and its relationship with the immune system. In
patients with type-2 diabetes, the biguanide enhances the
tyrosine kinase activity of the insulin receptor by modulat-
ing the plasma cell differentiation antigen (PC-1) (Stefano-
vic et al. 1999). Nevertheless, Ruat et al. (2003) have
failed to demonstrate any relationship between metformin
and proliferation assays of T cells of lymph nodes.

The aim of the present work was to assess the efficacy
of metformin on some immune and endocrine parameters
altered after hyperandrogenization with DHEA. We there-
fore evaluated body mass index (BMI), the glucose:insulin
ratio (in order to determine the homeostasis model assess-
ment (HOMA) index), and serum E and P levels (as indi-
cators of ovarian function). We also quantified ovarian
PGE production, because PGE is not only involved in
inflammatory processes and displays immunomodulatory

properties, but is also altered in PCOS (Navarra et al.
1996, Wojtowicz-Praga 1997). With regards to the
immune system we also designed experiments to investi-
gate the role of metformin in modulating both the CD4 þ

and CD8 þ T cell population of ovarian tissue and sec-
ondary immune tissues (axillar and retroperitoneal lymph
nodes). In addition, the production of the pro-inflamma-
tory cytokine TNF-a was evaluated.

Materials and Methods

Animals and experimental protocol

The hyperandrogenized environment of PCOS was repro-
duced in mice by injection of DHEA (Luchetti et al.
2004). Briefly, female prepuberal (25 days old) mice of the
BALB/c strain were injected daily with DHEA (6 mg/100 g
body weight, dissolved in 0.10 ml sesame oil) for 20 con-
secutive days (DHEA group). The animals of the DHEA þ

metformin group were injected with DHEA and given
metformin orally (50 mg/100 g body weight in 0.05 ml
water, given orally with a canulla) for 20 days. The dose
of metformin administered was equivalent to that used in
the treatment of women with PCOS. The controls con-
sisted of three groups: (a) animals injected with oil
(0.1 ml) and given water orally (0.05 ml) for 20 consecu-
tive days (control vehicle); (b) the metformin-alone group
which consisted of mice treated orally with 50 mg metfor-
min/kg body weight in 0.05 ml water for 20 days; (c) the
untreated group formed by animals that did not receive
treatment. Mice were housed under controlled tempera-
ture (22 8C) and illumination (14 h light:10 h darkness;
lights on at 0500 h) and were allowed free access to Pur-
ina rat chow and water. All procedures involving animals
were conducted in accordance with the Animal Care and
Use Committee of Consejo Nacional de Investigaciones
Cientı́ficas y Técnicas (CONICET) 1996.

Throughout the whole treatment, the animals were
weighed daily and, in addition, the stage of the sexual
cycle was determined. Vaginal smears were taken daily
up to the day of autopsy. As previously found (Luchetti
et al. 2004), mice treated with DHEA remained in con-
stant estrus. In contrast, mice administered with DHEA
together with metformin showed irregular sexual cycles.
None of the animals in the experimental groups displayed
a complete sexual cycle at the time of killing. These find-
ings led us to use, for the control and metformin-alone
groups, only those animals that at the time of killing were
in the estrus stage of the sexual cycle. In other words, in
order to compare the different groups, we have treated
sufficient animals from groups other than the DHEA-alone
group to ensure that there were ten animals per group at
estrus stage on the day of killing.

After 20 days of treatment, ten mice (45 days old) per
group were anesthetized with ether and killed by decapi-
tation. Blood was collected and fasting glucose levels
were immediately determined. Then, serum was isolated
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and stored at 270 8C until assayed for E, P, insulin and
TNF-a. Twenty freshly dissected ovaries per group were
divided as follows: ten ovaries of each group were pre-
pared to evaluate CD4 þ and CD8 þ T lymphocyte
expression by flow cytometry assay; ten ovarian tissues
were immediately frozen at 270 8C until PGE radio-
immunoassay. Lymphoid tissues (axillar and retroperito-
neal nodes) from the ten animals of each group were
immediately collected and processed to determine the
CD4 þ and CD8 þ T cell expression by flow cytometry
assay. All experiments were repeated three times.

