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Abstract The aim of this work was to evaluate the
effects of a diet depleted of amino acids (protein-free
diet, or PFD), as well as the supplementation with
methionine (PFD+Met), on the antioxidant status of
the female mouse liver. With this purpose, cytosolic
protein spots from two-dimensional non-equilibrium
pH gel electrophoresis were identified by several
procedures, such as mass spectrometry, Western blot,
gel matching and enzymatic activity. PFD decreased
the contents of catalase (CAT), peroxiredoxin I (Prx-I),
and glutathione peroxidase (GPx) by 67%, 37% and
45%, respectively. Gene expression analyses showed
that PFD caused a decrease in CAT (−20%) and GPx
(−30%) mRNA levels but did not change that of Prx-I.
It was also found that, when compared to a normal diet,
PFD increased the liver contents of both reactive
oxygen species (+50%) and oxidized protein (+88%)
and decreased that of glutathione (−45%). Supplemen-
tation of PFD with Met prevented these latter effects to
varying degrees, whereas CAT, Prx-I and GPx mRNA

levels resulted unmodified. Present results suggest that
dietary amino acid deprivation deranges the liver
antioxidant defences, and this can be, in part, overcome
by supplementation with Met.
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Introduction

In mammals, cellular protein turnover depends on the
quality and amount of amino acid ingestion [15, 28,
58]. In addition, amino acids can either control or be a
part of non-proteinogenic pathways [33]. Thus, amino
acid-deprived diets cause significant physiological
and biochemical changes in all tissues [3–5].

We previously found that feeding a diet depleted
of amino acids [protein-free diet (PFD)] to mice for
5 days decreases the total protein content and alters
the protein pattern of the liver [14, 38, 42, 47, 48].
Indeed, two-dimensional non-equilibrium pH gel
electrophoresis tests reveal that PFD changes the
mass of 192 out of 305 cytosolic protein spots [47].
Several of these proteins take part in cellular
detoxification and antioxidant defence, such as
glutathione S-transferases (GSTs), carbonic anhy-
drase III (CAIII) and CuZn-superoxide dismutase
[42, 47, 48]. Interestingly, the supplementation of
PDF with the amino acids Met or Cys prevents to
different degrees the changes caused by PFD in
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CAIII and GST contents [42]. Our previous obser-
vations suggest that a diet lacking amino acids
causes oxidative stress, and this can be partly
counteracted by Met and Cys.

The aim of this work was to contribute to the
knowledge of the effects of both PFD and PFD+Met
diets on the antioxidant status of the mouse liver.
Here, we report that the contents of catalase (CAT),
peroxiredoxin I (Prx-I) and glutathione peroxidase
(GPx) decrease significantly with PFD, but not with
PFD + Met. CAT and GPx mRNA levels correlated
with their protein contents, but not those of Prx-I. In
addition, feeding mice with PFD increases the content
of both reactive oxygen species (ROS) and oxidized
proteins and decreases that of Glutathione (GSH),
whereas addition of Met to PFD reduces the extent of
these changes.

Our results support the notion that a lack of dietary
amino acids decreases the levels of enzymes involved
in ROS removal in the liver. Methionine prevents
these changes by acting on the antioxidant machinery.

Materials and methods

Animals and treatments

Two-month-old female BALB/C mice (body weight
24–27 g) obtained from INTA, Balcarce, Argentina,
were kept for 1 week after arrival in a room at 22°C,
illuminated from 07:00 to 19:00 hours. The speci-
mens had an ad libitum access to normal diet and
water. Feeding with control and test diets started at
19:00 hours and continued for 5 days. The local
ethical committee for animal research approved the
protocols used in this study.

Diets

All diets used were based on the PFD outlined by
the USP XV Pharmacopoeia [16, 55]. Diet details
are published by Ronchi et al. [42]; normal diet
comprises PFD plus 23% (w/w) bovine β-casein,
while PFD+Met contains Met as present in a normal
diet (0.85%). Since carbohydrates replace proteins
and amino acids, all diets are isocaloric. Daily food
intake was 2.2±0.45 g per mouse for the normal
diet, 2.7±0.3 g for PFD, and 2.57±0.25 g for
PFD+Met.

