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Abstract
Large-scale deployment of photovoltaicmodules is required to power our renewable energy future.
Kesterite, Cu2ZnSn(S, Se)4, is a p-type semiconductor absorber layer with a tunable bandgap
consisting of earth abundant elements, and is seen as a potential ‘drop-in’ replacement to
Cu(In,Ga)Se2 in thinfilm solar cells. Currently, the record light-to-electrical power conversion
efficiency (PCE) of kesterite-based devices is 12.6%, for which the absorber layer has been solution-
processed. This efficiencymust be increased if kesterite technology is to help power the future.
Therefore two questions arise: what is the best way to synthesize thefilm? And how to improve the
device efficiency?Here, we focus on the first question from a solution-based synthesis perspective. The
main strategy is tomix all the elements together initially and coat themon a surface, followed by
annealing in a reactive chalcogen atmosphere to react, grow grains and sinter the film. Themain
difference between themethods presented here is how easily the solvent, ligands, and anions are
removed. Impurities impair the ability to achieve high performance (>∼10%PCE) in kesterite
devices. Hydrazine routes offer the least impurities, but have environmental and safety concerns
associatedwith hydrazine. Aprotic and protic basedmolecular inks are environmentally friendlier and
less toxic, but they require the removal of organic and halogen species associatedwith the solvent and
precursors, which is challenging but possible. Nanoparticle routes consisting of kesterite (or binary
chalcogenides) particles require the removal of stabilizing ligands from their surfaces. Electrodepos-
ited layers contain few impurities but are sometimes difficult tomake compositionally uniformover
large areas, and formetal deposited layers, they have to go through several solid-state reaction steps to
formkesterite. Hence, eachmethod has distinct advantages and disadvantages.We review the state-
of-the art of each and provide perspective on the different strategies.

1. Introduction

In the context of developing a thin film photovoltaic technology that is truly scalable on the terawatt level using
low-cost earth abundant elements, the kesterite semiconductor, Cu2ZnSn(S,Se)4, orCZTSSe, with a tunable
bandgap between 1.0 to 1.5 eV has been a keymaterial of interest. Itmay be seen as a potential replacement or
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successor absorbermaterial to Cu(In,Ga)Se2 (CIGS), since both devices have similar architecture and
processing. The key advantage of CZTSSe is the absence of indium,whichmay have issues with price or price
volatility given its widespread use in other emerging technologies. Investigations into the use of CZTSSe for
photovoltaics began in 1988 [1], and since then, it has been the subject of over 2900 publications to date. Of these
publications, over 65%have investigated liquid processed layers. By this wemean that the kesterite layer was
formed by annealing a precursor layer deposited fromone ormore solutions containing the necessary elements.
Many of the advances in our knowledge of the kesteritematerial have come from solution-processed films, and
indeed theworld record power conversion efficiency (PCE) cell contains a solution processed kesterite layer [2].
Our purpose in this review is to provide a comprehensive overview of the different possible solution-based
syntheses of kesterite layers by discussing the various film formationmechanisms, by giving a brief historical
background for each, as well as by comparing and contrasting the latest approaches.

Solutionmethods to produce semiconductor precursor layers are of interest since theymay be deposited
uniformly at high speed, with nearly 100%material utilization, using low-capital-cost equipment. The kesterite
semiconductor is synthesized by annealing a precursor layer that is formed by drying awetfilm deposited from
‘inks’ or solutions. Although the constituents of the semiconductor, namely Cu, Zn, Sn, S, and or Semay be
depositedwith high purity, the challenge lies in removing all the other components of the solutions from the
precursorfilms.Most semiconductors are notoriously sensitive to impurities, and therefore the removal of all
unwanted species is a very high priority.WhilemanyCZTSSe devices achieve>8%PCEwith>1 atomic%
impurities (mainly carbon, nitrogen, and halogens), the best performing devices tend to have the lowest
concentrations of impurities, approaching levels from vacuum-based processing. As a result,methods are
sought to fabricate kesterite thinfilms that only contain their constituent elements with the correct composition
and any necessary dopants or defect passivation agents (such as lithium and germanium).

The kesterite absorber layer can be formed fromdried chemical precursor layers consisting ofmolecules or
salts, of preformed kesterite nanoparticles, ofmetallic alloys, or even of binary chalcogenide compounds. This
review is split intofive parts covering the different possibilities. Parts (2.1) through (2.3) review themolecular
and salt-based solution approaches, where different solventsmay be used including: (2.1) the carbon-free
solvent hydrazine, (2.2) aprotic solvents such as di-methyl-sulfoxide, and (2.3)protic solvents thatmay yield in-
situ particle formation due to condensation reactions (the so called sol-gelmethod). Part (2.4) discusses the
mainmethods to form and stabilize nanoparticles. Part (2.2) assesses the use of electrodeposition to formboth
metallic andmetal chalcogenide precursor layers. The review is completed by (3) a brief overview of the different
precursor depositionmethods, and (4) associated strengths–weaknesses–opportunities–and threat (SWOT)
analysis of the different solution-based synthetic routes.