Assays for glucose and insulin quantification

Fasting blood glucose was determined by using the Haemo-
glukotest (Roche) test strips for visual determination in the
range of 20–800 mg/100 ml (1–44 mmol/l). The test
principle uses the glucose-oxidase/peroxidase reaction.
Results are expressed in millimoles of glucose per liter.

Serum insulin levels were assayed by the Coat-A-Count
insulin method (Diagnostic Products Corporation, LA,
USA) following the manufacturer’s instructions. Briefly, the
determination consists of a solid-phase 125I radioimmuno-
assay designed for the quantitative measurement of insulin
in serum. The antibody is immobilized to the wall of a
polypropylene tube and simply decanting the supernatant
suffices to terminate the competition and to isolate the
antibody- bound fraction of the radiolabeled insulin. The
samples were counted in a gamma counter. Analytical
sensitivity was 1.2mIU insulin/serum ml.

E and P determination

Serum E levels were evaluated as described previously
(Luchetti et al. 2004). Briefly, the blood was allowed to
clot and the serum removed and frozen until E and P con-
centrations were determined by radioimmunoassay. Anti-
sera were provided by Dr G D Niswender (Colorado State
University, Fort Collins, CO, USA). The E antiserum
showed low cross-reactivity: ,1% for P and testosterone,
,5% for estriol and ,10% for estrone. The P antiserum
was highly specific and showed low cross-reactivity:
,2% for 20-a-dihydro- progesterone and deoxycorticos-
terone, and 1% for other steroids normally present in
serum. Results are expressed in nanograms per serum
milliliter.

Prostaglandin radioimmunoassay

The measurement of PGE was carried out in the incu-
bation media of ovarian tissues as previously reported
(Luchetti et al. 2004). Briefly, the tissue (each ovary) was
weighed and incubated in Krebs–Ringer–bicarbonate
(KRB) with glucose (11.0 mmol/l) as external substrate
(pH 7.0) for 1 h in a Dubnoff metabolic shaker under an
atmosphere of 5% CO2 in 95% O2 at 37 8C. At the end
of the incubation period, the tissue was removed and the
solution acidified to pH 3.0 with 1 M HCl and extracted

for prostaglandin determination three times with 1 volume
of ethyl acetate. Pooled ethyl acetate extracts were dried
under an atmosphere of N2 and stored at 220 8C until
prostaglandin radioimmunoassay was perfomed. PGE was
quantified using a rabbit antiserum from Sigma. Sensitivity
was 10 pg/tube and cross-reactivity was 100% with PGE
and ,0.1% with other prostaglandins. Results are
expressed in picograms PGE per milligram of protein.
Ovarian protein content was determined using the Brad-
ford method (1976).

Flow cytometry

To carry out the flow cytometry assays, ovarian tissue and
lymph nodes (axillar and retroperitoneal) must be dis-
persed (Luchetti et al. 2004). Briefly, tissues were enzy-
matically dissociated in culture medium (medium 199,
25 mM Hepes, 26 mM NaHCO3 and 50 UI/ml penicillin)
with collagenase (trypsin-free, 740 IU/100 mg tissue) and
DNAse (14 IU/100 mg tissue). After 90 min, cells were
washed twice with culture medium, twice with Dul-
becco—phosphate-buffered saline free of Ca2þ and Mg2þ

