
AGRICULTURAL
www.elsevier.com/locate/agsy

Agricultural Systems 88 (2006) 180–204

SYSTEMS
Climatic information and decision-making
in maize crop production systems of

the Argentinean Pampas

Federico E. Bert a, Emilio H. Satorre a,b,*,
Fernando Ruiz Toranzo b, Guillermo P. Podestá c
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Abstract

In many places, predictions of regional climate variability associated with El Niño South-

ern Oscillation (ENSO) phenomenon offer the potential to improve farmers� decision-making,

i.e., mitigate negative impacts of adverse conditions or take advantage of favorable conditions.

However, various conditions must be met for a forecast to result in enhanced decision-making.

First, information has to be relevant to, and compatible with production decisions. Second,

alternative options must exist for a given decision and these should result in different outcomes

under different climate conditions. Third, decision-makers should be able to evaluate the out-

comes of alternative actions. In this paper, we explored these conditions as part of a case study

targeting maize production systems in the Argentine Pampas. The decision-making process

was described via ‘‘decision maps’’ that (a) characterized the main decisions involved in maize

production systems and their timing, (b) identified decisions sensitive to climate, and (c) pro-

vided a realistic set of options for each decision under different seasonal climate scenarios.

Then, we used crop simulation models to assess the outcomes of tailoring crop management
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to predicted climate conditions. We found differences between the options selected by regional

advisors for each climate scenario and those that maximized average profits in the simulation

exercise. In particular, differences were most noticeable in preferred nitrogen fertilization rates.

While advisors tended to lower fertilization in response to a forecast of dry spring conditions,

associated with La Niña events, the simulation exercise showed a consistent drop in maize

yields and profits with low N rates even in La Niña years. Advisors and producers� aversion
to risk can be determining these differences, since the analysis showed that the probability of

negative economic results are minimized under their decision rule. The procedure was effective

to meet some of the conditions required to use climate information and to determine the value

of incorporating ENSO-related information to effectively improve the maize decision process.

However, results suggest that better knowledge of farmers decision rules are necessary when

the value of using climatic information is estimated and interpreted.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Climate variability is one of the main sources of uncertainty and risk in many

agricultural systems around the world. Indeed, agriculture has been described as

the most weather-dependent of human activities (Oram, 1989), and most production

decisions directly or indirectly involve a consideration of this factor. Because farmers

usually do not know what climate to expect in the following growing season, they

have evolved conservative cropping strategies that not only may fail to capitalize
fully on beneficial conditions but also frequently buffer poorly against negative ef-

fects (Jones et al., 2000; Hansen, 2002; Meinke and Stone, in press).

The El Niño-Southern Oscillation phenomenon (ENSO) is the major single source

of climatic variability on seasonal-to-interannual scales in many parts of the world

(Trenberth and Stepaniak, 2001; Goddard et al., 2001). This phenomenon results

from the two-way interaction between the ocean and atmosphere in the tropical Pa-

cific Ocean. ENSO involves two extreme phases: warm events, also known as ‘‘El

Niño’’ years, and cold events, referred to as ‘‘La Niña’’; those years which do not
fall in these extreme phases are labeled as ‘‘Neutral’’ (Trenberth, 1997). Links be-

tween ENSO-related climate variability and agricultural outcomes have been shown

in many agricultural regions (Dilley, 1997; Hsieh et al., 1999; Hammer et al., 2001;

Hansen et al., 1996; Naylor et al., 2001; Amissah-Arthur et al., 2002; Gimeno et al.,

2002). There are indications that ENSO also may influence prices of globally traded

agricultural commodities (Chapman et al., 2000; Letson and McCullough, 2001).

Advances in understanding and observations of the oceans and atmosphere have

made it possible to predict with moderate skill ENSO-related sea surface tempera-
ture (SST) anomalies some months in advance (Latif et al., 1998; Goddard et al.,

2001). Predicted SSTs and atmospheric general circulation models are subsequently

used to predict seasonal-mean precipitation and temperature in many regions (Ma-

son et al., 1999; Goddard et al., 2003). The emerging capability to predict regional

climate and its consequences on agricultural production systems offers the potential
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to improve farmers� decision-making, allowing them to mitigate adverse conditions

or, alternatively, take advantage of favorable conditions (Hammer et al., 2001; Han-

sen, 2002; Meinke and Stone, in press).

The availability of climate forecasts, regardless of how accurate and well commu-

nicated is not sufficient to ensure that agricultural incomes will rise or production
costs will fall (Jones et al., 2000; Hansen, 2002). Several conditions have been pro-

posed by previous studies as necessary for climate forecasts to result in improved

outcomes, regardless of the specific application sector, or the temporal and spatial

scales of the application (Lamb, 1981; Sonka et al., 1987; Everingham et al., 2002;

Hansen, 2002; Meinke and Stone, in press). Here we present some of these condi-

tions, stressing that the list discussed is not exhaustive by any means. First, informa-

tion has to be relevant to, and compatible with production decisions. In part, this is a

function of the existence of entry points for climate information into the decision-
making process (Jones et al., 1999b). Second, alternative options must exist for a gi-

ven decision. Examples of possible alternative actions include land allocation among

various farm activities (Messina et al., 1999) or the specific management of a crop

(Meinke and Stone, 1997; Jones et al., 2000). Furthermore, the alternative actions

should show an interaction with expected climate scenarios. That is, a given action

should result in different outcomes under different climate conditions. Third, deci-

sion-makers ideally should be able to evaluate the outcomes of alternative actions.

Crop models and simulation approaches provide a way to explore the consequences
of a broad range of decisions (Hammer, 2000; Meinke et al., 2001). Fourth, the fore-

casts must have useful accuracy (but note that usefulness depends on the specific

application) and appropriate lead-time and geographical and temporal resolutions

(Hansen, 2002; Hartmann et al., 2002; Podestá et al., 2002). Finally, decision-makers

must be willing and able to modify their actions in response to climate information.