2. Thinfilm synthesismethods

2.1.Hydrazine-Based suspensions and solutions
Ever since its conception, CZTSSe has been recognized as a challenging system for thin-film device fabrication
using state-of-the-art vacuum-basedmethods [3].Many excitingmaterials and property similarities withCIGS
inspired attempts to apply analogous thin film growth approaches, such as two-step co-evaporation or
sequential sputtering followed by annealing [4–6]. Composition control and secondary phase suppression
during the high temperature deposition and/or crystallization is hindered in these approaches by the volatility of
Sn chalcogenide phases [7], in addition to the already familiar S and Se. The process control becomes evenmore
difficult due to the interrelation of the vapor pressure of all these three elements and their phase formation.
Therewas therefore a need for amethod that could at the same time provide precise, homogeneous target
composition and facile crystallization of the desired phase,minimizing secondary phase formation and
providing device-quality interfaces.

Hydrazine solution processingwas thefirstmethod to simultaneously address these challenges to a level
enabling CZTS to approach and later surpass the 10%PCEmilestone. Despite the extreme safety precautions
required for hydrazinemanipulation, including flammability and toxicity, this solvent has unique properties for
research onmultinary chalcogenidematerials. Hydrazine is carbon and oxygen-free and, due to its strong
reducing properties, has the capability to form soluble chalcogenide complexes withmanymetals (therefore
already providing desiredmetal–chalcogen linkages in the precursor, as needed in the final product) [8–10].
These precursors cleanly decompose at relatively low temperatures, producing highly pure crystalline layers with
precise composition control. Themethodwas first developed for SnS-based thin-film transistors [8]. Later it
enabled achieving excellent composition and dopant control in some of themost sophisticatedmulti-element
PV absorbers, such as Cu(In,Ga)(S,Se)2, producing homogeneous layers with impressive crystalline quality,
whichwere incorporated into high performance devices [9]. The efficiencywas further improved to become the
highest among all-inorganic solution-processed absorbers at the time (figure 1(a) [11]).
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Implementation of hydrazine solution processing for CZTSSewas not straightforward, given the poor
solubility of zinc chalcogenides in hydrazine (in contrast to theCu and Sn chalcogenides). However, reaction of
Znnanoparticles with chalcogen solutions leads to the formation of zinc hydrazinate nanoparticles with
different shapes [12]. These nanoparticles were found to be sufficiently dispersible in solutions of Cu and Sn
chalcogenides to allow the development of hybrid solution-nanoparticle (or slurry) inks.While not yet
harnessing the full reaction potential ofmolecularly intermixed pure solution precursors, the hybrid inks could
already be spin-coated, annealed and processed, as for CIGS. Employed in analogous device structures (Glass/
Mo/CZTSSe/CdS/ITO/Ni-Al, figure 1(b)), they soon yielded a breakthrough inCZTSSe performance to 9.6%
efficiency [12]. This value, over 40%higher than any previous result with thismaterial, demonstrated for the first
time that an atmospheric-pressure liquid-basedmethodwas able to not only reach, but even to surpass
established vacuum-based processing. The sudden boost inCZTSSe performancemotivated intensified efforts
to further improve this technology and dedicated projects were launched at IBM, as well as atmultiple other
research centers worldwide. Incremental improvements of the hybrid approach, including refinement of
composition and annealing conditions to suppress Sn loss, soon increased efficiencies to>10% [13], reaching
the highest PCE of 11% in 2012 [14]. Despite this success, the presence of nanoparticles and their segregation
could not completely suppress localized compositional fluctuations, which limited further efficiency increase by
thismethod.

Development of pure CZTS solutions in hydrazine relied onfinding a soluble zinc precursor. This was
achieved by twodifferent routes. An approach developed at IBMused zinc formate, which could be directly
dissolved in solutions containing theCu–Sn–S–Se precursors [15]. The presence of Snwas found to be critical
for the formation of soluble species, suggesting that it participated in the formation of a carboxylate complex
with Zn. Independent work atUCLAused a completely different approach, which howevermost likely arrived at
a similar soluble complex.Hydrazinocarboxylic acid, obtained by carefully reacting solidCO2with hydrazine,
was reactedwith zincmetal to form a stable complex that could be incorporated in the Sn solutions [16]. The
zinc formatemethod soon displaced the hybrid slurry approach due to its advantages offine composition tuning
with excellent uniformity and became themain vehicle of state-of-the-art CZTS device optimization and
fundamentalmaterials understanding. Combining advanced thermal processingwith precise composition and
optical stack optimization of the complete device [17], a world record efficiency of 12.6%was achieved [2]. This

Figure 1. SEMcross sectional images of exemplary hydrazine processed absorbers: CIGS yielding 15% efficiency (a) [11], CZTS from
hybrid slurry-based inkwith 9.6% efficiency (b) [12], and pure-solutionCZTS ink offering 12.6% efficiency (c), with corresponding J–
V curve of the latter device (d) [2].
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2014milestone remained unchallenged formany years, prompting questions as towhether CZTSSe
performance has reached a plateau and if further improvementwould be possible. Nevertheless, by providing
state-of-the-art CZTSSe absorbers for fundamental studies, themethod continued to provide key insights into
theCZTSSematerial and device understanding, serving as a benchmark for the improvement of amultitude of
other fabrication approaches. Some of these are discussed in the following parts of this review and are already
approaching andwill likely surpass the long-standing efficiencymilestone set by the hydrazine approach.