(PBS) and twice with culture medium containing EDTA
(1 mM). To remove blood cells, suspensions were applied
to Ficoll-hystopaque gradient 1.077 (Sigma), centrifuged
at 400 g for 45 min and washed with PBS/ 0.1% BSA.
Cells were counted in a hemocytometer (viability was
.80% as assessed by the trypan blue exclusion method)
and then processed for direct immunofluorescence. Thus,
100ml of each cellular suspension, at a concentration of
106 cells/ml, were incubated for 30 min at 4 8C with: (a)
30ml phycoerythrin (PE) Rat IgG2a K Isotype Control plus
30ml fluorescein isothiocyanate (FITC) Rat IgG2a K Iso-
type Control (eBioscience, San Diego, CA, USA) corre-
sponding to the isotype control sample; or (b) 4ml PE anti-
mouse CD4 plus 4ml FITC anti-mouse CD8 (eBioscience,
USA), corresponding to control, DHEA and DHEA þ

metformin assay according to the cellular suspension.
Antibodies were used at saturating concentrations, as
established after titration by flow cytometry. Samples were
then washed with PBS and PBS-EDTA, fixed with 4% par-
aformaldehyde and stored at 4 8C in darkness until the
analysis was performed within 6 days of labeling. Fluor-
escence analysis was evaluated with FACScan and
Winmdi 2.8 software (Scripps Research Institute). Both
ovarian and lymph suspensions were analyzed using
different physical characteristics (i.e. size and complexity),
using both forward (FSC: cell size) and side scatter (SSC:
cell complexity) parameters. Thus, the settings correlated
to cellular size and granularity of mouse T lymphocytes.
The resulting gate and quadrant were maintained through-
out the analysis. Flow cytometric determination was
performed using standard fluorescence 1 (FL1; FITC
anti-mouse CD8 þ T lymphocyte) and fluorescence 2
(FL2; PE-anti-mouse CD4 þ T lymphocyte). The analysis
was based on quantification of 50 000 cells for each assay
for ovarian tissue and 10 000 cells for lymph nodes.
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Serum TNF-a determination

A TNF-a enzyme immunometric assay (EIA) kit (Assay
Design’s mouse, MI, USA) was employed following the
manufacturer’s instructions to quantify serum TNF-a from
samples of the three experimental groups. Results are
expressed in picograms per serum milliliter.

Statistical analysis

Statistical analyses were carried out using the Instat pro-
gram (GraphPAD software, San Diego, CA, USA). ANOVA
was performed using Newman–Keuls test to compare all
pairs of columns and P , 0.05 was considered significant.
All results are presented as the means^S.E.M.

Results

Effect of metformin on BMI, homeostasis model
assessment, fasting glucose and insulin levels

These experiments were performed to determine whether
the treatment with metformin was able to modify some
parameters of the homeostasis and to study the role, if
any, of metformin when administered together with
DHEA. The weight of the animals was not modified by
any of the treatments (Table 1), and thus the BMI (defined
as weight (kg)/height (m2)) was similar in all the groups
analyzed (Table 1). Glucose levels did not vary in any of
the groups studied (Fig. 1A), while fasting insulin levels
increased with DHEA treatment when compared with
controls (untreated, control vehicle and metformin-alone
groups). HOMA index (defined as: HOMA ¼ insulin
(mUI/ml) £ glucose (mmol/l):BMI (kg/m2)) increased after
the treatment with DHEA when compared with controls.
When metformin was administered together with DHEA,
the effects of DHEA on both insulin levels (Fig. 1B) and
the HOMA index were attenuated (Fig. 1c).

Effect of metformin on ovarian function: serum E and
P levels and ovarian PGE production

To evaluate both ovarian function after treatment with
DHEA and the possible role of metformin as a treatment
for the ovarian anomalies produced by DHEA, we
designed experiments to quantify serum E and P levels,
and ovarian PGE production. Treatment with DHEA for 20
consecutive days increased both serum E and P levels
(Fig. 2A and B) when compared with controls (untreated,
control vehicle and metformin alone). When metformin

was administered together with DHEA, serum E and P
levels showed similar patterns to those of control values
(Fig. 2A; DHEA þ metformin).

On the other hand, the production of PGE by ovarian tis-
sue was diminished after treatment with DHEA (Fig. 2C),
but did not significantly differ from the control values when
metformin was administered together with DHEA (Fig. 2C).