This depends not only on the individual decision-maker�s willingness to adopt cli-

mate-adaptive management in an already complicated decision environment, but

also on the economic, institutional, and cultural context in which farmers make deci-
sions (Eakin, 2000). Similar conditions have been proposed by several other authors.

In this work we explore some of the previously listed conditions for the effective

use of seasonal-to-interannual climate information and forecasts in agricultural pro-

duction. Specifically, we study decision-making processes in maize production sys-

tems in the Argentine Pampas of central-eastern Argentina, one of the most

productive agricultural areas in the world (Hall et al., 1992).

The Pampas show a strong ENSO signal, particularly in the southern spring–sum-

mer, coinciding with the growing season of the most valuable crops (Ropelewski and
Halpert, 1987, 1989, 1996; Vargas et al., 1999; Grimm et al., 2000). During these

months, warm (cold) ENSO events tend to be wetter (drier) than neutral years. In

Neutral years, precipitation tends to be very close to climatological values (as these

years account for about half of the historical record). ENSO-related climate variabil-

ity influences yields of important crops in the Pampas (Podestá et al., 1999; Jones et al.,

2000; Travasso et al., 2003). In particular, maize yields showed the closest associa-

tion with ENSO. Warm ENSO events had a positive effect on yields of this crop:

above-normal maize yields (those in the upper third of the historical distribution
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after removing trends due to technological changes) were twice as likely during warm

events as by chance alone. A similar but opposite pattern was observed during cold

events: low maize yields (in the lower third of the historical distribution) occurred

twice as frequently as expected by chance (Magrı́n et al., 1998; Podestá et al., 1999).

Because the vast majority of agriculture in the Pampas is rainfed, the link between
ENSO and maize yields seems to be mediated by coincidence in the timing of ENSO-

related precipitation anomalies with sensitive periods shortly before or during crop

development. For instance, maize flowering (that occurs in December/early January

in the study area) is extremely critical in defining maize yield, and sensitivity to water

availability during this period is high (Hall et al., 1981, 1992). Because of the strong

associations between ENSO and expected regional climate and yields, maize produc-

tion systems provide a good test-bed to explore the use of climate information and

forecasts in agricultural decision-making.
The overarching objective of the paper is to evaluate the potential for incorpo-

rating ENSO-related climate information to support farm-level decisions during

the cropping cycle in maize crop production systems of the Argentine Pampas.

Specific objectives of the paper are (i) to characterize the decision-making process

in a Pampean maize production system; (ii) to assess the outcomes of various

technological options under different expected climate scenarios; and (iii) to eval-

uate the possible impacts of using climate information on maize yields and eco-

nomic results. The paper is organized as follows. First, we build a decision map
identifying production decisions that are sensitive to climate information and de-

scribe how these decisions are made in response to expected climate conditions.

Then, we use crop simulation models to evaluate the outcomes of a realistic

set of alternatives for each climate-sensitive decision. Finally, we quantify the ef-

fects on yields and economic returns of incorporating seasonal climatic forecasts

into decision-making in maize production in the Pampas.
2. The study area

The geographic focus of this study is the Pampas of central-eastern Argentina

(Hall et al., 1992). A large proportion of Argentina�s considerable crop production

originates in this region. We focus on the area around Pergamino (33�56 0 S,

60�33 0 W) in the Rolling Pampas, the most productive subregion of the Pampas

where maize production is concentrated (Hall et al., 1992; Paruelo and Sala,

1993). The predominant soils in this region are typical Argiudolls and Hapludolls
(Paruelo and Sala, 1993). Although soils are fertile, phosphorus fertilizer is applied

as starter and there are high responses to nitrogen fertilizer, particularly if N-NO3

content at sowing is low (Satorre, 2001). Median annual precipitation in Pergamino

is 937 mm, with maxima in fall and late springsummer, and a winter minimum. The

high water demand by maize during its late spring–early summer growth (about

6 mm day�1), together with relatively limited soil water storage capacity, make maize

yield heavily dependent on precipitation at this time (i.e., soil moisture storage is

insufficient to satisfy the crop�s needs).
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Agricultural production systems in Argentina have changed markedly in the last

20 years (Satorre, 2002). In the study region, the traditional mixed crop – cattle rota-

tion gave way to continuous agriculture (Hall et al., 1992). Typical crop rotations

include maize, followed by soybean, and a wheat–soybean relay (Solari, 2002). How-

ever, in recent years, this rotation has been somewhat replaced by an increasing trend
towards monoculture of soybeans, mostly because soybeans have lower production

costs, simpler management, and more stable yields than those of maize (the other

major summer crop). About half of the cropped area in the Pampas is currently

planted with soybeans (Satorre, 2002), and there are increasing concerns about the

sustainability and resilience of such a system. Effective use of climate information

may foster enhanced management and higher gross margins for maize, thus provid-

ing incentives to improve crop diversity, and reducing the overall vulnerability of

agriculture in the Pampas.
3. Methods

3.1. Development of a decision map for maize production

The effective use of climate information in agricultural production requires that

this information be relevant to production decisions (Jones et al., 1999b). To deter-
mine relevance, a first step is to identify the existence of entry points for climate

information into the decision-making process. Towards this goal, we built a ‘‘deci-

sion map’’ for a maize production system in Pergamino that characterized (a) the

main decisions required in maize production systems and their timing, (b) the

climatic conditions that affect each decision, and (c) a realistic set of appropriate op-

tions for each decision under different seasonal climate scenarios. The climate-

sensitive decisions involved in maize production were described through simplified

schematic models or influence diagrams (Burns and Clemen, 1993; Morgan et al.,
2002). Influence diagrams are analytical tools that facilitate the identification and

selection of variables used in conceptual or simulation models (Jones et al., 1998a).

