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Abstract: We present a new analytic treatment of two-electron integrals over two-center integrals
including correlation (interelectronic distance) explicitly in the wave function. All the integrals
needed for the evaluation of the matrix elements of any diatomic two-electron molecule are
obtained as analytic recursion expressions. As an application of this method in molecular physics,
we calculate the value of the ground-state energy and equilibrium internuclear distance of the
hydrogen molecule in the Born—Oppenheimer approximation.

1. Introduction James and Coolidgevere the first that made ab initio
Two-center, two-electron systems are a subject of greatcalculations for two-center, two-electron systems using
interest in molecular physics. In particular, several molecules correlated functions. These functions include the interelec-
may be described as such a system. Computation of thetronic coordinate explicitly. They extend the method used
Born—Oppenheimer ground-state energy of the hydrogen by Hylleraas for the helium atofhto the hydrogen molecule.
molecule was the subject of progressively more accurateAfter this, many authors used the Jam€&volidge or
variational calculation.5 Two-electron addition to closed- ~ modified JamesCoolidge expansions for the calculation of
shell neutral polar molecules may also be described as a two-different properties of diatomic two-electron systeifs.
center, two-electron system. The binding of two electrons  Even if the results obtained using Jam&oolidge expan-
to a fixed finite dipole has not been resolved. In recent years, sion are very accurate, this method has some difficulties.
there has been increasing interest in the study of the possibleThe inclusion of the interelectronic coordinate (as powers)
existence of such dipole-bound dianién&The study of this in the wave function generates very complicated two-
kind of weakly bound states represents an interesting field electron, two-center integrals. Kolos et?dlsolved these
of research. For these states, the energy is nonanalytical agtegrals keeping powers of the interelectronic distance up
a function of the dipolar moment, and a bound state could to order three and obtained very accurate values for the
not exist at the threshold energy; therefore, they might be ground-state energy of the hydrogen molecule.ref 16,
good candidates to be halo statésTechnical problems  Kolos and Roothaan present an interesting treatment of these
appear when standard approximations such as perturbationintegrals. They solve fully analytically the case of even
theory, nonlinear variational calculations, or the Rayleigh  powers of the interelectronic distance. The case of odd
Ritz method are used to study weakly bound st&tes. powers was partially solved and completed with numerical
Recently, a finite size-scaling theory for the study of near- integration.
threshold properties in quantum few-body problems has been The aim of this paper is to report a new method for the
developed? The method was successfully applied to one analytical evaluation of the two-electron, two-center James
electron attached to dipole and quadrupole potenidfsiAn Coolidge integrals without limitation in the power of the
accurate expansion of the ground-state wave function in acorrelation coordinate.
(truncated) complete basis-set is necessary in order to apply This paper is organized as follows. In section 2, we
finite size-scaling methods to two-center, two-electron develop our method for the evaluation of two-center, two-
systems. electron integrals and we express these integrals as analytical
recurrence relations. Technical aspects are discussed and
* Corresponding author e-mail: serra@famaf.unc.edu.ar; home- numerical evaluations are presented in section 3. In section
page: http://tero.fis.uncor.eduserra/. 4, we apply the results obtained in previous sections to

10.1021/ct0502662 CCC: $33.50 © 2006 American Chemical Society
Published on Web 01/25/2006



Evaluation of Two-Center, Two-Electron Integrals J. Chem. Theory Comput., Vol. 2, No. 2, 20@D7

evaluate the ground-state energy of the hydrogen molecule. (1 _ras 2 K (K LS

Finally, our conclusions are given in section 5. Koars(K) = f o, o & (2"71) S (2’772) R (2,§<)
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The basic integrals that appear in a two-center, two-electron