Role of metformin in ovarian CD4 1 and CD8 1
T lymphocyte expression

Flow cytometry analysis was employed to determine both
the effect of DHEA treatment on the expression of ovarian
CD4 þ (or helpers) and CD8 þ (or cytotoxic/suppressors)
T lymphocytes and the role of metformin when adminis-
tered together with DHEA. For the 50 000 cells analyzed,
we found that the control groups showed equivalent per-
centages of ovarian CD4 þ and CD8 þ T lymphocytes
(Fig. 3). However, treatment with DHEA diminished the
percentage of CD4 þ T cells (17 ^ 5%) and increased the
percentage of CD8 þ T cells (83 ^ 4%) when compared
with controls (Fig. 3). In contrast, when metformin was
administered together with DHEA, we observed the same
percentages of CD4 þ and CD8 þ T cells as in the
controls (Fig. 3).

Role of metformin in T lymphocyte expression in
lymph nodes

In order to establish whether the effects of DHEA treat-
ment and the administration of metformin together with
DHEA also involved secondary lymphoid tissues, the per-
centages of CD4 þ and CD8 þ T cells were quantified in
both axillar and retroperitoneal lymph nodes. Figure 4A
illustrates the flow cytometry analysis of axillar nodes. It
can be seen that all the control groups yielded equivalent
percentages of CD4 þ and CD8 þ T lymphocytes, and
that neither the treatment with DHEA nor treatment with
DHEA and metformin together were able to modify the
percentages of CD4 þ and CD8 þ T lymphocytes from
axillar nodes.

The flow cytometry analysis of retroperitoneal lymph
nodes (Fig. 4B) showed equivalent percentages of CD4 þ

and CD8 þ T lymphocytes in all the control groups. How-
ever, treatment with DHEA diminished the percentage of
CD4 þ T cells, and increased the CD8 þ T cells from ret-
roperitoneal lymph nodes (Fig. 4B; CD4 þ , 24 ^ 6%;
CD 8 þ , 64 ^ 4%). In contrast, when metformin was
administered together with DHEA, the percentages of

Table 1 Effect of DHEA on BMI.

Untreated Control vehicle Metformin-alone DHEA DHEA 1 metformin

Age (days) 45 45 45 45 45
Weight (g) 14.0 ^ 1.2 15.0 ^ 3.0 14.0 ^ 2.5 14.8 ^ 1.8 15.2 ^ 2.4
BMI (kg/m2) 5.6 ^ 0.2 5.7 ^ 0.5 5.7 ^ 0.4 5.4 ^ 0.6 5.3 ^ 0.8
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CD4 þ and CD8 þ T cells from retroperitoneal lymph
nodes were similar to those of controls (Fig. 4B).

Role of metformin on serum TNF-a concentration

As shown in Fig. 5, mice injected with DHEA for 20 days
showed increased serum TNF-a concentration when com-
pared with controls, while those injected with metformin
together with DHEA showed a concentration similar to
that of controls.

Discussion

In this work, we studied some aspects related to both the
endocrine and the immune responses in a polycystic ovar-
ian condition induced by hyperandrogenization with
DHEA in BALB/c mice. The aim of the present study was
also to investigate the ability of metformin to modulate
these aspects.

The mechanism by which administration of DHEA
brings about the cascade of hormonal events that
produces ovarian failure remains unknown. However, it is

known that the experimental model used in this work
reproduces the main aspects of human PCOS (Lee et al.
1991, 1998, Anderson et al. 1992, Henmi et al. 2001).
Our data show that the hyperandrogenic environment
recreated by the treatment with DHEA did not modify the
weight of the animals or, consequently, the BMI. We
could then infer that neither hyperlipidemia nor obesity,
which can sometimes be associated with PCOS (Franks
et al. 1997, Abbott et al. 2002), were induced in this ani-
mal model.