2.2. Aproticmolecular inks
Molecular inks are solutions—i.e. single phase homogeneous liquids, as opposed to heterogeneousmixtures, as
is the case for slurries, suspensions, or colloidal dispersions of nanoparticles. A key advantage ofmolecular inks
is that they avoid localized compositionalfluctuations that are difficult to overcomewith suspensions or
colloidal dispersions of nanoparticles. The development of hydrazine-basedmolecular inks was a key advance
that led to the current recordCZTS device reported in 2014 (discussed above). However, hydrazine presents
many challenges due to safety concerns and environmental regulations given its toxicity. As a result,molecular
inks for CZTS have been developed based on other solvents, including: (1) polar aprotic solvents di-methyl-
sulfoxide and di-methyl-formamide (DMSOandDMF) [18–25], (2) polar protic solvents (like water and
alcohols) [26, 27], and (3) amine-thiol solutions [28–30]. Aprotic polar solvents likeDMSOandDMFhave very
high pKa and lack a reactive oxygen site (in contrast to protic polar solvents likewater and alcohols). Thus, these
aprotic solvents avoid the formation ofmetal–oxygen–metal bonds ormetal–oxygen–carbon bonds, which can
be difficult to fully eliminate once formed.We also note that thiols (RSH) aremore acidic (or equivalently,more
protic) than their corresponding ROHalcohol. Amine-thiol routes showpromise, but theymust contendwith a
reactive hydrogen thatmay yield difficult to removeMSR functional groups that result from condensation
reactionswith the thiol (RSH). In this section, we focus primarily on the aprotic polar solvent route to
molecular inks.

Awidely studiedmolecular ink route toCZTS is based on the relatively benign aprotic polar solventDMSO
and a sulfur containing complexation ligand thiourea (TU), whichwasfirst reported in 2011 [18]. InDMSO, the
hydrogens onTUare not very acidic (note that the pKa of TU inDMSO is 21) [31]. As a result, TU tends to act as
a ligand to solvatemetal cationswith the accessible soft Lewis base S-donor site coordinated to themetal cation.
In fact,many TU-metal complexes for softmetal cations arewell-known and studied, including CuCl(TU)3 [32],
Cu2Cl2(TU)4 [33], AgCl(TU)2 [34], ZnCl2(TU)2 [35], and SnCl2(TU) [35]. For theCZTS system, single crystals
of Cu2(TU)6Cl2(DMSO)2 (figure 1(b)) have been isolated from complete inks (figure 2(a), far right)13. Further,
withDMSOas the primary solvent, hydratedmetal salt complexes can be used as precursors since evenwater in
DMSO is quite aprotic with a pKa of 31.4 [36]. In fact, experiments show thatDMSOcan often be replacedwith
H2O at up to 50 vol% in the parent solvent without triggering hydrolysis and condensation reactions that lead to
conventional sol-gel chemistry (see footnote 12). The use of watermay be desirable tomake the solvent and ink
evenmore ‘green’.

The desired oxidation state for cations inCZTS (+1,+2, and+4 for Cu, Zn, and Sn, respectively)may be
achieved in themolecular ink by dissolving salts where themetals are already in that oxidation state [21, 22, 24]
or by adding salts withmetals in other oxidation states, provided that they have a facile pathway for redox
reactions to reach to the desired oxidation state. This latter approach is exemplified byXin et al [19], inwhich

Figure 2.Molecular inkswithDMSOand thiourea. (a) Sequence of steps showing the formation of a stablemolecular ink forCZTS.
(b)Thermal ellipsoid representation of the structure of Cu2(TU)6Cl2(DMSO)2 complex determined by single crystal x-ray
crystallography of a crystal grown from the final ink in part (a). The structure ismonoclinic space groupC2/cwith lattice constants
a=23.599(4)Å, b=8.9153(15)Å, c=18.612(3)Å, andβ=124.342(16)°, with goodness-of-fit on F2=1.119 andwR2=0.096
(unpublished data (see footnote 12)).

13
Hillhouse group result previously unpublished.
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Cu(II) and Sn(II) precursors are added to theDMSO solution (without TUpresent) and undergo a redox
reaction, 2Cu+2+Sn+2→2Cu+1+Sn+4, as indicated by the transition from a dark-green tinted solution
due toCu(II) to a colorless solution indicative of Cu(I) (figure 2(a)). The additional chloride that accompanies
the SnCl2 andZnCl2 also has a beneficial effect, in allowing the formationof aDMSO-soluble copper chloride anion
(Cu4Cl6)

−2, as determinedby single crystal x-ray structure solutionof crystals to beZn(DMSO)6
+2(Cu4Cl6)