An initial version of the decision map was developed based on the regional liter-

ature and the authors� knowledge of production practices in the study area. The draft

decision map then was discussed and validated in focus groups with eight technical

consultants who are active in the study region and have considerable influence on

decisions taken by farmers. Consultants also were presented with a broad range of

management options and were asked to select a particular management combination
for each ENSO phase, based on their experience. The maps were also validated to a

limited extent (due to limited resources) by 16 farmers and other stakeholders.
3.2. Simulation of maize yields and economic profits under various climatic scenarios

Regionally adapted and locally tested crop simulation models allow decision-

makers to assess the outcomes of a wide range of decision alternatives under different
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climate scenarios. We used the Ceres-Maize model within the DSSAT v3.5 (Jones

et al., 1998b; Ritchie et al., 1998). This model has been calibrated and validated in

several production environments, including the Pampas (Guevara et al., 1999; Mer-

cau et al., 2001). The model has shown an average error of 17% in the prediction of

yield maize under field conditions (Mercau et al., 2001). The information required to
run the model includes daily weather series, soil parameters and initial conditions,

crop genetic coefficients, and a description of selected crop management. Except

for the daily weather sequences, all information required was available from previ-

ous research in the Pergamino area (Mercau et al., 2001).

Obtaining long-term daily weather data as input to crop models is often difficult

or expensive. An alternative solution is the use of stochastic weather generators,

which can produce synthetic daily weather series with statistical characteristics sim-

ilar to those of historical data. We used a weather generator based on the approach
described by Richardson (1981); see also reviews in Semenov et al., 1998 and Wilks

and Wilby, 1999) to generate long synthetic series of daily weather variables (maxi-

mum and minimum temperature, precipitation, solar radiation) for each ENSO

phase. Unlike previous approaches, our generator was parameterized conditionally

on ENSO phase (Grondona et al., 1999). That is, model parameters were estimated

separately for warm and cold ENSO events and neutral years in the historical record

(January 1931 to June 1996) for Pergamino. ENSO phases were defined for a July-to-

June ‘‘ENSO year’’ according to sea surface temperature (SST) anomalies in the
tropical Pacific Ocean between 4� N–4� S and 90� W–150� W (see Podestá et al.,

1999 for details). The ENSO-conditional stochastic weather generator produced syn-

thetic daily weather that was used as input to simulate 990 maize cropping cycles for

each ENSO phase. A major advantage of the modeling approach is that probability

distributions of a large number of simulated yields and gross margins (in this case,

990 outcomes for each ENSO phase) can be incorporated into risk assessment or

decision-support tools. Furthermore, the large number of simulations allows the

exploration of ENSO influence on extreme (much above or below normal) outcomes,
a difficult approach with historical series that are typically short and do not reflect

current production technology.

We defined 24 different management combinations that encompassed the options

selected by consultants in the focus groups, and that are frequently used by maize

producers in the study region. The options considered included (a) two maize hy-

brids (DK 752, long cycle; DK 615, short cycle), (b) two planting dates (early plant-

ing on 15 September; late planting on 15 October), (c) two planting densities (7 and

8 plants m�2) and (d) three fertilization levels (50, 100, and 150 kg of N ha�1). Be-
cause the model is unable to simulate insect or disease damage and weed competi-

tion, crop protection factors were not included in the simulations. However, it is

recognized that climatic information can also affect crop disease, pest or weed man-

agement decisions. Soil water availability and nutrient conditions at sowing time

were set to values frequently found in the region: 50 kg N ha�1 and 100% of avail-

able water.

Yields were simulated for each of the 24 crop management combinations and the

three ENSO phases using synthetic weather data for 990 maize cropping cycles (i.e.,
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a total of 24 · 3 · 990 = 71,280 simulated cropping cycles). Net returns for each cycle

were calculated by multiplying the simulated yields times a constant output price

(output price = market grain price minus 19% export tax charged by the Argentine

Government at sale) and subtracting fixed and variable costs. The assumed maize

price (83 $ mg�1) was slightly higher than the historical average for 1980–2001
(Márgenes Agropecuarios Magazine, 2003). Fixed costs included seed, fertilizer, her-

bicides and labor, while the variable costs included harvest and marketing expenses.

Input costs were obtained from local literature (Márgenes Agropecuarios Magazine,

2003).

The yields and gross margins of the 24 management combinations simulated for

each ENSO phase were subjected to ANOVA. When a significant F (P < 0.05) was

obtained in the ANOVA, the means of management combinations were compared

using a ‘‘t’’ test (Least Significant Difference – LSD, P = 0.05). Maximum average
yields or gross margins were used to identify the near-optimal crop management

among the various options.
3.3. Estimation of the economic value of climate information

Climate information and forecasts in many countries often are provided and sub-

sidized by the public sector. Estimates of the economic value of climate information

and forecasts therefore can help justify public investments in such technology. At the
scale of individual decision-makers, it is difficult to justify the use of climate informa-

tion if it does not add perceptible value to current decision-making.

Researchers have used a variety of approaches to estimate the value of climate

information and forecasts (Mjelde et al., 1998; Solow et al., 1998; Messina et al.,

1999; Hammer et al., 2001; Chen et al., 2002; Adams et al., 2003; Meza and Wilks,

2003; Meza et al., 2003). Some have used Bayesian decision theory to simulate ideal

forecast responses (Johnson and Holt, 1997; Stern and Easterling, 1999). This ap-

proach shows how a rational decision-maker will adjust prior expectations of sea-
sonal climate in response to predicted climate conditions, considering how good

this forecast tends to be (Kite-Powel and Solow, 1994). The expected value of fore-

cast information is the difference in the outcomes of optimal actions for two different

contexts: (a) the decision-maker is assumed to have only historical climate informa-

tion (i.e., no forecasts are available) and (b) the decision-maker is empowered with

the predictive climate information under evaluation (Hilton, 1981; Mjelde et al.,

1988).

