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Abstract

We study the transition in the functional networks that characterize the human brains’ conscious-

state to an unconscious subliminal state of perception by using k-core percolation. We find that the 

most inner core (i.e., the most connected kernel) of the conscious-state functional network (the 

visual cortex and the left middle frontal gyrus) corresponds to the areas which remain functionally 

active when the brain transitions from the conscious-state to the subliminal-state. That is, the inner 

core of the conscious network coincides with the subliminal-state. Mathematical modeling allows 

to interpret the conscious to subliminal transition as driven by k-core percolation, through which 

the conscious state is lost by the inactivation of the peripheral k-shells of the conscious functional 

network. Thus, the inner core and most robust component of the conscious brain corresponds to 

the unconscious subliminal state. This finding imposes constraints to theoretical models of 

consciousness, in that the location of the core of the functional brain network is in the unconscious 

part of the brain rather than in the conscious state as previously thought.
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Introduction

The human brain as a natural system has received growing attention. The scientific literature 

has explored, from a mathematical and theoretical physics perspective, the sensitivity and 
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relevance of different properties of brain topology from a network standpoint 

[13,20,36,21,39,6,18,10,35,11]. Many scales and levels of detail have been investigated, 

from completely defined networks of hundreds of neurons in species with particularly small 

brains [43] to macroscopic summaries of networks up to 100 billion neurons of the 

mammalian brain [36,35,15,40].

Earlier studies concentrated on the distribution of degree (the number of neighbors on each 

node), the clustering (the likelihood that co-neighbors of a node will also be neighbors), or 

the diameter (the typical distance between two nodes of the network) [36,31,6,35]. A second 

wave of studies has combined these measures together, for instance in the notion of small-

world networks [42,18].

Several other statistical markers of networks have been investigated and recently the idea of 

k-core [32,30] has received substantial attention in network analysis since it provides a 

topological notion of the structural skeleton of a network [17,8,1,21,24]. Theoretical 

analyses [29] have shown that, the k-core may also be an indicator for the stability of 

complex biological systems. Of particular importance for the scope of this paper, is the 

analysis done in [21,26] which demonstrate that the k-core of the network, is located in the 

posterior regions of the brain.

In this work we use network measures as a tool to inquire on one of the most challenging 

questions in brain science: the signatures of conscious and subliminal perception. We use the 

notion of k-core derived from theoretical physics as a fundamental measure of centrality and 

robustness within a network, to address the question arising from brain science concerning 

what brain markers characterize the conscious → subliminal transition.

Recent theoretical results [29] highlight how the resilience of neural dynamical systems is 

controlled by the strength of the interaction couplings and that, furthermore, the most robust 

part of the system under interaction coupling change is the maximum k-core of the 

corresponding network. This study inspired us to investigate the maximum k-core of the 

network for the system under study and verify if it has a neuroanatomical correspondence. If 

one can give meaning to such robust subset of the network, then the k-core percolation 

would represent a meaningful method for the modelling of the corresponding transition.

We build on a classic study of human brain activations performed by Dehaene et al. [1]. 

These experiments measure, through functional Magnetic Resonance Imaging (fMRI), 

participants that either record seeing an image flashed at millisecond intervals on a computer 

screen in front of them (conscious state), or they do not (subliminal state). We build the 

functional brain networks of the obtainedconscious state based on temporal similarity of 

activations.

The main theoretical question that we then ask is how the transition from conscious to 

subliminal state can be modeled in terms of network theory and what subset of the 

conscious-state network describes the final state of this transition to the subliminal state. We 

contrast two possible hypothesis. A natural idea is that the k-core decomposition method 

may index the regions which are more relevant for conscious processing. This intuition 

comes from several theoretical studies of the neural substrate of consciousness advanced by 
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Dehaene, Tononi and collaborators [12,37], which argue that vast broadcasting, dense and 

flexible connectivity may be a central feature of consciousness. Differently, several 

psychological theories, most notably deriving from the work of Benjamin Libet [28], have 

implied that subliminal processing provides a kernel for all thought. In this view, 

consciousness is ‘merely’ a read-out of this vast and robust cascade of processes.

Discriminating between these two theories requires to understand whether the k-core of a set 

of conscious activations is associated with specific nodes of the network that make this 

activation conscious or, instead, with a subliminal stream which serves as a structural core 

for subsequent conscious activations. Our analysis supports the latter hypothesis: the 

functional network which models the subliminal-state of the brain corresponds to the 

maximum k-core of the more extended functional network which models the conscious-

state.

