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Abstract

Time reversal of quantum dynamics can be achieved by a global change of the Hamiltonian sign (a hasty Loschmidt daemon), as in the

Loschmidt Echo experiments in NMR, or by a local but persistent procedure (a stubborn daemon) as in the time reversal mirror (TRM) used

in ultrasound acoustics. While the first is limited by chaos and disorder, the last procedure seems to benefit from it. As a first step to quantify

such stability we develop a procedure, the perfect inverse filter (PIF), that accounts for memory effects, and we apply it to a system of coupled

oscillators. In order to ensure a numerical many-body dynamics intrinsically reversible, we develop an algorithm, the pair partitioning, based

on the Trotter strategy used for quantum dynamics. We analyze situations where the PIF gives substantial improvements over the TRM.
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In the last years, the group of M. Fink in Paris developed
an experimental technique called time reversal mirror
(TRM) that allows the time reversal of acoustic excitations
[1]. An ultrasonic pulse, produced inside a control region
(also called cavity) where it suffers multiple scattering
processes, is detected by several microphones as it escapes
through the boundaries. These transducers can also act as
loudspeakers and the registered signal is played back in the
time reversed sequence. Thus, the signal focalizes in the
source point forming a Loschmidt Echo [2]. According to
the existing theory, an exact control of the wave function in
the cavity would require the control of the wave function
and the normal derivative at the boundaries. However, the
reversal is quite good even when these conditions are not
fulfilled by the experiment: the detectors might not enclose
the cavity or the recording time period could be reduced to
a fraction. Another surprising feature of this time reversion
procedure is that it shows a much better stability in
inhomogeneus media as compared to ordered ones. This
leads to numerous applications in medical physics [3] and
e front matter r 2007 Elsevier B.V. All rights reserved.
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communications [4]. A first step to asses the errors is to
develop a procedure that could achieve perfect reversal.
This task was developed for the domain of quantum waves
and was named perfect inverse filter (PIF) [5]. The PIF
procedure assures the exact reversion by injecting a wave
function that compensates precisely the feedback effects
through a frequency dependent renormalization that
involves the exact Green’s function at the injection sites.
Here, we use a simple microscopic model that presents
wave behavior and describes energy dissipation to show
that the PIF procedure also applies in the classical domain.
The model, represented in Fig. 1, is a variation of that of
Rubin [6]: a surface oscillator with mass m0 and natural
frequency o0 is coupled to a semi-infinite harmonic chain
of bulk oscillators with mass m. We are interested in the
time reversion of the initial condition where all the
oscillators are in their equilibrium positions except for
the surface one. The energy stored in the surface oscillator
is expected to decay due to the effective friction produced
by the ‘‘environment’’of light masses. The Hamiltonian is
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Fig. 1. Scheme of the model: a simple pendulum (surface oscillator) is

coupled to the bulk masses.
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where oi is the natural frequency of the ith oscillator and ui

describes the displacement from the equilibrium. Springs
with elastic constant Ki;iþ1 accounts for the coupling
between first neighbors. For the proposed model, all
springs and masses are equal and oi ¼ 0, except for the
heavier surface mass that suffers an additional harmonic
restitutive force (o0 is finite). The exchange frequency ox ¼ffiffiffiffiffiffiffiffiffiffi

K=m
p

and the ratio a ¼ m=m0o1 have been chosen to set
the system in the extended-oscillatory dynamical regime [7].
The equations of motion in the frequency domain can be
written in the matrix form

D�1ðoÞuðoÞ ¼ ðo2I�MÞuðoÞ ¼ 0, (2)

where DðoÞ ¼ ðo2I�MÞ�1 is the resolvent associated to
the dynamical matrix in the site basis
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The resolvent provides the solutions to Eq. (2) with
impulsive forces f iðtÞ ¼ miD _uið0ÞdðtÞ. This is,

ujðtÞ ¼
X

i

Z
do
2p

e�iotDj;iðoÞD _uið0Þ, ð4Þ

¼
X

i

Dj;iðtÞD _uið0Þ. ð5Þ

Notice that Dj;iðtÞ relates the jth displacement amplitude
with an initial condition of velocity in the ith oscillator. In
general, the solution of the Eq. (2) in presence of forces
FiðtÞ results

ujðtÞ ¼
X

i

Z t

0

wj;iðt� t0ÞFiðt
0Þdt0, (6)

and can be rewritten as

ujðoÞ ¼
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where F iðoÞ ¼ f iðoÞ þ giðoÞ is the Fourier transform of
the force applied at mass i that is a sum of two
components: an impulsive force and a shifting force. This
last is able to produce an ‘‘instantaneous’’ shift Dujð0Þ in
the position without changing its momentum. This would
require that a first ‘‘impulsive kick’’ should be followed by
a compensating one:

giðtÞ ¼ lim
t!0
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which in frequency domain means

giðoÞ ¼ �iomiDuið0Þ. (7)

Thus, in the time domain
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which serves as a definition for the position–position
response function, also called the Green’s function:

Gj;iðoÞ ¼ �ioDj;iðoÞ ¼ iowj;iðoÞmi. (10)

On the other hand we will use linearity to write the
observed displacement in terms of duiðtÞ, the forced
position shift accumulated in the unit time:

ujðtÞ ¼
X

i

Z
Gj;iðt� t0Þduiðt

0Þdt0. (11)