To derive an initial estimate of the value of seasonal forecasts we compared (a) the
management combination that maximized simulated average profits for each ENSO

phase with (b) the management selected by technical advisors for Neutral years. We

assume the management selected for Neutral years is representative of the preferred

management in the absence of any climate information because total precipitation

during Neutral years is very similar to the climatological totals for the study region.

Research that estimates value of information by simulating optimal forecast re-

sponses can provide useful insights, but actual decisions frequently deviate from
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those of models typically used in economic modeling (e.g., maximization of subjec-

tive expected utility). An alternative and complementary approach relies on observed

or elicited decisions, where the emphasis is on how forecasts are actually interpreted

and applied, rather than ideal responses (Stern and Easterling, 1999; Stewart et al.,

1997; Stewart et al., 2004). For this reason, we derived a second estimate of forecast
value by comparing the results from the consensus managements selected by techni-

cal advisors (a) for each extreme ENSO phase (i.e., Niños or Niñas) and (b) the man-

agement selected by technical advisors for Neutral years.
4. Results and discussion

4.1. Decision map for a maize production system

Decisions involved in maize production were divided into three major groups and

their timing and factors influencing them were described (Table 1). The first group-

included decisions related to the assignment of land among various possible farm

activities (i.e., crops), including maize. The second group involved decisions about

maize production technology (hybrid selection, planting date, crop density, fertilizer

amount and timing, weed and pest control strategies). Finally, a third group of deci-

sions was linked to marketing strategies for the crop (Table 1). Decisions in Table 1
that were influenced by expected or realized climate conditions were considered as

entry points for climate information and ENSO forecasts. These decisions were ar-

ranged into various decision maps (Figs. 1–5).

The first group of decisions involves the assignment of land among various farm

activities (i.e., crops). Some of these decisions are initially made in early March, well

before sowing of any crop. Nevertheless, the decisions are often revised in response

to various factors (Table 1) up to the period preceding planting of summer crops

(September–November). How many hectares are sown under the various crops is
determined, to a great extent, by the expected gross margin of alternative commod-

ities and by farm (soil moisture at sowing and/or harvest, soil quality, in-farm labor

constraints, etc.) and farmer characteristics (production objectives, economical and

financial situation, etc.; see more details in Table 1). Information about climate con-

ditions that might affect crop yields plays an important role in this group of decisions

(Fig. 1). Expected climate during September (when maize sowing starts), December

(maize flowering) and March (maize harvest) may affect the land assignation to

maize. For example, expected weather during maize flowering may influence the area
assigned to maize: farmers may increase maize area if rain during this critical crop

period is expected to be higher than normal, which will allow high yields although

depending of the perception of the influence of the expected climate on yield (risk

aversion). Moreover, this decision may be revised in response to actual weather con-

ditions at sowing (i.e., during September). If September is too rainy, depending on

soil attributes (e.g., soil drainage capacity) that determine soil condition at sowing

(e.g., soil excessively wet at sowing), a farmer may decide to maintain the amount



Table 1

Decision groups, its components, intervention periods and influencing factors identified in maize crops planning

Component of

decision

Period of decision Influencing factors

Land assignment

Proportion of maize

in the farm

From March to

October

Enterprise-related: (i) Expected weather scenario at

flowering (its influence on yields) (ii) Production costs (iii)

Output prices (iv) Agricultural policies (i.e. export taxes)

Farm-related: (i)Field soil and road condition at harvest

(ii)Expected weather scenario at sowing (soil moisture at

sowing via its influence on soil condition; i.e. excessively

wet or dry) (iii) Soil quality (chemical and physical

characteristics) (iv) Rotation scheme (v) Operative

restrictions (machinery availability)

Proportion of

other crops

Farmer-related: (i) Aversion to risk (ii) Production and

profit objectives (iii) Economic and financial situation of

the firm (iv) Farmer knowledge and access to technical

advice (v) Household characteristics and additional

income

Production technologies

Sowing date From July to

October

(i) Likelihood of low soil temperatures at sowing and late

frosts (ii) Expected weather scenario at sowing (its

influence on soil condition; i.e. excessively wet or dry) (iii)

Expected weather scenario at flowering (its influence on

yields) (iv) Expected weather conditions at harvest (its

influence on soil condition) (v) Type of crop (commodity

or specialty) (vi) Labor/machinery availability (vii)

Production objectives (i.e. risk diversification, high yield

potential)

Maize genotype From July to

October

(i) Expected weather scenario at flowering (its influence on

expected yields) (ii) Expected weather conditions at

harvest (its influence on soil condition) (iii) Production

objectives (i.e. risk diversification, high yield potential,

low cost production, etc.) (iv) Seed cost (v) Weed

problems (vi) Sowing date (vii) Pest problems

Crop density From July to

October

(i) Expected weather scenario at flowering (its influence on

expected yields) (ii) Production technologies (iii) Soil

quality (chemical and physic characteristics)

Rate and time of

fertilizer application

From July to

November

(i) Expected weather scenario at flowering (its influence on

expected yields) (ii) Soil available N at sowing (iii) Crop

price and fertilizer cost (iv) Labor/machinery availability

(v) Soil quality (Chemical and physic characteristics) (vi)

Risk aversion (vii) Genotype and potential yield

Weed control From March to

November

(i) Infestation level (ii) type of weed (iii) Genotype (iii)

Herbicide cost and grain price (iv) Treatment efficacy (v)

Easiness of management (vi) Labor/machinery

availability

Commercialization strategies

Grain storage time of sale mechanism From August to

May

Farm-related: (i) Expected weather conditions at harvest

(its influence on soil condition) (ii) Climatic conditions in

other agricultural areas (iii) Expected market

performance (iv) Economic and tax restrictions (v) Offer

production. Farmer-related: (i) Risk aversion (ii)

Farmer�s managerial ability

Climate conditions influencing each decision are in italics and at the beginning of the list.