The article is organized as follows. First we give an illustration of the experiments, 

performed by Dehaene et al. [1] from where we analyze all data and a corresponding 

definition of conscious- and subliminal-state of the brain. In the Methods Section, we 

describe the methodology employed to construct functional brain networks of the conscious-

state and introduce the concept of k-core decomposition as a trimming process to identify 

network structures. The Results Section discusses the results and shows that the nodes in the 

maximum k-core of the conscious-state network correspond to the subliminal-state of fMRI 

activation, both at the brain module and node level. In the Discussion Section we elaborate 

on the interpretation of our results by discussing theory of the k-core developed [29] on the 

role of the k-core as indicator of network robustness. Here we alsodebate our findings in the 

light of the consciousness theories of Libet and Dehaene- Tononi. In the Conclusions 

Section summarizes the study and draws the conclusions.

Data

The data that we use in our study and analysis were collected by Dehaene et al. [1] and are 

briefly explained next. In the investigation discussed in [1], a subject endures two different 

experiments for a specific time interval. In this time frame four letter words are presented to 

a participant which undergoes fMRI screening. Each word is flashed on a computer screen 

either sandwiched between blank pictures or preceded and succeeded by images on the 

screen called distractors or masks [1], as illustrated in Fig. 1. Words in both scenarios are 

flashed for 30ms and the sequence of blank screens and words (or masks) is repeated, with a 

a fixed order, for a total of 5 minutes.

In the first type of experiments a word is flashed on the computer screen sandwiched 

between blank images, designed to produce a conscious perception of the word by the 

subject, who, indeed, reports to have seen the word on the screen after each stream of 

images. We will refer to the fMRI signal of this state as conscious or unmasked (see Fig. 1). 

The second type of experiments are, on the contrary, designed to not produce any active 

perception of the word, which is in fact flashed sandwiched between scrambled words. The 

distractor images, indeed, act as ‘masks’ and the subject does not consciously detect the 
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word on the screen. We will refer to the fMRI signal of this state as masked or subliminal 
(see Fig. 1).

For each of these two states a corresponding control sequence is presented in which the 

progression of the images on the screen remains the same for each case, but blank screens 

are displayed instead of words (see Fig. 1). These control conditions are used to estimate the 

background brain activity in order to better evaluate the activation of each brain voxel [1]. 

The fMRI signal was obtained for 15 subjects, and each of them repeated the experiment 5 

times, thus data in [1] was collected for 75 different fMRI streams.

The acquired BOLD signal is processed using SPM99 [38]. The fMRI time series are then 

analyzed by using the widely adopted Generalized Linear model [33], which produces as 

output the activation map (AM). Fig. 2a shows the AM of the conscious state (p < 10−6), for 

a representative subject, whereas Fig. 2b illustrates the fMRI activation map of the 

subliminal state (p < 10−2) averaged across subjects (p-values in both cases are chosen 

accordingly to [1] and, for illustration, all the active nodes are shown with the same 

activation).Voxels are classified as belonging to a certain brain area with respect to their 

anatomical location and each brain area (module) is colored differently in the figures.

By comparing the activation map of the conscious and subliminal state, shown respectively 

in Fig. 2a and Fig. 2c, we note that some brain regions are active in both brain states, i.e. the 

visual cortex (yellow and red module) and the left middle frontal gyrus (green module). 

These regions are, in addition, the only ones characterizing the activation of the subliminal 

state. The fMRI activation in each conscious experiment spreads further and involves 

additional clusters, for the case shown in Fig. 2a, for instance, it involves the left and right 

superior occipital gyrus (light blue and blue cluster respectively), right frontal gyrus (pink 

cluster) and sensory motor area (purple cluster).

Methods

This Section illustrates the procedure that we employ to investigate the transition from the 

conscious to the subliminal state, as described in the Introduction Section. From the fMRI 

activation map of the scans acquired during the conscious-state experiment we construct the 

functional brain network of this brain state, for each individual and for each single stream. 

Active fMRI voxels constitute the nodes of the network and links among these nodes are 

assigned by using pairwise correlations between the fMRI time series of the active voxels, 

with a procedure that we describe next (Fig. 2b shows one instance of this conscious 

network, corresponding to the fMRI activation of Fig. 2a).

Ideally, we would aim to build similar functional brain networks for the subliminal state, by 

employing the same procedure, so to have brain networks for the conscious- and subliminal-

state experiment and then study the transition from one to the other. As discussed in the Data 

Section though, the subliminal state is characterized by a weaker overall fMRI activation, 

which therefore requires to apply a higher p-value threshold. As a consequence, noise effects 

play a greater role on the fMRI time series of the subliminal-state compared to the 

conscious-state time signals. Furthermore, the choice of a higher p-value produces 
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subliminal AMs (obtained by comparing this state to the relative control stream) which 

present, in addition to clustered activity, isolated voxels spread across the brain that we 

consider false positives. In order to reduce these noise effects and get rid of this false 

positive activity, we averaged the activation maps of the subliminal state across streams and 

subjects, obtaining one final activation map for this statewhere the voxels are active if result 

in at least 80% of all activation maps. Furthermore, building a network for the subliminal 

state would not give any relevant information needed to explain the conscious → subliminal 

transition since the subliminal state is needed just to compare the reduction of the conscious 

network to validate any possible observation. Therefore, we limited in the use of the 

subliminal activation map as a benchmark for the study of the conscious → subliminal 

transition (Fig. 2c shows this final map) without constructing a subliminal-state functional 

network.