Cytosol isolation

Four livers for each nutritional condition were pooled
and homogenized at 4°C in 4 ml/g fresh weight of a
buffer containing 0.15 M NaCl, 1 mM EDTA, 5 mM β-
mercaptoethanol and 20 mM Tris–HCl, pH 7.4. The
supernatant obtained by centrifugation at 100,000 × g
for 60 min represents the cytosol [47].

Protein determination

Protein contents were estimated according to Bradford
[7] using bovine serum albumin as a standard.

Two-dimensional non-equilibrium pH gel
electrophoresis

Two dimensional non-equilibrium pH gel electropho-
resis (2D-NEPHGE) separation of cytosolic proteins
was performed as suggested by O'Farrel et al. [36].
Cytosols from four pooled livers per nutritional
condition were analysed as triplicates in three inde-
pendent experiments. This approach has the purpose
of ensuring reproducibility in 2D-NEPHGE analyses
and overcoming interindividual variabilities [39]. The
first gel contained 6.8% (w/v) ampholytes (Pharmacia
pharmalyte: pH 3–10, 1%; pH 5.8, 1.75%; pH 8–10.5,
4.08%). Cytosolic protein samples containing 25 μg
of protein in 10 μl of 2% (w/v) 3-[(3-Cholamido-
propyl) dimethylammonio]-1-propanesulfonate hy-
drate (CHAPS), 0.1 M dithiothreitol (DTT) and 9 M
urea were deposed under 30 μl of pharmalyte pH
8–10.5 5.4% in capillary tubes (1×60 mm). After
separation for 100 min at 750 V and 10°C, gels were
extruded and treated for 4 min with a 3% sodium
dodecyl sulfate (SDS), 50 mM DTT, 0.5 mM Tris–HCl,
and pH 6.8 solution. After equilibration with 3% SDS,
0.2 M iodoacetamide, 0.5 mM Tris–HCl, pH 6.8, gels
were layered over a 12.5% SDS-polyacrylamide slab gel
(1 mm thick, 90mmwide and 75mm long) and proteins
further separated at 10°C [20]. Then, protein spots were
revealed with either Coomassie blue [35] or silver [34].
The images were analysed with the computer image-
analysis system Visage 2000 (Bioimage, Millipore
Corporation, Bedford, MA, USA), equipped with the
Electrophoresis Quantifier Software. Protein spots were
identified by using both the 2DWG-meta database and
the Flicker program to compare 2D gel electrophoresis
images created by Lemkin [29].
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Identification of Prx-I using mass spectrometry

Within two Prx-I isoforms identified by gel matching in
silver-stained 2D-NEPHGE, only that of major pI was
visualised in Coomassie blue-stained gels. This Coo-
massie blue-stained 2D-NEPHGE spot excised from
three runs was pooled and in-gel trypsin digested as
described by Rosenfeld et al. [44]. Tryptic frag-
ments were subjected to matrix-assisted laser de-
sorption ionization time-of-flight mass spectrometry
in a Finnigan MAT (San Jose, CA, USA) equipment.
Mass values for all the samples were the average of
at least four analyses, each involving 20–50 pulses.
The oxidized β-chain of bovine insulin (Boehringer,
Mannheim, Germany) was used for calibration of the
mass spectrometer. Peptide mass fingerprints were
searched using ProFound (Rockefeller University NY,
USA, version 4.10.5), with restrictions to proteins from
0 to 300 kDa and mass tolerance for the peptides of
±2 Da. Partial enzymatic digest involving one cleavage
site per molecule, oxidation of methionine and modi-
fication of cysteine with iodoacetamide were consid-
ered in these searches (Table 1). Experimental pI and
Mr were compared with the theoretical values available
in UniProtKB. Protein identity was confirmed using
the UniProtKB protein database.