188 F.E. Bert et al. / Agricultural Systems 88 (2006) 180–204



(*) SYMBOL REFERENCES

Specific decision. Variable that the farmer, as decision-maker, has the power to control.

Deterministic node (influence factor on each decision), is an auxiliary or intermediate 
variable.

Lines and arrows show the influence and interaction between each component. The three 
points in Figure 3 indicate that the process continue but is not detailed in the diagram.

An uncertain variable that the decision-maker can not control directly. Correspond to 
probabilistic variables.

Value nodes. Correspond to a final result of the decision process.

How many 
hectares of

maize? 

Expected climate
scenario in March

Soil 
moisture at
flowering

Expected climate
scenario in September

Expected climate
scenario in December

Soil 
moisture at

harvest

Soil 
moisture at

sowing

Expected 
yield

Risk
aversion

Excessively
wet

Normal/Dry

La Niña El NiñoNeutral

More land 
assigned to

maize

Fixed scheme
rotations

Less land
assigned to maize

Fig. 1. Conceptual diagrammatic representation of climate influences on land assignment to crops within

an ideal farm in the Pampas. Symbol references are: (*)
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of land assigned to maize and change production techniques (i.e., sowing is delayed)

or, alternatively, if inadequate conditions persist after the end of October, the maize

area may be reallocated among other crops such as soybeans. This complex pattern



Sowing date?

Adequate Inadequate
Labor and 
machinery
availability

La NiñaEl Niño

Normal Late

Expected climate
scenario in September

Excessively
wet

Normal/Dry

Adequate
moisture

Insufficient
moisture

Expected climate
scenario in March

Soil moisture
at sowing

Late Change for 
other crop

Expected climate
scenario in December

Soil moisture
at flowering

Neutral

Expected
yield

Expected climate
scenario in December

Soil moisture
at flowering

Expected
yield

Early/normal

La Niña El NiñoNeutral

Low soil
temperatures and late

frosts

Soil moisture
at harvest

Excessively
wet

Normal/late

Fig. 2. Conceptual diagrammatic representation of climate influences on deciding sowing date for maize

crops within an ideal farm in the Pampas.
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illustrates the dynamic, iterative nature of decisions, which are subject to continuous

revisions in response to updated information.
The second group of decisions involves various maize management alternatives

that define a specific level of cropping technology. Decisions in this group can be fur-

ther divided into those related to (a) crop establishment, (b) crop nutrition, and (c)

crop protection. Crop establishment decisions involve issues such as: Which hybrid

will be sown? Which sowing density will be used? When will sowing begin? Crop

nutrition decisions may be summarized as: Which fertilizer will be applied? How

much fertilizer will be used? When will fertilization be applied? Finally, in maize pro-

duction systems, crop protection decisions are relatively simple and mostly related to
weed control: i.e., which herbicide will be used? When will the herbicide be applied?

At which rate will herbicide be applied (Table 1)? Decisions related to crop establish-

ment, nutrition and protection span several months, usually from March (prior to

sowing of winter crops) to November (after maize sowing). Many factors may influ-

ence the production technology applied to a particular maize field (see details in Ta-

ble 1). Farm-related factors, such as soil attributes and conditions (soil fertility,

moisture at sowing or harvest, etc.), farmer characteristics, (e.g., production objec-

tives or aversion to risk), and production system characteristics (pest and weed prob-
lems, cost of seed and agrochemicals) influence the decisions associated with the crop
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production technology (see more details in Table 1). However, climate may also

influence some of these decisions (Table 1; Figs. 2–5). For example, farmers may de-

cide to sow maize early (15 September) if climate conditions at crop flowering are

expected to be wetter than normal. Conversely, a late sowing date may be selected

if conditions during flowering are expected to be drier than normal, as frequently
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occurs during a La Niña event (Fig. 2). The rationale for late sowing is that more

water may be stored in the soil prior to sowing and the critical flowering period will

take place in January, thus escaping water stress likely earlier in the cycle.

The third group of decisions includes marketing decisions, such as when to sell the

crop production, whether financial instruments like options or futures are used, etc.

This group of decisions is generally made from the time just prior to sowing (August)
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to after harvest (May). Factors such as the amount of production obtained, expected

performance of markets, economic restrictions, and farmer managerial style affect

the final commercialization strategy (see more details in Table 1). It appears that cli-
mate information affects decisions in this group only slightly. Since Argentine maize

production is insufficient to influence global maize prices, local climate outlooks play

a minor role in influencing decisions such as purchase of futures or options. On the

other hand, information on climate conditions in major production regions such as

the US Corn Belt, which shows a mild ENSO signal (e.g., Phillips et al., 1999), may

be relevant to decisions by farmers in the Pampas. On-farm bulk grain storage is not

very common in the study region. However, weather conditions at harvest may affect

the decision to increase on-farm storage of grains. For this purpose, field storage on
large plastic bags has become a common practice in the region, greatly increasing

farmers� flexibility to decide when to sell, and reducing costs by avoiding peak de-

mand for grain transportation.

4.2. Climate-dependent management selected by experts

Technical consultants in the study region were asked to select preferred man-

agement combinations for each ENSO phase, based on their experience and
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expectations of climate. The elicitation was performed prior to simulating outcomes

of the different management options.

Our interactions clearly showed that agricultural advisors consider climate infor-

mation at various stages of the maize production cycle. Most decisions (or at least

initial realizations of decisions) are made in the March–September period previous
to maize sowing. Climate-influenced decisions suggested by local advisors are mainly

based on expectations of rainfall shortly before and during maize flowering. How-

ever, climate conditions during September (sowing) and March (harvesting) were

also relevant to some of the decisions (Table 1, Figs. 1–5). The focus groups per-

formed with technical advisors to validate and revise our preliminary decision maps

confirmed that they perceive potential benefits in adopting different management

strategies depending on expected climate during sensitive crop periods. The willing-

ness to adopt a climate-adaptive management is one of the necessary conditions for
deriving benefits from climate information.