After we have built the functional brain networks for the conscious-state we trim each of 

these structures by performing inactivation (removal) of the nodes belonging to different k-

cores, from low to high value of k. The purpose of thistrimming process it to identify the 

nodes which belong to each specific k-core and investigate whether, from this analysis, we 

can identify some pattern in the brain network structure of the conscious state, across 

subjects. We then investigate whether there exist marks which can help us identify the 

network differences between the conscious- and the subliminal-state as well as illuminate on 

the transition between these brain states. This procedure is described in details in 

Subsectionk-core percolation.

Functional brain networks of the conscious state

For each subject and each fMRI stream of the conscious-state experiment we construct the 

relative functional brain network, following the approach described in [5,18], for a total of 

75 networks (15 subjects, 5 fMRI streams each). As mentioned, the nodes in each of these 

networks are the active voxels in the corresponding fMRI activation map. Links are assigned 

based on the thresholded pairwise correlations of the registered fMRI signal between node i 
and j, denoted as Cij, as we explain in more details in the following.

Brain networks show a modular organization [35], where different brain regions are 

specialized in the performance of different cognitive tasks. In order to depict this modular 

structure, we group the active voxels in brain clusters according to their anatomical location 

(see Fig. 2). This spatial organization suggests to distinguish between links that connect 

nodes within the same cluster, that we call in-links, and long range edges connecting nodes 

in different clusters, that we call out-links, as described in [18].

Following standard literature [5,18], we assign the links by thresholding the cross-

correlation matrix in order to get rid of the weakest connections, such that two nodes i and j 
are wired together with the assigned weighted link Cij iff Cij ≥ λ, with λ a tunable threshold 

parameter. Accordingly, each threshold value defines a different functional network, 

identified by the thresholded correlation matrix that we denote as Cij(λ). The threshold 

parameter tunes the sparsity of this resulting network and therefore the size of its giant 

connected component (GCC). For λ = 1 the threshold is maximum and the nodes are 

isolated, so the GCC = 0. By decreasing λ, more and more nodes connect together and the 
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GCC of the resulting network increases continuously till it reaches the unit value. Fig. 3a 

shows the behaviour of GCC vs λ for a representative subject.

By following [18], we fix the λ parameter through a ‘percolation’ procedure described next. 

Each sharp discontinuity in Fig. 3a is due to the merging of connected brain clusters which 

abruptly increase the size of the GCC. At each one of these transitions we assign the in- and 

out-links of the brain clusters which connect together. An in-link between a node i and j 
within each of these clusters is assigned by Cij iff Cij ≥ λin, where λin is the value of λ right 

before the sharp transition at which the clusters merge occurs, coming from higher to lower 

λ values (see orange dot in Fig. 3a). An out-link between a node i and j belonging to 

different clusters is assigned by the thresholded correlation matrix Cij(λout), where λout is 

the value of λ right after the sharp transition (green dot in Fig. 3a). Fig. 3a illustrates this 

procedure and the resulting network pictorially, for a representative subject. The adjacency 

matrix of the final architecture is shown in Fig. 3b, where nodes are ordered sequentially 

according to their cluster association, in order to show the brain network’s modular 

structure.

We note that other methods [22,3] could be used to build the functional networks. Our 

choice on the use of the percolation procedure to build such architecture was driven by the 

constraint that brain networks are sparse and such procedure guarantees sparsity by not 

overestimating the number of links between different clusters. We stress that the wiring only 

reflects functional relations among fMRI active voxels and, in general, differs from the 

structural wiring obtained, for instance, through diffusion tensor imaging or other method of 

physical connectivity [23,16]. Thus, all our analysis and results must be considered as 

grounded on the functional network framework.

k-core percolation

The concept of k-core has been firstly introduced in social sciences [32] to describe network 

cohesion and, since then, it has been applied in many contexts, to describe robustness of 

random networks [17], viral spreading in social networks [24] and large-scale structure of 

the brain [21].

For a given architecture, the k-core is the maximal subgraph, not necessarily globally 

connected, which consists of all the nodes with at least k neighbours. This subnetwork can 

be obtained by removing iteratively all the nodes which have less than k connections. Thus, 

to extract the k-core one starts pruning all the nodes with degree less than k. The removal of 

these nodes reduces the degree of their neighbors that can then drop below k. Thus, these 

nodes should be removed in turn, and the procedure iterates until no more nodes can be 

removed. The remaining structure is the k-core of the network (see Fig. 3).