We seek the injection function duiðtÞ that produces the
exact reversion of the original wave within the control
region, i.e. urev

j ðtÞ � u�j ð2tR � tÞ for tRptp2tR. According
to Ref. [5], the perfect time reversal is possible if the
dynamics starts and ends up without any excitation inside
the cavity. Even when our system starts with an ‘‘ex-
cited’’ cavity, the lack of momentum at each mass ensures
that forward and backward evolutions are identical. Once
the decay signal is registered at the transducer for positive
time, the earlier time values (corresponding to a fictitious
injection) are also known and we build the function to be
inverted at time tR

~usðtÞ ¼
u�s ðtR � tÞ; �tRptp0;

usðt� tRÞ; 0ptptR;

(
(12)

and the injection function can be obtained in the frequency
domain by

dusðoÞ ¼
~u�s ðoÞ

Gs;sðoÞ
. (13)

This equation defines the PIF for a classical wave, where
the injection prescribed by the TRM procedure appears
now corrected by the Green’s function Gs;sðtÞ. The time
evolution of the displacement amplitude is shown in Fig. 2
for several situations. The recording time tR is longer than
the decay time in the whole cavity, i.e. all the masses in the
control region have enough time to recover their equili-
brium positions. The injection functions of both proce-
dures differ near the bandedges (o ¼ �2ox) indicating that
corrections made to TRM are important in cases where the
whole spectrum is involved (typically in broadband
experiments). When all the masses in the cavity are in
their equilibrium position, the injection at the source point
xs produces oscillations that propagate both sides of xs:
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Fig. 2. Displacement amplitudes. Top: initial condition at the surface

oscillator. Left bottom: registered signal in xs. Right bottom: response

function in xs. The chosen parameters are: a ¼ 0:25, o0 ¼ 1:5ox, tR ¼

1000o�1x and xs ¼ 10.
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Fig. 3. Decay and recovering by PIF procedure of the local energy in

logarithmic scale. The insets show in detail the quadratic and exponential

regimes.
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Fig. 4. Recovering of the initial condition for the two procedures.
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Fig. 5. Focalization of the local energy in logarithmic scale. Solid line

represents the ideal time reversed decay, dashed line is PIF and TRM is

shown in dotted line. Note that PIF is superposed with the ideal case.
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Only dynamics inside the cavity is fully reversed. Fig. 3
shows the local energy of the surface oscillator

E0ðtÞ ¼
1
2
m0j _u0ðtÞj

2 þ 1
2
m0ðo2

0 þ ao2
xÞju0ðtÞj

2;

its decay and recovering presents three temporal domains
[8]. It begins with a quadratic dependence, continues with
an exponential decay associated with a Self Consistent
Fermi Golden Rule, and becomes an inverse power law
when the energy return is comparable to the residual
energy in the surface mode. The time reversed signal
reproduces all the three regimes, even when they involve
very different signal intensities. We attempt to asses the
quality of the reversal by the Loschmidt Echo [2] of a wave
function jðtÞ normalized in the cavity:

MðtÞ ¼ jhjrevðtÞjjð2tR � tÞij2; tRptp2tR. (14)

First, the inner product uses a metric tensor given by the
Hamiltonian, i.e. we refer the recovered energy to that
originally contained within the control region. Considering
the case where tR ¼ 1000o�1x , the PIF yields MPIF ¼ 0:999
while the TRM gives MTRM ¼ 0:982. This result is not
representative of the errors shown in Fig. 4. Alternatively,
we use the Euclidean metric tensor, obtaining MPIF ¼ 1
and MTRM ¼ 0:765, i.e. in PIF all the initial condition have
been recovered whereas in TRM there is a spreading of
displacements and velocities along the cavity. The reversed
local energy in both procedures is compared in Fig. 5. The
PIF procedure cannot be distinguished from the ideal
reversal. The TRM has two failures: the amplitude of the
local energy at t ¼ 2tR is always less than the initial case
and the temporal regimes are delayed.
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In summary, the time reversion of the dynamics of a
pendulum coupled to an harmonic chain has been done by
means of two types of ‘‘stubborn daemons’’: (1) The TRM,
which neglects memory effects (meaning that an instanta-
neous system response is assumed). (2) The PIF, that
accounts for memory and feedback. This last is much
better if the initial condition is build up over the whole
range of frequencies. In this case, the correction of the
Green’s function becomes non-trivial and ensures a better
reversion quality.

Appendix A. Classical dynamics through pair partitioning

While the 1D dynamics in the model considered can be
obtained analytically by the continued fraction method [9],
we also evaluate it numerically by developing an algorithm,
the pair partitioning, inspired in the Trotter strategy used
in quantum dynamics [10]. We split the kinetic terms to
rewrite the Hamiltonian as

H ¼
X

i

Hi;iþ1. (A.1)

Now, each term represents an effective Hamiltonian for
two coupled oscillators, with twice the mass and half of the
natural frequency each. Pair dynamics is solved analytically
and impose a periodic evolution sequence that alternates
each coupled pair according to their parity. The total
energy is not exactly conserved but fluctuates with an
amplitude DE around the ideal conserved value. Since DE

is proportional to dt2, the square of the temporal step, it
becomes negligible for typical cases where dt ¼ 0:01o�1x .
The fact that each piecelike dynamics is perfectly reversible
is very important for the test of different time reversal
procedures.
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