Both hyperinsulinemia and hyperandrogenism play a
pathogenic role in PCOS since they contribute to anovula-
tion (Shoupe et al. 1983, Dunaif et al. 1989, Franks et al.
2000), impair folliculogenesis and affect follicular devel-
opment (Dunaif et al. 1989, Gougeon 1996, Musso et al.
2005). For these reasons, insulin-sensitizing drugs such as
metformin can improve the rate of spontaneous ovulation
(De Leo et al. 1999, Glueck et al. 1999, Vandermolen
et al. 2001). Although we did not directly assess insulin
sensitivity, we measured surrogate markers of insulin sen-
sitivity such as fasting serum insulin, fasting blood glucose
and the HOMA index (which reflects the glucose–insulin

Figure 1 Role of DHEA in (A) fasting glucose levels,
(B) fasting insulin levels and (C) HOMA index and
effect of metformin treatment. P , 0.001, b vs a;
P , 0.05, c vs a. Each group represents the
mean^S.E.M. of ten different animals.
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relationship). Our results showed that treatment with
DHEA increased the serum insulin levels without affecting
fasting glucose, while treatment with metformin and
DHEA together led to a HOMA index similar to that of
controls. Although metformin is usually used for the treat-
ment of chronic obese, insulin-resistant type-2 diabetic,
and PCOS patients (Fedorcsak et al. 2003, Harbone et al.
2003, Lord et al. 2003), the role of this drug during con-
ditions of normal glucose concentration remains
unknown. Our findings are in agreement with previous
studies that have demonstrated that metformin increases
peripheral insulin sensitivity in non-diabetic women with
PCOS (Diamanti-Kandarakis et al. 1998, Moghetti et al.
2000, Vandermolen et al. 2001).

Since metformin modulates insulin concentration and,
in turn, insulin controls ovarian steroidogenesis, it can be
said that metformin acts indirectly on the steroidogenic
activity of theca and granulosa cells (La Marca et al.
2002). However, recently, Mansfield et al. (2003) have

demonstrated that metformin exerts a direct effect on cul-
tured ovarian cells. Therefore, we could speculate that
metformin would regulate ovarian steroidogenesis both by
modulating insulin levels and by acting directly on ovar-
ian cells. These two pathways would contribute to ensure
the accuracy of ovarian function. However, we are design-
ing further experiments to clarify both this point and the
molecular mechanisms involved in the action of
metformin.

The data presented here show that mice from the DHEA
group exhibited increased levels of both serum E and P
and were in constant estrus. In view of the fact that only
those follicles that show significant amounts of aromatiz-
able androgens and low production of E are classified as
selectable follicles (i.e. appropriate to ovulate) (Gougeon
1996), we can assume that in addition to the hyperandro-
genized environment created by the daily injection of
DHEA, the enhanced concentration of serum E would
result in unfavorable conditions for producing follicles
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Figure 2 (A) Serum 17 beta estradiol levels from mice
from control groups, and the DHEA and DHEA þ

metformin groups. (B) Serum progesterone levels
from mice from control groups, and the DHEA and
DHEA þ metformin groups. (C) Ovarian PGE concen-
tration from mice from control groups, and the
DHEA and DHEA þ metformin groups. Each column
represents the mean^S.E.M. of ten measurements
from different animals. ***P , 0.001.
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destined for ovulation. Lee et al. (1992), who worked with
the same animal model, have reported a similar hormonal
profile. This profile suggests an increased steroidogenic
activity, which is widely described in PCOS (Franks et al.
2000, Abbott et al. 2002). Evidence shows that follicles
from anovulatory women with PCOS hypersecrete E when
compared with size-matched follicles from normal ovaries
or polycystic ovaries from ovulatory women (Franks et al.
2000, Mendonca et al. 2004, Doi et al. 2005). These find-
ings also support those of the current study.

In the present work, also in accordance with previous
findings (Vandermolen et al. 2001, Harbone et al. 2003,
Kazerooni & Dehghan-Kooshkghazi 2003, Weerakiet et al.
2004), we demonstrate that the administration of metfor-
min together with DHEA prevented the effect of hyperan-
drogenization, i.e. the increase of serum E and P levels.
As discussed above, these data would represent the result
of both indirect and direct actions of metformin in modu-
lating ovarian steroidogenesis.