For a given k, the k-core includes cores with higher k, thus the 1-core includes the 2-core, 

the 2-core includes the 3-core and so forth. Each k-core consists of the nodes in the 

periphery which is called k-shell (labelled ks) and the resting k + 1-core. The k-shell is, 

therefore, the region of the k-core which is not included in the k + 1-core (see Fig. 3). 

Therefore the network has a nested structure made of k-core subnetworks with increasing k 
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and k-shells of order ks. The innermost core of the network corresponds to the structure with 

the maximum k-core, called k core 
max , which is a topological invariant of the network [17].

For each one of the 75 conscious-state network, we can then compute the k-core and k-shell 

occupancy, i.e. the density of nodes which occupy each k-core or k-shell with a given k. An 

interesting property of these networks emerges when one examines the nodes and the nodes’ 

brain anatomical area in each k-shell. We discuss the results of this analysis in the next 

session.

Results

The maximal k-core of the conscious network corresponds to the subliminal-state

Once we have performed the k-core trimming process as described in the previous Section, 

we can calculate the occupancy of each k-shell, for each subject, that is, the number of nodes 

in each k-shell. Fig. 5 illustrates this occupancy for a representative conscious-state network. 

We note that, interestingly, the distribution presents a U-shape: it shows very high occupancy 

values for both very small and very high k-shell values, and low occupancy for the 

intermediate k-shell values. This shape of the distribution is consistent throughout all the 

conscious networks analyzed. Reference [7] attributes the U-shape of the occupancy 

distribution to the stability of the system: the high population of nodes in the lowest and 

highest k-shells suggests network robustness against both random local and global attacks, 

thus making the brain a resiliant system under these kind of perturbations. The same feature 

is also observed in ecosystems and financial networks [7] and it is general feature of many 

networks called the core-periphery structure [9,25,4,44,41].

We further observe that for the subject shown in from Fig. 5 the k-shells with small k’s are 

populated by nodes that belong to any fMRI active module and, therefore, nodes that are 

spread across all the active brain regions. More interestingly, Fig. 5 emphasizes that the 

nodes which inhabit the k-shells with the highest k (k = 50 for this subject) belong 

exclusively to those brain modules that are the only active in the subliminal-state, namely 

the right and left visual cortex and the left precentral gyrus (see Fig. 2c).

Figure 6 shows pictorially the k-core decomposition process for the same subject presented 

in Fig. 5. Figure 6a illustrates the progressive inactivation of the fMRI active voxels, based 

on their k-corein the conscious-state network, while Fig. 6b shows the occupancy number in 

each of these k-cores, i.e. the number of nodes in each k-core. Figure 6c shows the k-core 

decomposition process by highlighting the network connectivity. As discussed for Fig. 5, 

Fig. 6c shows that the k core 
max  for this particular conscious-state network is made by the visual 

cortex (yellow and red cluster) and by the precentral gyrus (green cluster), which are the 

only fMRI active clusters in the averaged subliminal-state activation map.

To verify whether these results are due to non-random effects we performed the following 

analysis. For each of the 75 conscious-state graphs we generated 106 new architectures 

obtained by randomly rewiring the original network and keeping constant the degree of each 

node. We then apply k-core decomposition to each of these 106 random networks and 
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compute the k-shell occupancy. This obtained occupancy is then averaged across the 

generated random networks and compared with the k-shell occupancy of the conscious-state 

network from which the random architectures are created. Results are shown in Fig. 7 for a 

representative subject and illustrate two interesting points. First, the functional conscious-

state network has a much higher k core 
max  than the averaged random case. Second, the averaged 

occupancy distribution of the random networks shows the same U-shape feature that we 

found in all the functional conscious-state networks obtained from the fMRI signal. This 

suggests that the source of this shape is related to the degree distribution of the nodes, being 

this distribution the same both in the real conscious-state and randomly generated networks. 

We mention that although Fig. 7 refers to a representative case, we found qualitatively the 

same results for all the 75 conscious-state networks.