Western blot test for CAT

After 2D-NEPHGE separation, proteins were trans-
ferred to nitrocellulose membrane as described by Ey
and Ashman [17]. CAT was identified using poly-
clonal antibodies raised against bovine CAT at a
1:1500 dilution. Blots were incubated with a second-
ary antibody conjugated to alkaline phosphatase

(Sigma, ST. Louis, MO, USA) and developed with
5-bromo-4-chloro-3′-indolyphosphate p-toluidine salt
and nitro-blue tetrazolium chloride (Pierce, Rockford,
IL, USA; according to manufacturer’s manual).
Alternatively, a secondary antibody conjugated to
horseradish peroxidase was used. Bands were devel-
oped using the Super Signal West Pico Chemilumi-
niscent Substrate for Western blot (Pierce). Signal
quantification was done by densitometry and data
were referred to the normal diet condition.

Catalase activity

Total CAT activity was measured at 20°C by
following H2O2 disappearance at 214 nm [1]. One
milliliter of reaction mix contained 20 μl cytosol,
50 mM sodium phosphate pH 7.4 and the amount of
H2O2 able to produce a shift at OD at 214 nm equal to
0.55. One enzymatic unit was defined as an OD at
214 nm equal to 0.05; the activity was expressed as
units produced by 1 ml of cytosol during 1 min.

In-gel GPx activity

Cytosols [25 μg protein in 25 μl of 50% (v/v) glycerol,
10 mM Tris–HCl 10 mM, pH 7] were separated in
nondenaturing 1D polyacrylamide gel electrophoresis
(PAGE)with 10% acrylamide. After electrophoresis, the
gel was incubated at 20°C with 1 mM GSH for 10 min,
and 1 mM GSH plus 0.003% (v/v) cumene hydroper-
oxide 0.003% for 10 min. Then, it was washed with
bidistilled water and stained with 2% (w/v) potassium
ferricyanide plus 2% (w/v) ferric chloride [53]. Achro-
matic bands show removal of hydrogen peroxide by
GPx. Densitometric analyses of data were referred to

Mass (exp.) Mass (Theor.) Residuesa Peptide sequence

Prx-I (coverage 45%) 1005.532 1005.528 8–16 IGYPAPNFK

1163.562 1163.564 17–27 ATAVMPDGQFK

1651.862 1651.859 94–109 QGGLGPMNIPLISDPK

1106.602 1106.597 111–120 TIAQDYGVLK

893.422 893.424 121–128 ADEGISFR

919.502 919.501 129–136 GLFIIDDK

1224.682 1224.682 141–151 QITINDLPVGR

830.452 830.449 152–158 SVDEIIR

1195.622 1195.623 159–168 LVQAFQFTDK

Table 1 Results of peptide
mass fingerprint search for
Prx-I

The expectation value cal-
culated from Profound was
1.6×10−9 . Nine peptides
matched and one unmatched
with monoisotopic masses:
2106.190
a Position of amino acid
inside Prx-I sequence
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the normal fed condition. Control samples were done
in the presence of 10 mM iodoacetic acid, which
suppresses GPx action (not shown).

Measurement of tissue ROS content

The oxidation-sensitive fluorescent probe 2′,7′-
dichlorodihydrofluorescein diacetate (DCFH-DA)
(from Invitrogen, Carlsbad, CA, USA) was used
to analyse the total content of ROS. After treatment,
cytosols were incubated with 2.5 µM DCFH-DA
(30 min, 37°C) in PBS. Fluorescence (Ex 485 nm–Em
510 nm) was measured in a Microplate Fluorescence
Reader Fluoroskan Ascent & Ascent, related to protein
mass and expressed as a percentage of the normal fed
control.

Measurement of tissue GSH content

Cytosols were extracted in a buffer containing 0.2%
Triton X-100 and 2.5% sulfosalicylic acid. Aliquots
of the supernatant recovered after centrifugation at
15000 × g for 15 min were used for total glutathione
content assessment by the method of Griffith [22],
with some changes introduced by Sánchez et al. [46].
Measurements were related to protein mass and
expressed as percentages of the normal fed control.