James-Coolidge ground-state expansion of any diatomic . 20 2o Kk LS (K

two-electron system are of the fotm Koars(9) = [ 6% % & (5’771) S (5’772) R (§’§<)
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where the integral is expressed in usual prolate spheroidal ®
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interelectronic distance, arndandg are variational param-
eters. Powers are integer numbers vgtlg, r, s> 0 andm
> — 1.
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To apply eq 3, we expand eq 11 in powerskafsing the
power expansions of the spheroidal wave functions. A useful
expansion for the angular functions of the first kinéPis

where)' means that the sum is over even values of the index,
P«(2) are the Legendre functioddb; = max(,j), ko = |
mod(2) — |, and the recursive relations for the coefficients
- 1 gt apk' are given in the appendix. In ref 18, it is also shown that

pars = T ngqrs(k) - ©) d2 (k) admits the expansion

eg 1 may be expressed as
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Then, the problem is reduced to solve the integral in eq 2. [ (/2) = Zlff
For this purpose, we use the expansion of the Green function ° jZDjZO =5z
for the Helmholtz operator in prolate spheroidal coordi- ’
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and
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whereQy+(2) are the Legendre functiotfsand the recursive

expressions for the coefficient&j(,’(' are shown in the

appendix.
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Now, we arrive at a final expression fgpq{(Kk):
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where the coefficienta are
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The coefficientshy, and hy, in eq 26 are obtained from
algebraic treatment of egs 14 and 19 by just grouping terms
in powers ofk.

We can see that, when we introduce eq 26 in eq 3, all the
series become finite. Whenineq 1 isoddm+ 1ineq 3

Note that integrals present in egs 14 and 19 do not dependg eyen and just the second term in eq 26 survives. In this

on k. There are three different integrals

Brng = J - P) 1% cy (23)
ZondouP) = [ dE 05, P(E) PL(E.) & & e e ™ (24)
and

We(oB) = [ dE; dE, P(E.) Q&) & & e e‘ﬁ(f;S)

case, the sum ovek, e n, t, and N is truncated by the
condition 2k + e+ n+t+ N) = m+ 1. For the sum over

[, we have to analyze eq 28. It is straightforward to show
that By, = 0 for m > ¢; then, the sum ovdris truncated by
the conditionl + k; < g. For even values o, m + 1 is
odd, just the first term in eq 26 survives, and the sum over
k, e n, t, N, andl is truncated by the condition R+ e + n
+t+N+D)=m

3. Numerical Discussion
The iterative method presented in section 2 and its application
to the variational calculation of the ground state of the

Integrals 23 and 25 were solved by McEachran and hydrogen molecule have been tested in extensive numerical
Cohen? They obtained analytic recursion formulas sufficient computations. It is interesting to discuss some numerical
to generate these integrals. For solving the integrals in eqproblems. The first one is the use of analytical recursion
24, which are similar to the integrals in eq 25, we used the relations. It is known that these relations are numerically

scheme presented in ref 3.

very unstable, to the extreme that one or two significant
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O—T—T T T T correct figures. In this work, we started the calculations with
g o 100 figures to obtain all the matrix elements with 70 correct
EP . figures. The generalized eigenvalue problem is solved
= o applying theCholesky decompositidn the overlap matrix
§ i s ] in order to recover a standard symmetric eigenvalue prob-
S 40 ~ n lem 24 This transformation was also done with the MPFUN
§ - s . package. Although the CPU time for high-precision calcula-
ié 20k ' _ tion is expected to scale as a power of the number of working
2 a words, the integrals were evaluated in a reasonable time on
I A ) a personal computer. The numerical evaluation of all the
O—=t——%— integrals used in section 4 takes about 81 min and the
Number of Working Words Cholesky decomposition 155 mimaa 3 GHz Pentium 4
processor.

Figure 1. Number of correct figures against number of

working words for the integral Ig;,s witha = = 1.2, p= 12,

g=12,r=10,s=10,and m=17.