−2. The
crystalswere grownby evaporatingDMSO from the ink afterZnCl2 addition.Upon additionof TU to the ink,Cu(I)
forms a complexwith theTUyielding a stablemolecular ink. Single crystal x-ray structure solutionof thefirst
crystals that formeduponDMSOevaporation from the complete ink, are determined to beCu2(TU)6Cl2(DMSO)2,
as shown infigure 1(b). In contrast to the softCu(I) cation, the harderZn(II) and Sn(IV)preferentially complexwith
the harderO-donorLewis base site onDMSOand theO-donor andN-donor Lewis base sites onDMF.Later, Clark
et al [37] showed that chloride transfer reactions are extremely commonanduseful for forming kesterite and
chalcogen semiconductorfilms. Further, by expanding the aprotic solvent suite to includeDMF,Clark showed that
an evenwider variety ofmetal cations (useful for kesteritesmorebroadly) canbe stabilized. Somemetal species
includingAg(I), Ge(II), andGe(IV) (which are studied in an attempt to reduce cation site disorder in the kesterite
lattice) [38–43]have low solubility or lowstability inDMSO-TU inks, and canbe stabilized bymolecular inks based
onDMFandTU.Overall, this research illustrates thatDMSO-TUandDMF-TUsolutions are veryflexible chemical
routes to solvate awide spectrumofmetal chloride salts due to a variety of soft andhardLewis base sites available to
accommodate both soft cations likeCu(I), Ag(I), and Sn(II) andharder cations likeCu(II), Zn(II), Sn(IV),
andGe(IV).

One of the key challenges tomaking high quality kesterite semiconductors from anymolecular ink is the
removal of impurities. For theDMF-TU andDMSO-TU inks, these impurities are primarily carbon, nitrogen
and chloride compounds.While there are several pathways that lead to dense large-grain crystalline films, there
aremany reports of CZTSfilms from thesemolecular ink processes that exhibitmultilayermorphologies
[44–46]. Thesemorphologies often show afine-grained impurity-rich layer trapped in between dense, larger-
crystalline grains and the substrate. Using composition-calibrated glow-discharge optical emission spectroscopy
(cc-GDOES) to reveal the depth-dependent concentration of impurities (see figure 3), it was shown that the
process parameters of the annealing and selenization steps are critical to avoid the trapping of impurities.
Intermediate annealing temperatures led to the formation of amorphous hydrogenated carbon nitride (a-C:H:
N) from the polymerization of TUdecomposition products [47]. These impurity-rich layers could be avoided in
twoways: (1) by using low annealing temperatures that prevent extended a-C:H:Nnetworks from forming and
allow theC andN compounds to be volatilized during subsequent selenization, and (2) by using high annealing
temperatures where the a-C:H:N thermally decomposes during annealing (before selenization) [47]. Other
parameters, such as film thickness and the alkali environment during selenization also have amajor impact on
the extent of impurity removal.

TheDMSO-TU andDMF-TU chemistry has led to some of the highest quality films and highest PCEs
devices for CZTSSe, fabricated by spin coating followed by annealing and selenization (figure 4(a)). In 2015, the
DMSO-TU chemistrywas used to incorporate lithiumdoping intoCZTS inks, which led to dense impurity-free
absorbers (figure 4(b)) and yielded 11.8% active area PCE devices [20]. TheDMSO-TU routewas also studied by

Figure 3. (a) Schematic showing the effects of thermal exposure during annealing and selenization and their effect on bilayer
formation, impurity removal, and the formation of dense grains (adapted fromClark et al) [47]. (b)Composition-calibrated glow-
discharge optical emission spectroscopy (cc-GDOES) depth profiles showing the sensitivity of impurity removal to the annealing
profile. Specifically, it shows that 3 min anneal at 500 °Cafter the deposition of each layer is sufficient to remove carbon, nitrogen, and
chlorine down to close to the detection limit after selenization.
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groups at ZSW [44] and Empa [48], each reporting devices with>10%PCEs.More recently in 2018,Haas et al
[49] presented a large study of over 700CZTS devices fromDMSO-TU inks, examining the effects of Li, Na, Cs,
andRbdoping and the cross-correlationwith themetal ratios. The same study also found that Li yielded the best
devices and reported a new record of 12.3% active area PCE for hydrazine-free CZTSSefigure 4(c) [49]. Also, the
DMF-TU systemhas been used to spray-coat germanium-alloyedCZGTSSe devices [22]with 11.0%PCE and a
record high open circuit voltage (Voc) of 583 mV for the 1.15 eVbandgap, which is 63%of the Shockley–
Queisser (SQ) limitVoc. This is the highestVoc/Voc

SQ reported for any kesterite-based devicewith any bandgap,
including the record hydrazine-based devices [2] that only reach 58%of their SQVoc limit. These percentages
are calculated by dividing themeasuredVoc by the calculated SQVoc for the bandgap, which is amuchmore
transparent way to quantify the voltage performance for a variable bandgapmaterial, like CZTS. This is in
contrast to simply using themeasuredVoc or even the concept of a voltage deficit, since both values depend on
bandgap. Using eitherVoc orVoc deficit can often bemisleading about the voltage performance [22]. Our
previously reported detailed balance calculations show that the SQVoc in units of volts is linearly related to
bandgap in units of electron-volts withVoc

SQ=0.932×Eg− 0.167, which can then be used to calculate the
percentage, 100×Voc/Voc

SQ [22].