The consensus preferred management for ‘‘El Niño’’ events (for which higher

than normal precipitations in November–December are more likely) involved

early (mid-September) sowing of the long-cycle DK-752 hybrid at a high density

of 8 plants m�2, and fertilizing it with 150 kg of N ha�1. Conversely, the consen-

sus management selected by technical advisors for La Niña years (when below-

normal precipitations in November–December are more likely) involved less

intensive strategies: late sowing (mid-October) of the intermediate-short-cycle hy-
brid DK-615 at a low density of 7 plants m�2, and fertilized with only

50 kg N ha�1. Preferred management for neutral years (also considered the pre-

ferred management in the absence of climate forecasts) involved early sowing

of the hybrid DK 752, low density (7 plants m�2), and an intermediate fertiliza-

tion rate (100 kg of N ha�1).

4.3. Simulated outcomes of management options

There were significant (P < 0.05) overall differences among ENSO phases in sim-

ulated maize yields and economic results (Table 2). Averaging all management op-

tions, the expected yield and gross margin for cold ENSO events (8.34 mg ha�1

and 269 $ ha�1) were lower than for either neutral (9.74 mg ha�1 and 338 $ ha�1)

or warm events (9.80 mg ha�1 and 341 $ ha�1). These results are consistent with

the ENSO signal on rainfall in the Pergamino area: average rainfall for La Niña dur-

ing November–December, a critical period for yield determination in maize, is lower

than for either El Niño or Neutral years (Podestá et al., 2002).
Crop management options that maximized average simulated maize yield and eco-

nomic returns differed among some of the ENSO phases (Table 2). During the El

Niño and Neutral years, the same management combination maximized both average

yield and profits: early sowing of hybrid DK 752, high planting density, and high N

fertilizer rates. Nevertheless, yields and gross margins for other managements that

also involved high N application but either early sowing/low density or late sow-

ing/high density did not differ significantly (P < 0.05). The high water availability

to the crop during its mid–growing season associated with El Niño contributes to



Table 2

Simulated grain yield (mg ha�1) and gross margin ($ ha�1) for various maize crop management combinations under three

ENSO phases

Combination of management ENSO phase

Neutral Niños Niñas

Hybrid Planting

date

Density kg N ha�1 Yield

(mg ha�1)

Gross

margin

($ ha�1)

Yield

(mg ha�1)

Gross

margin

($ ha�1)

Yield

(mg ha�1)

Gross

margin

($ ha�1)

DK 752 15-Sep 7 pl m�2 50 8.71 315 8.79 318 7.32 246

100 10.05 356 10.11 360 8.40 275

150 10.77 368 10.81 370 8.96 279

8 pl m�2 50 8.81 312 8.88 316 7.36 241

100 10.12 353 10.19 356 8.41 268

150 10.96 370 11.02 373 9.05 276

15-Oct 7 pl m�2 50 8.64 311 8.71 314 7.53 256

100 9.98 353 10.03 356 8.67 289

150 10.69 364 10.72 366 9.22 292

8 pl m�2 50 8.73 308 8.81 312 7.57 251

100 10.04 349 10.10 352 8.68 282

150 10.88 366 10.93 369 9.32 290

DK 615 15-Sep 7 pl m�2 50 8.57 308 8.64 311 7.61 260

100 9.91 349 9.96 352 8.50 280

150 10.57 358 10.62 361 8.99 281

8 pl m�2 50 8.69 306 8.76 310 7.67 256

100 10.01 347 10.07 351 8.54 275

150 10.81 363 10.87 366 9.14 281

15-Oct 7 pl m-2 50 8.34 296 8.43 301 7.53 256

100 9.65 337 9.72 340 8.38 274

150 10.25 342 10.30 345 8.74 268

8 pl m�2 50 8.45 294 8.54 299 7.37 241

100 9.73 333 9.80 337 8.43 270

150 10.46 346 10.52 348 8.88 268

Mean 9.74 338 9.81 341 8.34 269

LSD 0.10 5.1 0.11 5.4 0.15 7.3

The numbers in bold show the maximum maize yield and gross margin under each weather scenario (see text for details).

The LSD row shows the least significant difference (P < 0.05) for comparisons between treatments.
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higher yields in dry land crop farming systems of the pampas, particularly if plant

density and N fertilization are increased (Royce et al., 2001).

During La Niña events, different management combinations led to maximization

of either average simulated yields or economic returns. Highest average yields were

obtained with late planting of hybrid DK 752 at high density, and high N applica-

tions (Table 2). This combination, however, was not significantly different from an-

other one that was identical except for a lower planting density. The yield response

to increased N fertilization was significant (P < 0.05) under any crop management
option (Table 2). In contrast to the maximization of average yields, maximizing aver-

age economic returns involved late sowing of hybrid DK 752, low planting density,

and 150 kg of N ha�1 (Table 2). This economic result was not significantly different

from that obtained under other management combinations that involved the same

hybrid and late planting date, but higher planting density or less N applications

(100 kg N ha�1).
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Fig. 6. Cumulative probability distributions for simulated gross margins obtained under various
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There were differences between the model-identified managements that maximized

average yields and economic results and the consensus management selected by tech-

nical advisors for a given ENSO phase. The consensus management for Neutral
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years involved lower fertilization rates and plant densities than those suggested by

the simulations (Figs. 2–5). However, this consensus strategy produces higher mar-

gins only in about 1/6 of the years (Fig. 6a). In contrast, during El Niño events the

management that maximized average simulated yields and economic returns coin-

cided with the management selected for this phase by regional advisors, and it was
better than the management for Neutral years (Figs. 2–5 and 6b).