The transformed matrix elements have more than 16
correct figures. Then, the last step, the eigenvalues determina-
tion, is performed in standard double-precision Fortran-90.

figures may be lost by iteration. To avoid this problem, we

wrote all our codes using MPFUN, a multiprecision Fortran- 4- The Hydrogen Molecule o _

90 packagé! which allows for working with an arbitrary ~ AS @n application of the method described in section 2, we
precision. MPFUN was successfully applied to high-precision c@lculate the ground-state energy and equilibrium radii of
calculations in quantum few-body systefA3In this work, the hydrogen molecule in the BorOppenheimer approxi-
we made our calculations with 100 figures, in contrast to mation. The Hamiltonian of this system, in atomic units, is

the maximum 32 figures that allows quadruple precision in 5 ( 1 1 1

, 11
~ v, +-—+= (30)

standard Fortran-90. H= _ _ _
' IF,-R2 [F,+R2[| r, R

To check the numerical stability of our method, we =
evaluated one of the typical integrals in eqlmm, with
different accuracy levels. In particular, in Figure 1, we show  To apply the Ritz variational principle, we need to evaluate
the number of correct figures obtained for the intedfal where
withp=12,q=12,r =10,s= 10, andm= 7 as a function

of the used accuracy level in words (one word is equal to Hy =8l Hig  § = [ilg0 (31)
seven figuresj* The graphic is almost independent of the _
value ofm, and the numerical error grows with g, r, and ¢o=Ce R @ G + T 0y (32)

s, therefore, we chose their maximum values used in our
calculations in section 4. We varied the accuracy from 1 to
14 words &100 digits), and we compared it with the result
obtained using 42300 digits), which is considered to have
more than 100 correct figures. It is interesting to note that
no correct digits are obtained with three-word calculations.
This means that it is not possible to use standard double
precision Fortran (16 figures). We get only nine correct digits Det(H — ES) =0 (33)
with five words 35 figures); therefore, no reliable results
may be obtained using standard quadruple precision (32 An optimization of the parameterwas done with a 1710-
figures). In Table 1, integrals with 70 significant figures are term wave function. The optimal value obtained was=
presented. 1.2

Once the integrals are calculated, they are used in Ritz In this work, the quantum numbers of the basis function
variational calculations (see section 4). The Jant&ésolidge eq 32 are allowed to take values from 0 to 5. We calculated
basis set is not orthogonal; for this reason, it is necessary tothe ground-state energy of the hydrogen molecule for
solve a generalized eigenvalue probl&rthe solution of a different values of the internuclear distariR&vith the 2052-
linear system with ill-conditioned matrices produces a term wave function.
significant loss of numerical accuracy which has to be added We obtained for the equilibrium distan&g; = 1.401 08
to the accuracy lost in the first step of the work (integrals and for the correspondent ground-state energy
evaluation). In our case, all the matrices involved in the Eg(Re) = —1.174 475930 2 au. In Table 2, we show the
generalized eigenvalue problem are extremely ill-conditioned. energy forR = 1.4 as we increase the correlation power
The overlap matrix is a positive definite matrix, but it may The casem = 0 is the noncorrelated approximatidihe
become nonpositive as a result of numerical accuracy values forR= 1.4 were calculated for comparison with other
problems. To avoid this, it is necessary to compute the matrix results available in the literature. Our value for the ground-
elements with great accuracy. Frolov and Bafeyn the state energy of the hydrogen molecule o+ 1.4 is lower
study of three body systems, ensure that they needed to workkhan the values reported by Kolos, using a modified James
with 84—100 digits in order to produce final results with 30 Coolidge expansion with two variational parametees)d

Here,C is the normalization constant. It is obvious that the
ground-state wave function has to be invariant under inver-
sion with respect to the plane of symmetry of the molecule.
As a result, we have the restriction thgt + s, must be
even. To obtain the ground-state energy of the system, we
have to find the lowest root of
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Table 1. Integrals l’;q,s fora=pf=12and p=12,q=12,r=10,s=10, m= —11to 10

§ 2121010 (0 = =1.2)