2.3. Protic solvents and the sol-gelmethod
The sol-gelmethod is a solution-based synthesis techniquewhere onefirst forms a colloidal suspension of solid
particles (a ‘sol’), which then undergoes gelation (gel). The resulting gel is a continuous network of connected
solid phase particles in a secondary continuous phase, usually a liquid. The predominate reactionmechanisms
are hydrolysis of themetals followed by poly-condensation reactions [50, 51]. The ‘sol-gel’method provides a
facile and promising route towards low-costmass production, which allows for precise control over the
microstructure and the film composition.

The sol-gel technique involves three steps for the preparation of thinfilms. In thefirst step, themetals are
dissolved as ions into solution using precursors such as copper (II) acetatemonohydrate, zinc (II) acetate
dihydrate and tin (II) chloride dihydrate [50, 52]. The solvent is typically 2-methoxyethanol [52] and a stabilizer
such asmonoethanolamine can be added [50]. Additionally, a sulfur source in the formof thiourea,may be
added to the solution [52]. As also described in the aprotic solvent part (2.2) above, thioureamay complexwith
themetal ions in solution. The chosen saltsmust completely dissolve and be stable for hours. Any precipitation
will lead to a change of bulk solution composition, changing the final kesterite layer composition. If the
precipitates get into thefinal layer, theywill form secondary phaseswithin the absorber layer. The second step
consists of kesterite precursor thin film formation, which involves (i) spin coating the solution near to room
temperature onto amolybdenum-coated glass substrate (ii) a baking process in air using a hot plate to form the
metal oxides and remove the residual impurities, and (iii) repeating the coating/baking cycle several times to
reach the appropriate thickness of the absorber. The coating solutionmust not react with themolybdenum, and
thefilmhas to be smooth and pinhole-free, since otherwise the solar cell efficiencywill be likely deteriorated by
shunting. In thefinal third step, a high temperature thermal treatment in a reducing and/or an aggressively
chalcogenizing environment is required to produce the desiredCZTSSe phase, remove oxygen and other

Figure 4. (a) Schematic of device fabricationwithmolecular inks. (b)Top surface of CZTSSefilm fromDMSO-TUmolecular ink after
selenization and cross-section of a∼11%PCEdevice (adapted fromXin et al) [20] (c) highest performance cell fromDMSO-TU
molecular ink at 11.5% total area PCEwith 12.3% active area PCE, adapted fromHaas et al [49] (d) J–V of a germanium alloyed
CZTGSSe device from theDMF-TUmolecular ink process which shows the highest reportedVoc/Voc,

SQ for any kesterite device [22] of
63%.
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impurities, and create crystallinematerial. During this stage, gas-solid reactions take place at the surface, as well
as solid-state reactions in the bulk between the elements, which lead to binary, ternary and finally quaternary
chalcogenides. The annealing temperature and atmosphere play a key role in determining the composition and
crystallite grain size.

Recently, Sun et al demonstrated aCZTS based solar cell with 8.8%PCEusing the solvent, stabilizer and
precursors described above [53]. They investigated the solar cell efficiency dependence on the initialmetal
solution concentrations by varying theCu/Sn ratio in the followingway: 1.69, 1.78, 1.84 and 1.93 labeling the
samples A, B, C andD, respectively, while keeping the Zn/Sn=1.25, S/Metal=2 in the precursor constant
[53]. The resulting kesterite absorber layer films are illustrated in figure 5. The best cell was achievedwithfilmC,
yielding a highVoc of 746 mV,whilst the solar cells A andBwere shunted [53]. In a previous work [54],
Cu2ZnSnS4 kesterite-based thin filmswere successfully prepared using copper acetate (1.6 M), zinc acetate
(1M), tin chloride (0.8 M), and thiourea (6.4 M) using 2-methoxyethanol as a solvent, where the authors studied
the effect of the film thickness on the kesterite structural and optical properties. Based on theXRD andRaman
characterization, it was found that the crystalline quality was improvedwith increasing film thickness. A
bandgap of 1.43 eVwas observed for the thickest filmwith the highest crystallinity. They also noticed that, by
increasing the total annealing pressure, a secondary phase SnS2 can be formed.

2.4. Nanoparticle-Inks
Reviews can be found on fabricating nanoparticles (NPs) of various types (e.g.metallic, chalcogenides, oxides)
for application in different locations of thin-film photovoltaic devices [55], on the approach of using sintered
NPs for CIGS orCZTS [56], and on the evolution ofNP-basedCZTS device efficiency [57]. Here, we provide an
update and comprehensive survey on theCZTSnanoparticle processing.

Nanoparticle-based inks provide the option to distinguish between the solvent(s) used for precursor
dissolution andNP synthesis, from the solvent(s) used forNPdeposition. Thismay allow for better processing
control (e.g. lower residual contaminants or viscosity adjustment), such asNPs rinsing, protectionwith shorter
ligands,mixingNPswith varying composition and/or size distributions, prior re-formulation in a new, e.g. less
toxic solvent. As illustrated infigure 6, precursorfilm formation fromnanoparticles generally proceeds in three
steps: (A) colloidal synthesis of solid nanoparticles, (B) re-formulation into an ink, (C) coating into a porous
film. Even though a high temperature crystallization step under chalcogen atmosphere (T>400 °C, under S
and/or Se) is generally required after deposition, the finalmetal chalcogenide composition can befixed from the
start. CZTSSe device efficiencies in the 9%–11% efficiency range have been demonstratedwith the desiredCu-
poor, Zn-richmetallic ratios, thanks tofine compositional tuning from the initial precursor solutions [58–60].
Below, the three steps are discussed inmore detail.