As already noted, the results of Fig. 6 illustrate that, for this representative subject, the nodes 

which populate the k core 
max  of the conscious-state network belong to clusters which are the 

only active ones in the averaged subliminal-state activation map (see Fig. 2c). In order to 

check whether this result is consistent across all the conscious-state networks we performed 

a group analysis at the clusters level. For each of the 75 conscious networks we assign count 

1 to the cluster of nodes belonging to the k core 
max . For instance, for the particular network of 

Fig. 5 we assign count 1 to clusters 1, 2 and 3 (yellow, red and green respectively, which 

populate the k core 
max = 50). The normalized occupation number of the clusters in the k core 

max

across conscious-state networks is shown in Fig. 8, where the clusters havebeen ordered 

progressively. The green histogram represents the frequency with which each cluster appears 

in the k core 
max , independent of the amount of nodes that populate the maximum k-shell. These 

results are compared to random ones illustrated by the blue histogram. The probability that 

each cluster is, at random, in the k core 
max  is 1/7 of the sum of counts of all modules which, 

when normalized with respect to the numberof conscious networks analyzed (75 networks), 

translates to a 30% chance to populate the k core 
max  (see Fig. 8).

This comparison not only shows that the visual cortex and precentral gyrus (cluster 1, 2 and 

3 in Fig. 8) are those which mostly populate the k core 
max  of the conscious-state network across 

subjects, it also points out that this is not due to random effect. As reported above, these 

clusters are the only active ones in the subliminal-state experiment. The other four clusters 

(3 to 7 in Fig. 8) populate the k core 
 ctmax  with a normalized frequency which is less than a 

random effect, making their presence in the maximum k-core statistically less significant.

As a further test, we check whether the above group results at the cluster level are also 

consistent at the node level. In other words, we want to investigate whether, across networks, 

the nodes in the k core 
max  of theconscious-state are the same nodes which are active in the 

subliminal-state. For each conscious-state network we compute how many nodes (nk) are in 

the k core 
max , and we check how many of these nodes are also in the activation map of the 

subliminal-state, we refer to this number as nx. Then, in each conscious-state network we 
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randomly select nk nodes and check how many of them also belong to the activation map of 

the subliminal-state. We repeat this random sampling 105 times in order to have a 

distribution of randomly selected nodes in the conscious network which are also in the 

subliminal activation map and perform a t-test with the overlap nx described above. In Fig. 

fconc we show the results for the networks which passed the t-test. In details, the left panels 

show nodes which are both part of the k core 
max  of the conscious-state and of the AM of the 

subliminal-state (show in the right panels for comparison), consistently across networks. 

Quantitatively, nearly 1/3 of the nodes in the AM of the subliminal-state also belong to the 

k core 
max  of all the conscious functional networks that pass the t-test (precisely, 112 nodes over 

340). This suggest that the subliminal-state, which remains active during period of non-

conscious perception, constitutes a large part of the k core 
max  of the conscious state.

Discussion

In this Section we elaborate on the interpretation of the results by introducing a dynamical 

model describing the time evolution of mutualistic complex systems [29] which directly 

addressed the stability of the network and its relation to the k-core. The model of [29] only 

applies to the complex networks with only positive interaction. Since the correlations 

between the nodes of the conscious-state networks turn out to be positive, the dynamics of 

these brain networks can be modeled with differential equations accounting for mutualistic 

interplay proposed in Ref. [29]. Recent results [29] show that, for such mutualistic systems, 

the k core 
max  of the network is the most resilient structure, i.e. the last architecture which 

collapses, to the weakening of the interactions strength. The results discussed in the Results 

Section show that the k core 
max  of the conscious-state largely overlap with the subliminal-state 

activation map. Thus, in short, the findings of [29] help us interpreting the subliminal-state 

as the most resilient part of the conscious-state when the correlations (interactions) strength 

is weakened. This leads us to theorize that the conscious → subliminal transition in the 

brain happens through the weakening of the interactions strength in the network. In other 

words, regions which are highly correlated in the conscious-state suddenly become less 

correlated and, therefore, not fMRI active thus producing a subliminal state of activation. We 

see this effect in the data through the activation map shown in Fig. 2 which shows that, 

indeed, the subliminal state is characterized by much less fMRI activation (compare Fig. 2a 

with Fig. 2c). Furthermore, the results discussed in the Results Section demonstrate that the 

residual activation of the subliminal-state largely matches with the k core 
max  of the functional 

conscious-state network. These two evidences are consistent with the results discussed in 

[29] which help us interpreting the transition conscious → subliminal as taking place trough 

the activity collapse of certain conscious-state area, due to decrease covariation among these 

areas, leaving residually active only areas in the k core 
max . These areas are therefore the most 

resilient ones, as shown in [29], and, in our case, those which characterize the subliminal 

brain activity. In the next Section we briefly review the relevant results of Ref. [29] to the 

above discussion in order to elaborate an interpretation of our results and a description of the 

conscious → subliminal transition at the functional networklevel.
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Dynamical model and k-core percolation

The dynamics of a neural network can be described by a model of coupled interacting 

neurons through sigmoidal responses [34,2,19]. Here, by coarse graining the neural activity, 

we use the same model to describe the dynamical evolution of the fMRI signal in each 

voxel, with the following nonlinear differential equations [34,2]