During La Niña years, high simulated average returns involved intermediate or

high N applications (100 or 150 kg ha�1). These results differed from the manage-

ment recommended by regional advisors for this ENSO phase, which involved a low-

er fertilization rate (50 kg N ha�1). Because in the study region fixed production and

structural costs are very high, management decisions tend to emphasize higher yields

and overall profit maximization, instead of maximization of the efficiency in the use

of a single input such as fertilizer. At first glance, the difference between simulated
and expert management choices may suggest the need for research on maize fertiliza-

tion guidelines in the region, and their interaction with climate conditions. However,

since low fertilization rates produced higher profits in the worst yielding La Niña

years (the lowest 25%; Fig. 6(c)) these results may be suggesting, on one hand, a

high-risk aversion on the part of the technical advisors or, on the other hand, an

incomplete knowledge of climate conditions during La Niña that may tend to over-

emphasize the likelihood of dryness. If the latter is true, this suggests the need for

interventions that improve farmers� knowledge of their local climate and its
variability.

Our results on fertilization during La Niña events contrast with recent findings by

Royce et al. (2001), who suggested that only 58 kg N ha�1were necessary to maxi-

mize economic yields of maize in Pergamino during La Niña years. As simulation

experiments involve several assumptions about initial soil conditions, soil parameters

and crop genetic coefficients, different results may be obtained even when the same

model and quite similar weather records (the synthetic series were shown to be con-

sistent with historical records) are used. Differences in assumptions may explain the
divergence between our results and those published by Royce et al. (2001). However,

there are evidences in the literature that maize response to fertilization may be sim-

ilar under dry and wet years (e.g., Vanotti and Bundy, 1994a,b), supporting the idea

that, under La Niña conditions, intermediate or high amounts of fertilizer would not
Table 3

Simulated gross margins ($ ha�1) obtained from managing maize crops (i) as the consensus for neutral

scenarios (ignoring climate information); (ii) applying the consensus management to each ENSO phase

(with incorporation of climate information); and (iii) applying optimal management in each ENSO phase

as resulted from crop simulations

ENSO Phase Management LSD

Neutral or average Consensus Optimal simulated

Neutral 357 357 371 7.4

El Niño 360 373 373 5.9

La Niña 275 256 292 6.8

Mean 330 329 345
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only increase average yields but also economic returns, as predicted from our

simulations.

4.4. Value of climate information

During the El Niño years, the management combination preferred by technical

advisors also maximized both simulated average yield and profits. Adopting this

management is expected to generate an average benefit of 13.6 $ ha�1 with respect

to adopting the consensus management for neutral years (Table 3). During La Niña

events, simulated management combinations that led to maximization of either aver-

age yield or economic returns differed from the consensus management selected by

advisors for this phase. Adopting the consensus La Niña management would lead

to an average loss of 19 $ ha�1 with respect to adopting the consensus management
for neutral years; since better results would come out from adopting combinations

with higher N applications (e.g. those corresponding to ‘‘Niño and Neutral manage-

ment’’) (Table 3). Adopting the optimal simulated management in La Niña years

would earn a benefit of 16.8 $ ha�1 with respect to apply the simulated optimal neu-

tral management and an extra 35.8 $ ha�1 with respect to the consensus management

proposed in the decision map for La Niña years. Moreover, in Neutral years higher

economic yields were obtained from applying the consensus management suggested

for El Niño years instead of ‘‘Neutral management’’ (Table 3).
Nitrogen fertilization rate appeared to be a decision sensitive to climate informa-

tion. Moreover, the results obtained pointed out that nitrogen management was a

key factor to increase yield and economic returns in maize under various climatic

scenarios. As mentioned above, it is well known that farmers are risk averse; there-

fore they usually tend to minimize losses adopting conservative strategies. Our re-

sults show that, under the management suggested by the advisors, negative

economic results are minimized (Fig. 6(c)). However, according to our simulated re-

sults, reducing fertilizer input may lead to low average yield and economic benefits in
maize, even under La Niña years, which are usually associated to low rainfall. The

contrasting result between the optimal management identified from the decision map

and the one identified from simulation points out the importance of the interaction

between a risk-averse decision criterion (reducing N costs) and the agronomic re-

sponse to climate information, particularly in La Niña events. This sort of interac-

tions partially explain why climate information may be reluctantly used; according

to our results there may be no positive effect of using climate information under

La Niña years if nitrogen rates are reduced; i.e. those who ignore climate informa-
tion, by maintaining invariably a crop management strategy, would capture average

better yields and economic results, although with a higher risk of failure (Fig. 6(c)).
5. Conclusions

The goal of this paper was to explore some of the conditions required for the effec-

tive use of seasonal-to-interannual climate information and forecasts in agricultural
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decision-making. Although five conditions were listed in Section 1, here we ad-

dressed in detail only the first three.

As a first condition, climate information has to be relevant to, and compatible

with production decisions. However, it is important to distinguish between informa-

tion that is desired and information that will influence viable decisions (Hansen,
2002). Our interactions with stakeholders in the Argentine Pampas showed that cli-

mate information influences directly or indirectly several decisions in a maize pro-

duction system. There was strong consensus among technical advisors and farmers

that the climate conditions most relevant for management decisions in maize produc-

tions systems in the study region were (a) rainfall in the period just before and during

maize flowering (November–December) and (b) rainfall during harvest (March).

Several ‘‘entry points’’ involving these climate situations exist in the decision maps.