-1 1.573001193138157375342187277832056095134096461644230188241996943556488 x 107
0 3.17633036827265043005880147966246050951855666030622938765912707865055 x 107
1 1.090742587870964047955833983552141544178988389397519690776546896282591 x 108
2 5.021724707375987125284442551100529326667740399757924034765889006508310 x 108
3 2.658174775689766612832029698412758893118412043558931446181254465389613 x 10°
4 1.515426765261419299833591756470886215232064913157692714569710411572781 x 1010
5 9.077517128653397639727914205357193991764389970067007432548746653741653 x 1010
6 5.657356644244629418958660587850910868334579564620229853905788508489761 x 101
7 3.652094222800770227062930635689961783745167858638625660566713855551716 x 1012
8 2.436167086693777336364554225454787171827894374680492294557768473341409 x 1013
9 1.676597696028404747442547821868417610905158756458370106137853955366283 x 1014
10 1.189031234420327023751316354680105625319722659468108699024410004878311 x 1015
Table 2. Variational Ground-State Energy for the from ref 18, which are
Hydrogen Molecule with Maximum Values p =5, q=5, r _
=5ands=5 o = 1 [J l|p|+1(1q-1k—
m E(R—1.4) (|+k)(|+k+1)_lgl = ! ==
2 711673411 igg 223 zi (aOIko*joll,kJrZ + ﬂOIkajoll,k + VOIkajoll,kfz)] (34)
2 —1.174 475 155 80
3 —1.174 475 700 00 A = (+k+ 1) +k+2) (35)
4 ~1.174 475 711 87 (2 +2k+ 3)(2A + 2k + 5)
5 —1.174 475 713 00
W. Kolos (1994)* —1.174 475 686 By = 1 14 1 (36)
H. Nakatsuji (2004)5 —1.174 475 703 Ok 207 @+ 2k— 1)@ + 2k + 3)
by Nakatsuiji, using a modified Jame€oolidge expansion _ (I+kKl+k=-1)
allowing negatives values ofy, rn) in the basis function eq Vo = (2 + 2k — 3)(2 + 2k — 1) (37)
32.
5. Conclusions o =10+, 1= Pao |]9I - ao|0a?'_1'2+
The main contribution of this paper is a new analytical YooOtio =2 (38)
method for the evaluation of the Jam&3oolidge two-center, ,
two-electron integrals. The method is based on the standard.qy 1 r’_l o ~ol
expansion for the free Green function for the Helmholtz O = ot i Oigg =
: . . (+k1+k+1) -1y =
operator in spheroidal wave functidhsaind uses the new 0
expressions obtained by Falloon for those special func- (B0 oo T Bk + vordii1x-2)] (39)

tions181°

The formulas presented have been successfully tested ifor k = ko — 2 and
numerical calculations for the BortOppenheimer hydrogen -1
molecule ground-state energy. To obtain the Hamiltonian 80 = 1 IS
matrix elements correct up to 16 decimal places, we used ik (+ k(I +k+1)— |0|l|;
the MPFUN packagé with roughly 100 digits in the o 0 ol ol
recurrence relations for the integrals and Cholesky decom- (@00i=1 2 F Bodi=1x T YokGi-1x-2)] (40)
position of the overlap matrix.

The method presented in this work is appropriate for hig
precision variational calculations of bound states of other
two-center, two-electron Hamiltonians. As a relevant ap-
plication, the existence of dipole dianions will be addressed
in a forthcoming paper. (1) gg?es, H. M.; Coolidge, A. S. Chem. PhySl933 1, 825—

Ac.knowledgment. We thgnk A. Banchio for a critical (2) Kolos, W.; Roothaan, C. C. Rev. Mod. Phys.196Q 32
reading of the manuscript; this work has been supported by 219-229.

CONICET, SECYT-UNC, and Agencia ‘@ioba Ciencia.

o ~ol
i+1 =1k —

h. fork=ko — 4,k — 6, and so forth, andy = 1 for evenl
values, andig = /5 for odd| values.
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