Figure 5.Top view SEM images of the samples A, B, C andD as described in the text below[53].
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2.4.1. Particle synthesis
At least two different reactant solutions are needed forNP formation. Depending on theirmixing conditions
(nature of solvents, precursor concentrations, additives, time, and of prime importance the temperature), the
reaction can result either inwell-crystallized or amorphous-likeNPs.

Thefirst CZTS nanoparticles were reported in 2009 by various groups based on a high temperature non-
aqueous co-precipitationmethod [64–66], similar toCIGSNPs reported in 2008 [67]. This non-aqueous hot
injection (HI)method is themost abundant in literature. Previous reviews and perspectives on kesteriteNPs and
associatedCZTSSe devices can be found in Bucherl et al [56] from2013, Ghorpade et al [68] from2014, and
Hages andAgrawal [61] from2015. In a typical reaction, for the synthesis of CZTS nanocrystals as reported by
Guo et al [64], oleylamine (OLA) serves as surfactant and solvent to dissolve cation precursors at temperatures of
around 225 °C. The nanoparticle nucleation is initiated by injecting a ‘S dissolved inOLA’ solution into a pre-
heated cation solution, and these nuclei are allowed to grow bymaintaining the elevated reaction temperature
for a certain period until the desired particle size is achieved (typically 0.5–1 h). TheseOLA-capped
nanoparticles after properwashing are then dispersed in the desired solvent to formulate a nanocrystal ink for
coating films. Riha et al have reported a slight variation to this route, which involves use of tri-octyl-phosphine
oxide (TOPO) as a solvent alongwithOLA, giving better particlemonodispersity. Another similar synthesis of
CZTS nanoparticles is achieved via the heat-up route, for which cations and S aremixed together inOLA and
heated to a reaction temperature of around 280 °C, to yieldmonodisperse CZTS nanoparticles and to avoid the
need forHI. Alongwith pureCZTS nanoparticle synthesis, theHI process has also been successful in
synthesizing cation-alloyedCZTS nanoparticles, includingGe-dopedCZTS [69, 70] andAg-dopedCZTS [71],
by using correspondingmetal precursors for the reaction, and has shown improved photovoltaic performance
compared to pureCZTSnanoparticle devices [59, 71]. TheCZTSe layers in high efficiency devices generally
exhibit the kesterite crystal structure, butNP synthesis of CZTSmaterials can also yield ameta-stable wurtzite
phase, e.g. through the choice of solvent, such as dodecanethiol [72, 73], which can then be converted into the
kesterite phase by performing an annealing step under Se environment [74].

TheMetathesismethod (also called instantaneous precipitation) is another route to synthesize nanoparticles
and is performed at room temperature or evenwithin an ice bath. Applied initially for instance toMoS2 [75],
CdTe andCu(In,Ga)Se2 [76], this approach often results inNPswith comparatively poor crystallinity. A similar
room temperature process for Cu2ZnSnS4NPmetathesis was later reported by IMRAEurope in 2014 [62, 63],
based on comparatively benign solvents (water and acetonitrile). This approach is also applicable to a range of
sulfide compounds, such as Sb2S3 or SnS [62]. In a typical CZTSmetathesis, a de-oxygenated aqueous solution of
NaHS is poured into an acetonitrile (CH3CN) solution of the threemetal chlorides SnCl4, ZnCl2 andCuCl.
Performed under ambient conditions (preferentially under nitrogen), themixing instantaneously results in an

Figure 6.TOP: Hot injection synthesismethod. TEMviews of Cu2ZnSnS4 nanocrystals (After Ford et al, 2011) [40] and SEMcross-
section view ofNPfilm deposited by doctor blading technique onMo substrate (AfterHages andAgrawal, 2015) [61]BOTTOM:
Metathesis reaction at room temperature. TEMview of the resulting amorphous CZTS nanoparticles (After Bourdais et al, 2012) [62]
and cross-section view ofNPfilm deposited by spray-coating onMo substrate (After Larramona et al 2014) [63].
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aqueous colloid comprised of amorphous-like nanoparticles, with a size<10 nm (figure 6, bottom). In these
round nanoparticles, TEMEDS indicated that the four elements Cu, Zn, Sn, S are intimatelymixed at tunable
compositions, togetherwith traces ofNa; the latter being (intentionally not completely) removed afterwards by
water rinsing steps prior formulation.

Although, use of the nanoparticle HI approach suggests nanoscale film uniformity, a STEM-EDS study by
Yang et al shows inter-particle (within a single particle) and intra-particle (between two particles) compositional
non-uniformities for CZTS nanoparticles synthesized from various recipes involving theHI approach [77]. This
compositional non-uniformity, which also extends to non-uniformCZTS nanoparticle size distribution, can be
reduced to some extent by increasing the reaction temperature and time [70, 78]. Films casted using such non-
uniformparticles exhibit composition variation across the film but reactive annealing performed in a selenium
environment at temperatures above 400 °C results in redistribution of the elements and ultimately relatively
uniformCZTSSe film composition [77].