The second condition states that alternative options must exist for a given deci-
sion. Argentine agriculture underwent major changes since the 1990s, when stable

economic conditions fostered a steep increase in use of fertilizers, agrochemicals,

and genetically modified varieties (especially for soybeans) (Estefanell, 1997; Satorre,

2002). These modern technologies offer a wide range of management options that al-

low flexible response to climate information (Hammer, 2000). A set of management

options consistent with current practices in the region was identified and incorpo-

rated into the decision maps. The iterative and participatory elicitation process,

which involved local researchers, technical advisors, and a limited number of farm-
ers, ensured that our description of decisions and options in maize production sys-

tems was realistic.

As a third condition, decision-makers had to be able to evaluate the outcomes of

alternative actions. Regionally validated and tested crop growth models were used to

explore the outcomes of a set of decision alternatives under various climate scenar-

ios. The modeling exercise highlighted divergences between options selected to max-

imize average profits by local experts and the simulation results. These differences

were most apparent in nitrogen fertilization rates. Technical advisors tended to select
lower fertilization rates in response to a forecast of dry spring conditions associated

with La Niña events. In contrast, the simulations showed that low doses of N would

lead to a consistent drop in maize yields and profits, even in most La Niña years.

Low N rates resulted in higher average profits only when the worst yielding years

(the lowest 25%) were considered separately. This result suggests either a high risk

aversion by the technical advisors or an incomplete knowledge of the local climatol-

ogy. Indeed, this finding is highly consistent with a tendency of agricultural decision-

makers to overestimate the probabilities of adverse climatic conditions (Sherrick
et al., 2000). This is an issue that should be addressed in future efforts to communi-

cate climate information.

The remaining conditions we submitted for effective use of climate information

were not explored in detail in this work. Nevertheless, we address them briefly for

the sake of completeness. The fourth condition involved seasonal climate forecasts

with useful accuracy, and appropriate lead-time and spatial/temporal resolution.

Rainfall during October–December (maize flowering) has good predictability and

shows a statistically significant association with the occurrence of extreme phases
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of the ENSO phenomenon (Goddard et al., 2003). Predictions of expected rainfall

during this period, therefore, not only are feasible but also highly relevant to man-

agement decisions. Unfortunately, predictability during maize harvest (March)

seems low at present (Goddard et al., 2003).

The fifth condition addressed the decision-makers� willingness to modify their ac-
tions in response to climate information. Because it is implemented through iterative

adjustments of many interrelated decisions, effective use of seasonal climate forecasts

imposes intensive demands on management skill (Hansen, 2002). Our interactions

with stakeholders generally showed a favorable disposition to include climate infor-

mation as part of the decision-making process. Nevertheless, previous work in the

region (Letson et al., 2001) showed a marked distinction between ‘‘a favorable dis-

position’’ and actual changes in management in response to climate predictions.

Our results suggest that seasonal climate information can enhance average economic
returns of the maize enterprise. As profit is a powerful incentive in commercial agri-

culture, the prospect of enhanced returns may stimulate further use of climate

forecasts.

Agricultural use of seasonal climate prediction remains a new and developing

technology. Many of the conditions necessary for the effective use of climate fore-

casts appear to be present in maize production systems in the Argentine Pampas.

However, in this work we explored in detail only the climate-sensitive decision

points, and the outcomes of a realistic set of alternatives for each decision. Future
work should consider a realistic description of the farmers� goals and the context

in which they operate, as it may involve both opportunities and constraints for

the use of climate information.
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Increasing profits and reducing risk in crop production using participatory systems simulation

approaches. Agricultural Systems 70, 493–513.

Mercau, J.L., Satorre, E.H., Otegui, M.E., Maddoni, G.A., Cárcova, J., Ruiz, R., Uribelarrea, M.,
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Podestá, G., Letson, D., Messina, C., Royce, F., Ferreyra, R.A., Jones, J., Hansen, J., Llovet, I.,

Grondona, M., O�Brien, J.J., 2002. Use of ENSO-related climate information in agricultural decision

making in Argentina: a pilot experience. Agricultural Systems 74, 371–392.

Richardson, C.W., 1981. Stochastic simulation of daily precipitation, temperature and solar radiation.

Water Resource Research 17, 182–190.

Ritchie, J., Singh, V., Godwin, D., Bowen, W., 1998. Cereal growth, development and yield. In: Tsuji, G.,

Hoogenboom, G., Thornton, P. (Eds.), Understanding Options for Agricultural Production. Kluwer

Academic Publishers, Dordrecht, The Netherlands, pp. 79–98.

Ropelewski, C.F., Halpert, M.S., 1987. Global and regional scale patterns associated with the El Niño

Southern Oscillation. Monthly Weather Review 115, 1606–1626.

Ropelewski, C.F., Halpert, M.S., 1989. Precipitation patterns associated with the high index phase of the

southern oscillation. Journal of Climate 13, 35–38.

Ropelewski, C.F., Halpert, M.S., 1996. Quantifying southern oscillation – precipitation relationships.

Journal of Climate 9, 1043–1059.

Royce, F.S., Jones, J.W., Hansen, J.W., 2001. Model-based optimization of crop management for climate

forecast application. American Society of Agricultural Engineers 44, 1319–1327.

Satorre, E.H., 2001. Production systems in the Argentine Pampas and their ecological impact. In: Solbrig,

O.T., Paalberg, R., di Castri, F. (Eds.), Globalization and the Rural Environment. Harvard University

Press, Cambridge, MA, pp. 80–102.

Satorre, E.H., 2002. El cultivo de maı́z como oportunidad para la sustentabidad de la agricultura. In:

Proceedings of Congreso de maı́z para productores y técnicos, Buenos Aires, Argentina, pp. 8–11.

Semenov, M., Brooks, R., Barrow, E., Richardson, C., 1998. Comparison of WGEN and LARS-WG

stochastic weather generators for diverse climates. Climate Research 10, 95–107.

Sherrick, B., Sonka, S., Lamb, P., Mazzocco, M., 2000. Decision-maker expectations and the value of the

climate prediction information. Meteorological Applications 7, 377–386.
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