ẋı(t) = I −
xi
R + 1

2 ∑
j = 1

N
Ai jJi j 1 + tanh n x j − α (1)

Above, xi(t) is the fMRI activity of voxel i, I is the background BOLD activity, R is the 

inverse of the inactivation rate, n is the slope of the sigmoid function, α is a BOLD activity 

threshold at the fMRI voxel level, Aij is the adjacency matrix, i.e. Aij = 1 if voxel i and j are 

connected and zero otherwise and Jij is the interaction strength between pair of voxels where 

we take Jij = Cij as the strength of correlations from the data. Notice that the theory is only 

valide in the absence of inhibition, i.e Jij > 0. Let us note that the matrix shown in Fig. 3b 

includes both the information encoded in Aij (whether a link is present or not) and in Jij (the 

strength of such link). In (Eq. 1) we employ this slightly different formalism for consistency 

with Ref. [29].

For a given set of initial conditions, the fixed point solution of Eq. (1) is completely 

determined by the values of the dynamical parameters. Of particular interest is the 

identification of the tipping point by tuning of these parameters, i.e. the point at which xi = 0 

for each i. In general, the analytical derivation of the fixed point solution of Eq. (1) is too 

cumbersome. Morone et al. in [29] have shown, yet, that under the assumptions of constant 

couplings (Jij = J for all i, j) and by replacing 1
2 1 + tanh n x j − α ≈ Θ x j − α , where Θ(x) is 

the Heaviside function, it is possible to obtain an approximate solution of this tipping point.

We observe that, in the data of the experiments [1], analyzed and discussed in the previous 

Sections, the interactions among voxels are mainly positive (see Fig. 3b). This outcome 

could be explained by noting that the fMRI signal is stimulus-driven (words shown on a 

screen) and, therefore, the Pearson correlation coefficient among the fMRI activity of two 

voxels which follow the same stimulus is most likely positive. If we then assume that these 

interactions (correlations) have all the same strength J, by following the approximation of 

[29] for the sigmoidal function, we can rewrite (Eq. 1) as

xi*(t) = IR + JR ∑
j = 1

N
Ai jΘ x j* − α (2)

and, with the following change of variable

yi* =
xi* − IR

JR , (3)
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Eq. (2) can be written in terms of the reduced density y*, in the following form:

yi*(t) = ∑
j = 1

N
Ai jΘ y j* − KJ , (4)

with

KJ = α
JR − I

J . (5)

The parameter KJ in Eq. (4) controls the threshold of mutualistic benefit [29] which, in the 

case of study, is a threshold of mutualistic signal enhancement between voxels. In practice, 

KJ is the threshold in the Θ-function of Eq. (4) which allows voxel i to increase its activation 

thanks to the interaction with voxel j only when the densities y* are greater than KJ. Let us 

observe that KJ is inversely proportional to the interaction strength J. By weakening the 

interactions the threshold increases and, thus, the final activity of voxel i decreases. In other 

words, by keep decreasing the interactions, the activity of some of the voxels yj falls under 

threshold and therefore confers no activation to yi (see Eq. (4)). Hence, from Eqs. (4) and (5) 

it is clear that there exist a critical value Jc, and thus a critical threshold KJ(Jc), at which the 

only solution of Eq. (4) is y*= 0.

In Ref. [29] the authors show that this critical threshold is related to the maximum k-core of 

the network. Indeed, the reduced density yi* assumes only integer values in the set yi*, where 

ki is the degree of voxel i. For a given threshold KJ, the voxels with degree kj < KJ do not 

contribute to Eq. (4), so they can be removed from the network. After this removal, some of 

the remaining voxels will have a smaller degree kj′ (due to the fact that they have lost some 

of their neighbours with the removal). The voxels with kj′ < KJ can then be removed in turn, 

because they will not contribute to Eq. (4), and so forth. This process is exactly the 

algorithm for extracting the KJ-core from a network and the voxels remaining at the end of 

this procedure are the voxels belonging to the KJ-core [29]. By increasing the threshold KJ 

from low to higher values, voxels from the low-to-higher k-cores will cease to contribute to 

the dynamics of the network, until the critical threshold KJ Jc = k core 
max  is reached. Above 

this threshold, the only fixed point solution is y* = 0.