2.4.2. Formulation
As illustrated above, nanoparticles for fabricating CZTSSe active layers are generally synthesized as pure sulfide
NPs. Indeed, to our knowledge,>9%PCEdevices have been demonstrated onlywith films based on pure-
sulfideNPs andwith the S/Se ratio adjustment being performed during the high temperature selenization of the
porousfilms fromdeposited/dried ink.Nanoparticles synthesized using theHI approach generally yieldOLA
capping on the particle surfaces, which requires the use of non-polar or low polarity solvents like hexane, toluene
and hexanethiol, in order to disperse the particles for ink formulation [79]. However, an advantageous
characteristic of the sulfur-terminatedCZTS surface is its goodwettability withwater (figure 7) [80]. At the ink
formulation stage, pure-sulfideNPs that were fabricated frommetathesis can thus be dispersed as stable inks
intowater, andmore generally into polar solvents (figure 8). This flexibility offers a broad range of solvents for
ink formulation, including environment-friendly solvents [62].

2.4.3. Depositionmethods
Porousfilm deposition fromNP-based inks simply involves the controlled evaporation of the solvent during
deposition (either by spin coating, doctor blading, spraying or cousin coatingmethods - see the overview of
coatingmethods in section 3), nominally without the concern of removing by-products seen in reactive
depositionmethods, like spray pyrolysis [81]. For photovoltaic thin film absorber application, afinal thickness
of 1–2 μmis needed, which in any case implies the need for repeated coating steps (from two to ten steps).
Typicalfilm fabrication forOLA-cappedCZTSNPs using the doctor blading technique involves dispersion of
NPs in hexanethiol solvent withmass concentration between 200 and 300 mgml−1, which results in∼1 μm
thickfilmswith two consecutive coatings. Each coating is generally followed by an annealing step at around
300 °C to remove the excess solvent from the layer, yielding a porous nanoparticle film [78].

Non-reactive spray deposition of porous films from inksmade of inorganic nanoparticles (metathesis)has
been reported for e.g. CIGS [76], CdTe [82] orCZTS [63]. In the latter case, the formulation ink (10 mgml−1)
was diluted in amixed 90%water/10%ethanol solvent, a ratio that was adjusted for optimumevaporation rate
during spray deposition (at a temperature of∼300 °C). Tomake the approach successful for photovoltaic
applications, the subsequent conversion of such porousfilms (figure 9) into a denseCZTS filmwith large grains
(on the order of thefilm thickness) is critical. In contrast with the case of sprayedCu(In,Ga)Se2films, which
always resulted in poormorphology and<5%PCEwhen starting fromNPs [83], large CZTS grains could be
achieved by annealing under nitrogen, with PCEs of 5%–7% for the corresponding devices. The likely reasons
for this achievement are the absence of carbon-containing ligands, an oxidation-reduction reaction between Sn
fromCZTSNPs and theMo substrate [63] and the presence ofNa traces. A second annealing step under Se

Figure 7.Contact anglemeasurement of water drop on annealedCZTS thinfilm (after Shinde et al 2011) [80].
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atmospherewas then developed, among other refinements, to formCZTSSe films (∼65 at% Se-rich)with 9%–

11% record PCEs [58, 84].
Typically, a selenization is used to convert theCZTS (amorphous or crystallineNPs)film into aCZTSSe layer

containing large grains. This process occurs via liquid-assisted growth, inwhich the film is identified to undergo
a sinteringmechanism that involves (figure 9): (1) condensation of Se in theCZTSNPfilm (2) dissolution of Cu
in liquid Se (3)nucleation of Cu2−xSe grains on the surface (4/5) incorporation of Sn/Zn via transport through
liquid phase/solid-state diffusion as shown infigure 9 [85].

2.5. Electrochemical coating
Among non-vacuum technologies formetalfilm formation, electrodeposition stands out as amature
technology and one of themost effective, as well as low-cost, in industrial sectors worldwide. For the
semiconductor sector, it has been used successfully by BP for the commercial deposition of CdTe thin filmPV
modules and in other PV technologies [86]. Since the pioneering work published by Scragg et al [87], more than
150 papers have been dedicated to the electrochemical preparation of kesterites, including several review
papers [88, 89].

As a shared featurewith other coatingmethods, the classical 2-stage approach employed for the synthesis of
kesterite films remains for electrochemical routes, which involves an electrodeposited precursor film followed
by chalcogenization. It is in the precursor deposition stage where different electrodeposition routes have been
targeted. There are different ways of classifying the electrochemical approaches used to date. Oneway is to

Figure 8. Solvent selection criteria for stable CZTS colloidsmade of CZTSNPs (metathesismethod) re-dispersed in various solvents,
at 5 mg ml−1 concentration. Green dots correspond to colloidal dispersions that have not sedimented after 24 h, at ambient
temperature. Each tested solvent is characterized here by twoHansen Solubility Parameters: its hydrogen bond δH and polarity δP
parameters (unpublished data)14.