Measurement of protein carbonyl content

The reactive carbonyl content of liver proteins was
measured according to Oliver et al. [37]. Briefly, livers
were homogenized at 4°C in 10 ml/g fresh weight of
cold 0.15 M NaCl, 1 mM EDTA, and 20 mM Tris–
HCl, pH 7.4. Two 0.75-ml aliquots per sample
containing nearly 1.0 mg protein were mixed with
0.75 ml of 20% (w/v) trichloroacetic acid (TCA). The
pellets were separated by centrifugation at 6000 × g for
5 min, mixed with either 0.75 ml of 2 N HCl (blank) or
0.75 ml of 2 N HCI containing 0.2% (w/v) dinitrophe-
nylhydrazine (DNPH) and agitated for 1 h at 25°C in
the dark. Then, they were re-precipitated with 0.75 ml
of 20% (w/v) TCA, washed three times with ethanol/
ethyl acetate (l:l, v/v), dried and mixed with 0.75 ml of
6 M guanidine HCl at 25°C. After removing the debris
by centrifugation, absorbance at 370 nm of DNPH-
treated samples after subtraction of blanks was
assessed. This value was used to calculate the nano-
moles of DNPH incorporated per milligram of protein

based on an average absorption of 21.0 mM-1 cm-1 for
aliphatic hydrazones [27].

Northern blotting

For each assay, total RNA was extracted from liver
using 4 M guanidinium thiocyanate followed by
extraction with phenol [45]. After the extraction,
RNAs were resuspended in diethyl pyrocarbonate
(DEPC)-treated water, quantified and stored at −80°C
for further analysis. Thirty micrograms of RNAs for
each condition was denatured in GLYOXAL at 55°C
for 1 h [56]. Extracted RNAs were separated and
analysed on agarose gels 1.5% (w/v) and transferred
onto a nylon membrane (Amersham, UK).

DNA probes were obtained by PCR amplification
with specific primers (see below) using DNA as
template. Then, the probes were labelled by random
priming (Invitrogen, Life Technologies, Carlsbad, CA,
USA, DNA labelling System) using [γ-32P]-dCTP.
Probes were purified using G-50 Sephadex columns.
Sequential hybridization with the different probes was
performed using standard methods. The intensity of the
bands was detected by Scanner Storm (Amersham
Biosciences, Piscataway, NJ, USA) and quantified using
ImageQ TL v2005. All the bands were normalised to
actin to account for uneven gel loading.

Mouse specific primer sequences used for PCR
reactions:

Actin FOR: 5′-AGT ACT TGC GCT CAG GAG GA-3′

REV: 5′-TCC TCC CTG GAG AAG AGC TA-3′

Prx-I FOR: 5′-TTA AAG GCT GAT GAA GGT AT-3′

REV: 5′-GAA TTC ACG TTT AAT AGA TAC T-3′

CAT FOR: 5′-AGG CGG GAA CCC AATAGG AGATAA-3′

REV: 5′-ATG GAT AAA GGA TGG AAA CAA TA-3′

GPx FOR: 5′-CCA CGA TCC GGG ACT ACA CC-3′

REV: 5′-GTC GGG GCC CAC CAG GAA CT-3′

Statistical analysis

All the measurements were subjected to one-way
analysis of variance followed by the Dunnett test of
mean comparison with references (InStat, Graph Pad
software). P values lower than 0.05 were considered
as significant. Data from at least three separate
experiments were analysed.
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Results

Cytosolic proteins affected by protein depletion

In view that PFD changes mouse liver glutathione
S-transferase (mGST), glyceraldehyde-3-phosphate
dehydrogenase, carbonic anhydrase III and Zn
superoxide dismutase (CuZn-SOD) contents [42, 47,
48], we wished to explore whether it affects other
cellular antioxidative enzymes. Figure 1 shows a 2D-
NEPHGE silver-stained gel from normal liver [47], in
which new and previously identified spots were
labelled in black and gray, respectively. Table 2
summarises the identification data for CAT, Prx-I and
GPx. This table also shows that levels of these
enzymes decreased after feeding mice with PFD for
5 days compared with the normal diet control. In 2D-

NEPHGE Western blot tests (Fig. 2a–b), CAT dis-
played four isoforms whose proportions changed with
PFD. Thus, CAT total content was assessed by 1D
Western blot. Compared with the control, CAT amount
decreased by a 67% with PFD (Fig. 2c), in agreement
with a 46±5.0% decrease in its enzymatic activity.