From this findings it results that, as also mentioned at the beginning of the Discussion 

Section, the k core 
max  structure is the most resilient part of a network to the decreasing of the 

interactions strength. Based onthese findings, we interpret the conscious → subliminal 

transition as a passage from high to lower correlations among brain areas which ends in a 

final state, i.e. the subliminal, that corresponds to the k core 
max  of the conscious-state network. It 

is worth mentioning that this dynamical model could be applied to any experiment on 

consciousness that results in positive interactions between active nodes assuming that the 

underlying dynamics is the one described Eq. (1).
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Our results in the light of the consciousness theories of Libet and Dehaene

Two prominent theories of the relation between unconscious information and conscious 

access have been developed by Benjamin Libet and Stanislas Dehaene. The former stressed 

how, through the analysis of EEG data, all external stimuli is processed in the brain 

unconsciously a couple of hundred of milliseconds before any voluntary act. According to 

this theory, unconscious information is the spark for the initiation of all conscious actions, 

and there is a role for consciousness and executive control to regulate actions of information 

processed subliminally [28]. On the other hand, Stanislas Dehaene, has shown the existence 

of a large-scale versatile brain system that involves regions in the parietal and frontal cortex 

that set a temporary workspace to bind and share information [13,12,40]. This framework 

which allows exchange of information through first bottom up, followed by top down 

propagation, is referred to as ignition; if the incoming stimuli does not activate voxels 

strongly enough, then the information will not be manifested consciously by the brain.

Our findings add a new view which is consistent with these theories. Both share the notion 

that, while conscious activation involves the non-lineal and massive activation of a broad set 

of brain areas in an ignition process, the onset of this process is in local-circuits which 

encode information for this specific process which might become conscious. Our work 

shows that despite the massive propagation and of activity, this core of activity which was at 

the seed of the unconscious activity remains at the deepest core at the shell structure of the 

functional networks. This finding is quite reminiscent of the theory of vision proposed by 

David Mumford and colleagues [27]. The theory argues that V1 is a high frequency 

functional core of the brain. It buffers and holds temporarily (as in a blackboard, or as in a 

workspace) information for which it is receptive fields are optimally suited. In other words, a 

core shell of conscious activation, may not be a common set of neurons, but instead vary 

according to the functional requirements of the specific conscious percept at any given time. 

Two prominent theories of the relation between unconscious information and conscious 

access have been developed by Benjamin Libet and Stanislas Dehaene. The former stressed 

how, through the analysis of EEG data, all external stimuli is processed in the brain 

unconsciously a couple of hundred of milliseconds before any voluntary act. According to 

this theory, unconscious information is the spark for the initiation of all conscious actions, 

and there is a role for consciousness and executive control to regulate actions of information 

processed subliminally [28]. On the other hand, Stanislas Dehaene, has shown the existence 

of a large-scale versatile brain system that involves regions in the parietal and frontal cortex 

that set a temporary workspace to bind and share information [13]. This framework which 

allows exchange of information through first bottom up, followed by top down propagation, 

is referred to as ignition; if the incoming stimuli does not activate voxels strongly enough, 

then the information will not be manifested consciously by the brain.

Conclusions

In this work we investigated the conscious → subliminal transition in the brain through the 

network analysis of fMRI data collected in Ref. [1] where two experiments on human 

subjects were performed, specifically designed to induce either a conscious or a non-

conscious (subliminal) perception of a word flashed on a screen.
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From the data we first observed that the fMRI activation of the subliminal-state is largely a 

subset of the activation of the conscious-state. Furthermore, we note that the links in the 

functional brain network of the conscious-state, built from the fMRI signal, are mostly 

positive.

These two observations from the data analysis, together with the recent findings of Ref. [29], 

led us to perform a k-core study of the conscious-state network structure. The authors of 

[29] recognized indeed that, under certain approximations, neural dynamical systems with 

positive interactions show a decrease of their activation to the weakening of their 

interactions strength. The most resilient part of the network to this kind of weakening, i.e. 

the last structure to remainactive, is the k core 
max  of the system. So, driven by the above 

observations we investigated whether the subliminal-state was related to the k core 
max  of the 

conscious-state.

We found that, at the cluster level, the subliminal-state is made of fMRI active clusters 

which are those that most populate the k core 
max  of the conscious-state network, across subjects 

and experiments. At the node level, we found that roughly 1/3 of the active voxels of the 

subliminal-state exactly overlap (node by node) with the nodes in the k core 
max  of the conscious-

state network, across fMRI streams. To verify that these results were not due to chance, we 

also compared them with outcomes obtained from suitable randomly generated models.

Overall, these findings are in agreement with the prediction of Ref. [29] and led us to 

conclude that the conscious → subliminal transition may be interpreted as caused by a 

decrease of the correlated fMRI activity among voxels, due tothe fMRI inhibition of certain 

brain areas. The areas which survive this inhibition, i.e. those which constitute the 

subliminal-state, are also those that, statistically, belong to the most resilient structure of the 

conscious-state network: the k protectcore 
 max  . This not only sheds light on the nature of the 

conscious → subliminal transition but, furthermore, motivates us to interpret the subliminal-

state activity as the most robust to the weakening of the fMRI signal. Indeed, this state is the 

one which persists as background fMRI activity when non-conscious perception is present 

and the state from which conscious perception arises.