Since animals from the DHEA group remained at con-
stant estrus throughout the treatment, we suggest that the
hyperandrogenization induced with DHEA resulted in
anovulation. Conversely, neither the animals from the
control groups nor those from the DHEA þ metformin
group showed a complete sexual cycle. However, they
did show irregular cycles. Therefore, we suggest that the
administration of metformin together with DHEA creates
an endocrine condition that allows the animals to start to
cycle, and that the irregularity of sexual cycles could be
attributed to the immature condition of the animals

(45 days old at the time of killing) rather than to ineffi-
ciency of the treatment with metformin.

Considering that prostaglandins are involved in the
paracrine regulation of the rupture of ovarian follicles
associated with ovulation (Priddy & Killick 1993) and that
PGE has been reported to have immunomodulatory prop-
erties by modulating cytokine production (Kuroda &
Yamashita 2003, Lakier Smith 2003, Yang et al. 2003), we
also evaluated whether the ovarian concentration of PGE
was modified by DHEA-induced hyperandrogenization.
The fact that the treatment with DHEA reduced ovarian
PGE production was an expected result since DHEA-
hyperandrogenized animals not only did not start to cycle
but also showed increased levels of TNF-a when com-
pared with controls. Although we have previously
reported that the treatment with DHEA increased ovarian
PGE (Luchetti et al. 2004), this apparently controversial
result could be explained by the fact that, in that report,
the dose of DHEA administered to prepuberal mice was
lower than that used here. The dose of DHEA used
in the present report correlates better with the concen-
tration of DHEA described in women with PCOS
(Malesh & Greenblatt 1962, Roy et al. 1962, Lee et al.
1991, 1998, Anderson et al. 1992, Henmi et al. 2001).
We also found an inverse relationship between the
concentration of DHEA and both the ovarian PGE pro-
duction and the expression of cyclooxygenase (COX)
(the enzyme that synthesizes PGE) (data not shown).
The last observation is due to the fact that it has been
demonstrated that prostaglandins down-regulate their own

Figure 3 Percentage of ovarian T cell pheno-
types from mice from control groups
(untreated, control vehicle and metformin
alone), and from the DHEA and DHEA þ

metformin groups, determined by flow cyto-
metry assay. Each column represents the
meanþS.E.M. of ten measurements from
different animals. ***P , 0.001. Upper
panels show a representative flow cytometry
analysis using forward (FSC; cell size) and
side scatter (SSC; cell complexity) par-
ameters, and dotplot analysis using both
standard fluorescence 1 (FL1; FITC anti-
mouse CD8þT lymphocyte) and 2 (FL2; PE
anti-mouse CD4þT lymphocyte).
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synthesis (Ivanov & Romanovsky 2004). We therefore
assume that the higher dose of DHEA injected in the pre-
sent report led to an accumulation of ovarian PGE which
in turn could inhibit the expression of COX and conse-
quently the production of ovarian PGE, as observed here.

On the other hand, we found that animals from the
DHEA þ metformin group showed a pattern of ovarian
PGE synthesis similar to that of the control groups.

Although the action of this biguanide on improving lipid
metabolism has been widely reported (Caballero 2004,
Dominguez & Sowers 2005, Rautio et al. 2005), our data
represent the first evidence that metformin modulates the
production of ovarian prostaglandins.

TNF has been found to be increased in patients with
PCOS (Sayin et al. 2003). In addition, a mutation of the
TNF receptor has been associated with hyperandrogenism

Figure 4 Percentage of (A) T cell phenotypes
from axillar lymph nodes and (B) T cell phe-
notypes from retroperitoneal lymph nodes
determined by flow cytometry assay. Each
column represents the mean^S.E.M. of ten
measurements from different animals.