Mass spectrometric and gel-matching tests
revealed two Prx-I isoforms that, taken together,
decreased 37% with PFD (Table 2 and Fig. 3).

Comparison of gels with a 2D-NEPHGE database
evidenced that a spot with a pI of 6.7+0.2 and a
molecular mass of 22.8 kDa that decreased with PFD
could be GPx (Table 2). With the purpose of
confirming this, the in-gel enzymatic activity of GPx
was analysed. Figure 4 shows that GPx activity
decreased significantly with PFD (45±2.0%; P<0.01).

Effect of PFD on mRNA levels

As feeding with PFD caused a decrease in the protein
levels of CAT, Prx-I and GPx, we further examined
whether these changes were due to a decrease in gene
expression. Figure 5 shows that PFD decreased both
CAT and GPx mRNA levels compared with the
normal fed control [20% (P<0.05) and 30% (P<
0.001), respectively], whereas Prx-I mRNA levels
were unmodified.

Influence of dietary Met

We examined whether supplementing PFD with Met
had any impact on the steady-state levels of antiox-
idant enzymes. Indeed, Met counteracted to some
extent the effect of PFD on CAT, Prx-I and GPx
levels. Feeding mice with PFD+Met partially pre-
vented the decrease caused by PFD in the contents of
CAT and Prx-I, and GPx activity (Figs. 2c, 3 and 4). It
must be also remarked that PFD+Cys prevent the
decrease caused by PFD in CAT content and GPx
activity [43]. In contrast, the supplementation of PFD
with Met did not modify the effect of PFD on the
mRNA levels of the three proteins (Fig. 5).

ROS and GSH content

ROS production increased in the liver of mice fed
with PFD (50%, P<0.05), and this happened to lower
extent with PDF+Met (35%, P<0.05) (Fig. 6a).
Conversely, liver GSH content decreased with PFD

Fig. 1 2D-NEPHGE silver-stained pattern of liver cytosolic
proteins from normal fed mouse. Twenty-five micrograms of
protein was loaded. Proteins changed by PFD identified either
in this study or in previous works are marked by gray and black
letters, respectively. A representative image of three indepen-
dent experiments is shown
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(50%, P<0.05) and, to a slightly lower degree (30%,
P<0.05), with PFD+Met (Fig. 6b). It is noteworthy
that PFD+Cys caused similar effects than PFD+Met
on GSH content [43].

Carbonyl-group content of protein

The content of carbonyl groups in liver proteins was
evaluated by their reaction with DNPH. Figure 7 shows
that PFD increased the levels of oxidized proteins
(88%; P<0.001), whereas feeding with PFD+Met
partially neutralised the increase caused by PFD
(53%; P<0.01).

Fig. 3 Influence of the diet on Prx-I content. Cytosolic proteins
(25 μg) from normal diet, PFD and PFD+Met fed mice were
separated on 2D-NEPHGE and silver stained. The arrows show
Prx-I spots as distinguished in Fig. 1. Typical images of three
independent experiments are shown

Table 2 Identification of antioxidative enzymes affected by PFD after separation by 2D-NEPHGE

No. Accession
numbera

Protein
description

Experimental Sequence covered by
peptides (%)

PFD effect (% of normal) Identification
procedure

pI kDa

1 P35700 Prx-I 8.3 22 45 63±23% b MS, PMF, GM

2 P24270 CAT (four
spots)

7.0–
8.2

56–
51

– 81±2.5% 15±4.5%b 57±18% b

71±40%
ID, GM

3 P11352 GPx ∼6.7 22.8 – 61±17% GM

PFD effect: average % of spot intensity compared to normal fed control ± SEM (n=3)