The conscious → subliminal transition is a profound and intriguing problem in 

neuroscience and this work certainly does not answer all the questions that it rises. On the 

other hand, from a system neuroscience perspective, we think our resultshighlight the 

importance of studying network structures that could unveil useful patterns or markers able 

to shed light on similarity and differences between conscious and subliminal awareness and 

on the transition from one to the other.
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Highlights

• The maximal k-core of the conscious network corresponds to the subliminal-

state.

• Occupancy of the nodes in the conscious-state as a function of k-shells have a 

U-shape distribution.

• Transition from conscious to subliminal state obtained in priming experiments 

can be modeled through k-core percolation.

• 1/3 of the nodes in the maximum k-core of the conscious network also belong 

to the subliminal state.
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Figure 1. 
Simplified sketch of the experiment [1]. The left illustration portrays the stream sequence 

used to cause the conscious-state perception, where the four lettered word is presented 

preceded and succeeded by blank screens. The right illustration portray the experiment 

where the word is sandwiched between distractors, or masks, which inhibits the conscious 

perception of the word and causes the subliminal-state activation. For each of these two 

experiments a control sequence is presented in which blank images are displayed instead of 

words.
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Figure 2. 
Activation map and functional network of the conscious-state. a) Activation map of the 

conscious-state network for a representative subject (p < 10−6). Sagittal and axial view of the 

brain are shown. The visual cortex and the superior gyrus are involved in visual and word 

processing, the middle frontal and superior frontal gyrus respond to motor signaling while 

the superior temporal gyrus is involved in memory and information processing. b) Resulting 

functional network relative to the activation map of panel a) constructed with the procedure 

described in the Functional brain networks of the conscious state Subsection. c) Activation 

map of the subliminal-state network (p < 10−2), p-values are chosen accordingly to Ref. [1] 

in all panels.
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Figure 3. 
Functional network construction. Upper panel: Percolation plot, i.e. the GCC of a network 

defined by the adjacency matrix Cij(λ) vs the penalization parameter λ is shown. The orange 

dot in the plot indicate thevalue of λin used to fix the in-links within the two brain modules 

shown pictorially in the panel. The green dot pictures the value of λout employed to fix the 

out-links connecting the same two modules together. Lower panel: resulting adjacency 

matrix of the functional network obtained with the above procedure.
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Figure 4. 
Cartoon of a 3-core network k-shells are defined as the set of nodes that belong to the k-core 

but not the k + 1-core. As illustrated, k-shells are concentric; low k-shells are located in the 

outer part of the network, while for increasing k, nodes are situated in the most focal part 

until one reaches the highest k-shell, which corresponds to the k-core, and is located at the 

center of the graph
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Figure 5. 
k-shell occupancy for the conscious network of a representative subject. The distribution 

presents a U-shape: high population of nodes in the lowest and highest k-shells. We observe 

that the shells with the lowest k are inhabited by nodes which belong to all the 7 brain 

clusters which are fMRI active in the brain, for this subject. On the contrary, the maximum 

k-shell, the inner core of the network, is made by nodes which belong to only 3 clusters 

which, more importantly, are the only fMRI active clusters of the subliminal-state.
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Figure 6. 
k-core decomposition illustrated both in the activation brain map and in the functional 

network. a) Effect of the k-core trimming process on the activation map of the conscious-

state, for increasing k-values. Nodes located in the low k-cores belong to all the brain 

clusters, on the contrary, nodes in the k core 
max  belong to the visual cortex and middle frontal 

gyrus (green, red and yellow modules). b) Number of nodes in each k-core c) Same k-core 

decomposition of panel a), with a different visualization made on the functional network. 

Same considerations on the k core 
max  apply.
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Figure 7. 
k-shell occupancy distribution. Comparison between real conscious-state and a random 

networks generated as described in the Results Section is shown. Random networks exhibit a 

much lower value of the maximum k-shells compared to the real network, a behavior 

common to all the conscious-state networks (p < 10−6).
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Figure 8. 
Cluster occupancy of the nodes in the maximum k-shell. Green bars show the normalized 

cluster occupancy of the nodes which populate the maximum k-shell. If the occupation of 

the k-shell were a random effectthen one would find a distribution of at least 30% in each 

cluster (blue bars). We observe that the left and right fusiform gyrus and the left prefrontal 

gyrus populate the maximum k-shell more than at random.
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Figure 9. 

Statistical analysis at the node level. Left panels: nodes which are in the k core 
max  of all 

conscious-state networks that pass the t-test (p < 10−5) when compared with the subliminal-

state. Right panel: activation map of the subliminal-state shown for comparison. Roughly 

1/3 of the nodes which belong to the k core 
max  of the conscious-state also belong to the 

subliminal-state activation map.
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