***P , 0.001. Upper panels show a repre-
sentative flow cytometry analysis using
forward (FSC; cell size) and side scatter
(SSC; cell complexity) parameters, and dot-
plot analysis using both standard fluor-
escence 1 (FL1; FITC anti-mouse CD8þT
lymphocyte) and 2 (FL2; PE anti-mouse
CD4þT lymphocyte).
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(Peral et al. 2002). In agreement with these findings, we
found that animals treated with DHEA had higher serum
TNF-a levels when compared with controls, a fact that
correlates both with increased levels of PGE and with
anovulatory cycles. It has been reported that TNF-a modu-
lates steroidogenesis of both granulosa and theca-intersti-
tial cells by a mechanism independent of those induced
by insulin and insulin-like growth factor-I (IGF-I)
(Spaczynski et al. 1999). For this reason we could infer
that the increase of serum TNF-a observed in animals
from the DHEA group would be an additional mechanism
to those involved in hyperinsulinemia, which impair ovar-
ian steroidogenesis. In the present work, we demonstrated
that the administration of metformin together with DHEA
led to serum TNF-a levels similar to control values. In the
literature, conflicting results have been reported with
regards to the relationship between metformin and the
regulation of TNF-a (Cacicedo et al. 2004, Bruun et al.
2005, Di Gregorio et al. 2005, Kiortsis et al. 2005).

Finally, the data presented here show that DHEA-
induced hyperandrogenization increased the percentage
of the CD8 þ T population and diminished the percentage
of CD4 þ T lymphocytes when compared with controls.
Although the receptor for DHEA has not been identified
yet, a specific DHEA binding activity has been detected in
T cells (Meikle et al. 1992, Okabe et al. 1995) and for this
reason we hypothesized that endocrine disturbances
could be directly related to T lymphocyte differentiation.
It has been documented, for example, that expression of
the most mature thymocytes is regulated by P and E levels,
and is also related to the high propensity of autoimmune
diseases in females (Leposavic et al. 2001, Obradovic
et al. 2001). Moreover, Yan et al. (2000) have reported
that both autoimmune premature ovarian failure (POF)
and insulin-dependent diabetes mellitus (IDDM) patients
present increased numbers of CD8 þ T cells. In addition,
it has been demonstrated that production of cytokines by
B cells is controlled by an enriched CD8 þ T population
(Lu et al. 2002).

Data presented here show that metformin treatment
resulted in similar percentages of CD4 þ and CD8 þ T

lymphocytes to those seen in the controls. As metformin
modulates P and E levels and since, in turn, P and E
control T lymphocyte differentiation (Yan et al. 2000,
Leposavic et al. 2001, Obradovic et al. 2001, Lu et al.
2002), we can suggest that metformin would act
indirectly in modulating the percentages of ovarian
CD4 þ and CD8 þ T lymphocytes. However, other path-
ways (such as regulation of reactive oxygen species and
the induction of AMP-activated protein kinase (AMPK) of
T lymphocytes) described in other tissues (Bonnefont-
Rousselot et al. 2003, Cacicedo et al. 2004, Huypens
et al. 2005, McCarthy 2005) must not be disregarded and
are currently being studied at our laboratory. Both the
fact that the T cell population from axillar nodes was not
affected during DHEA- induced hyperandrogenization
and that the T cell population from retroperitoneal lymph
nodes was affected – and also the fact that hyperandro-
genization induced a similar T cell population when
samples from retroperitoneal lymph tissue were com-
pared with those obtained from ovarian tissue – lead us
to suggest that the local inflammatory status would be
contributing to a selective differentiation of T cells.
According to this hypothesis, lymph nodes and sex ster-
oids are related to different systems, thus suggesting a
coordinated organ-specific and steroid hormone relation-
ship (Chantakru et al. 2003). Moreover, the E receptor
expressed by follicular dendritic cells in lymph nodes has
recently been proposed as a novel pathological marker
(Sapino et al. 2003) and the deficiency of E caused by
ovariectomy or menopause is involved in the T lympho-
cyte status (Safadi et al. 2000). In summary, the present
study describes the role of metformin in the regulation of
some aspects of the intricate network that relates the
endocrine and the immune pathway in a hyperandrogen-
ized environment. As the development of immune cell
surface markers is beginning to be used in diagnosis
prior to the development of complete ovarian failure, we
believe that understanding the role of the immune pro-
cesses involved in PCOS could also be important in the
manipulation of this pathology.
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