MS mass spectrometry, MALDI-TOF matrix-assisted laser desorption ionization time-of-flight, PMF peptide mass fingerprinting, ID
immunodetection, GM gel matching of experimental data compared with 2D gel database
a Accession number refers to the UniProtKB (http://www.uniprot.org)
b Comparison of means by Student’s t test. Differences verified at 5% level, P<0.05

Fig. 2 Influence of the diet on liver CAT content. Groups of
mice were fed with normal diet, PFD and PFD+Met for 5 days.
Cytosolic proteins (25 μg) were separated on 2D-NEPHGE and
analysed for CAT by Western blot: A normal diet; B PFD. C
Cytosols from normal, PFD and PFD+Met fed mice separated
by 1D-SDS-PAGE were tested for CAT by Western blot. Bars
represent the immunoreaction intensity as percentage of the
normal diet control. Data are from three independent tests. Bars
show SEM. Letters a and b indicate differences from normal at
P<0.05 and P<0.01, respectively; c indicates differences from
PFD at P<0.001
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Discussion

This study adds new information on the antioxidant
system of the female mouse liver under an isocaloric
diet deprived of amino acids (PFD), together with the
role of Met. Despite published studies on low-protein
diet [31, 54], high-protein diet [31], caloric restriction
[2, 21, 49] and starvation [30], the effects of an
isocaloric diet absolutely depleted of amino acids on
the three enzymes studied here were unknown. To our
knowledge, Carrillo et al. [8] have reported that both
GSH and GST activities are significantly decreased by
a PFD in mouse liver.

2D-NEPHGE patterns from mouse liver show the
presence of four CAT isoforms with typical sizes but
pIs slightly higher than those reported [26, 41]. The
decrease in both CAT content and activity caused by
PFD agree with that shown on mouse liver under a
caloric restriction diet [21]. Also, these results are
consistent with the decrease in CAT activity in the
cortex and cerebellum of young rats caused by a low-
protein diet [6]. Conversely, the prevention of CAT

decrease by supplementation of PFD with Met is in
agreement with the increment in mouse myocardium
CAT activity caused by a hypocaloric diet enriched
with Met [49].

Both the mass and pI of Prx-I determined here
agree with previous reports [23, 62]. This enzyme

Fig. 5 Effect of the diet on mRNA levels. After different dietary
treatments, total RNAs were isolated. Aliquots of 25 μg were
subjected to Northern blot analysis using specific cDNA probes
for CAT, GPx, Prx-I mRNAs. Actin cDNA probe was used for
RNA normalisation. A representative image from three indepen-
dent experiments is shown. The radioactive signal intensities
obtained with the different probes were measured by scanning
densitometry. Data from three independent tests are related to the
normal diet group. Bars mark SEM; a, b and d indicate values
that differ from normal at P<0.05, P<0.01 and P<0.001
respectively; c indicates differences from PFD at P<0.001

Fig. 4 Influence of the diet on GPx activity. Groups of mice
were fed with normal diet, PFD and PFD+Met for 5 days.
Cytosolic proteins (25 μg) were separated by non-dissociating
10% PAGE and tested for in gel GPx actvity. A Representative
image of activity. B Densitometric analysis of zymograms
expressed as percentage of the normal diet control. Values are
means ± SEM of three independent tests. Letters a and b
indicate differences from normal at P<0.05 and P<0.01,
respectively; c indicate differences from PFD at P<0.001
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belongs to the 2-Cys-Prx family of enzymes that uses
thioredoxin as an electron donor for converting H2O2

and alkyl-hydroperoxide into water and alcohol,
respectively [10]. Over-oxidation reduces both the
mass and activity of Prx-I; this raises the levels of
H2O2 which, in turn, acts as intracellular messenger to
alter the overall redox potential of the cell [52]. Thus,
the Prx-I decrease caused by PFD provides evidence
for the activation of H2O2-dependent oxidative stress
in amino acid-depleted conditions. Conversely, since
the affinity of thioredoxin for its substrates depends
on its glutathionylation level [9], the addition of Met

to PFD probably contributes to Prx-I protection by
increasing GSH availability.

The 2D-NEPHGE spot of pI 6.7 and 22 kDa match
the GPx isoform of pI 6.73 and 22.3 kDa previously
reported [11, 19]. Both its content and activity decrease
with PFD, while feeding with PFD+Met partially
preserves its activity. These results agree with the
decrease in rat liver GPx caused by a low-protein diet,
which is minor when it is enriched with either Met or
Ala [25]. Also, in rat hepatocytes, GPx activity increases
when either Met or Cys is added to culture media [60].

While Prx-I is close to H2O2 signalling, GPx acts
“hand-to-hand” with CAT. This is owing to the low
rate constant for H2O2 removal of Prx-I, which allows
for sensing low H2O2 concentrations [52, 61].
Conversely, based on Km values, GPx and CAT might
be in charge of removing low and high H2O2

concentrations, respectively [61]. Thus, the decline
of GPx, CAT and Prx-I caused by PFD possibly
increase both the content of oxidant molecules and
oxidized proteins in the cells.

Our data show that feeding with PFD lowers both
CAT and GPx mRNA levels, which point to deceler-
ated protein synthesis as one of the reasons for
reduced protein levels. The presence of Met seems
enough to attenuate CAT and GPx protein decrease
induced by PFD, but not to prevent the decay in the
mRNA levels of these enzymes. This suggests that
feeding with PFD+Met possibly preserves CAT and
GPx content reducing their breakdown. In support of
this is the fact that amino acids are inhibitors of
protein degradation [59]. On the other hand, since

Fig. 7 Quantification of dietary-dependent protein oxidation in
the mouse liver. The levels of carbonyl groups in liver proteins
were determined for each nutritional condition: normal, PFD
and PFD+Met. Data are from three independent experiments.
Bars mark SEM; d indicates value different from normal at P<
0.001 and c indicates value different from PFD at P<0.01

Fig. 6 Effects of the diet on liver ROS and GSH content. Mouse
groups were fed with normal, PFD and PFD+Met diets for 5 days.
Average levels were expressed as percentages of the normal fed

control±SEM (three independent experiments); a indicates differ-
ences from normal at P<0.05; c indicates differences from PFD
at P<0.001. A ROS; B GSH
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both diets did not change Prx-I mRNA levels, PFD
and PFD + Met possibly control Prx-I content by
increasing and decreasing its breakdown, respectively.
Alternatively, both CAT and Prx-I content could
depend on changes in their isoform patterns.

To summarise, under dietary depletion of most
amino acids, Met is a major responsible for the
control of CAT, GPx and Prx-I content.

It has been shown that malnutrition causes oxidative
stress in liver [12, 13, 31, 40, 51]. We report here that
PFD decreases the content of mouse liver CAT, GPx
and Prx-I. Also, we previously found that PFD
decreases the content of mouse liver CuZn-SOD,
mGSTA3, cytochrome P450 proteins (cyt P450) and
CA III [47, 48]. A common feature among these
enzymes is their link with the redox status of cell. In
addition, similarly to low-protein diets [12, 24], we
report here that feeding with PFD decreases hepatic
GSH content. These changes explain the increased
hepatic ROS content, which led to protein oxidation.
Conversely, supplementation of PFD with Met
increases GSH level, but not to reach that of the
controls. This produces a hepatic ROS content lower
than that caused by PFD but higher than the control.
Furthermore, supplementation with Met was not
enough to neutralise the oxidative stress caused for
PFD. Thus, because of its involvement in GSH
synthesis [31, 32], dietary Met partly prevents the
changes caused by PDF in the redox status of the liver.
This has also been confirmed by PFD+Cys adminis-
tration, which causes similar effects to PFD+Met [43].

Increasing evidence supports the idea that changes
produced by PFD on several of the proteins examined
in this and previous works occur in the same fashion
of either precancerous or cancerous conditions [50,
57]. However, the precise mechanisms by which
dietary Met controls the content of several of these
proteins remain to be characterised. Current and
previous data suggest that amino acids act on several
metabolic points [3, 5, 18].
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