Figure 9.Diagram of the proposed liquid-assisted growthmechanism for large-grain CZTSe absorbers fromCZTSnanoparticle films
[85].

14
ChoneC, Bourdais S andDennler G, IMRAEurope previously unpublished.
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differentiate them according to the number of ‘electrochemical’ steps (or number of electrodepositions)
required for the deposition of the precursor. According to this classification scheme, two approaches can be
differentiated. Thefirst approach contains thosemethodswheremultiple layers are electrodeposited to form the
precursor. This group comprises the stacked elemental layer (SEL)method and includes the sequential
electrodeposition of elementalmetallic layers [87, 90, 91], sequential electrodeposition of stacked alloys in the
formof CuZn/CuSn [92], and a combination of these, involving the successive electrodeposition of elemental
and binarymetallic layers [93, 94]. The second approach involves thosemethodswhere one single
electrochemical step is used to form the precursor. This group includes the co-electrodepositionmethod
involving the deposition of aCuSnZn compound; and the so-called ‘one pot’ electrodepositionwhere the
chalcogen source (seleniumor sulfur) is also incorporated in the electrolyte, with the aimof directly obtaining
CZTS orCZTSe. A comprehensive review ofmost of these electrochemical approaches was previously published
byColombara and coworkers [89]. In light of this, this sectionwill focus onmore recently publishedwork so as
not to duplicate past review efforts. Recent progress in terms ofmaterial quality, new insights and solar cell
performancewill be highlighted for eachmethodology.

2.5.1.Multiple layer deposition
The sequential electrodeposition ofmetallic layers has historically been the approach that leads to the highest
PCEs [91, 95]. An 8.2% record PCE for pure selenide kesterites has been achieved so far. First, Vauche et al [96]
have reported this result for large area electrodeposited Cu–Sn–Zn stacked precursors, followed by selenization.
A remarkable improvement in device performancewas attainable after the incorporation of etching procedures
(for removal of zinc and tin selenide secondary phases) and buffer layer optimization (figures 10(a) and (b)).
Soon after, Yao et al [97] achieved the same efficiency by optimization of the selenization process andwithout
etching steps. A three-stage annealing at low Se-pressure prevents tin loss and the formation of a thickMoSe2
layer, thereby enhancing the device efficiency. In terms of sulfurized SEL precursors (CZTS), a record PCEof
8.1%was reported by Jiang et al [98, 99]. The authors point out the significance of a long preheating treatment
(≈200 min) of the electrodeposited Cu/Sn/Zn stacks, in order to achieve the highest quality of CZTSfilms and
PVdevices (figures 1(c) and (d)).

More recent contributions for the SEL approach have been focused on replacingwater electrolytes by non-
aqueous solvents. For instance, ionic liquids usually offer higher temperature operation and expand the
electrochemical potential windowmaking possible the use of higher current densities during electrodeposition

Figure 10.Top efficiencies of kesterite PV cells reported by the SEL approach. (a) SEMcross-section of selenizedCu/Sn/Zn stack (b)
8.2%CZTSe device after buffer layer optimization (after Vauche et al [96]). (c)Temperature profiles of three-step selenization process
and (d) 8.2%CZTSe solar cell with optimized three-step selenization process (after Yao et al [97]).
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because no competing electrochemical hydrogen evolution (reduction of protons) occurs [100]. Recently,
Steichen and coworkers have reported a high speed electrochemical SEL procedure achieving averagemetallic
deposition rate of 100 nm s−1 through the use of liquidmetal salts [101]. This SEL approach combinedwith a
rapid thermal process (RTP) is capable of producing a promising 5.5%CZTSe PVdevice.

The synthesis of Ge-alloyed kesterite films has also been explored for higher bandgap usingmultilayer
electrodeposition [102]. In this work brass/tin/germanium stackswere prepared, using pyrophosphate
electrolytes for brass and tin electrodeposition and an organic electrolyte forGe electrodeposition. Despite only
minor improvement in terms of PCE, this first attempt expands the capacity of electrochemicalmethods to
obtain kesterites of varied compositions.

2.5.2. Compound electrodeposition
In the last years,most of the publishedworks related to co-electrodeposition have addressed the replacement of
citrate salts [103–105] as a complexing agent by pyrophosphates [106–108]. Other work has studied the effect of
cell configuration on the compositional homogeneity of electrodeposited Cu–Zn–Sn alloys [109]. Also,
sulfurized and selenized compound electrodeposited precursors were successfully tested in other types of PV
devices, likeDSSCs [110] or photocathodes forwater splitting [111]. In terms of PCE, the record for the co-
electrodeposition approach is still 8.0%, as reported by Jeon and coworkers [112].More recent contributions
have explored the combination of this approachwith a RTP annealing, which ismore attractive from an
industrial perspective, and reported a 5.2%PCE [113].

The use of a quaternary-salt containing electrolyte has been the approach that has progressed themost in
terms of increasing device efficiency. From a 5.5%PCE reported byGe et al [114] in 2014, a new record 8.7%
PCECZTS solar cell has been recently reported byZhang and coworkers [115]. Similarly, Ge et alhave improved
their previous solar cells by reporting a 7.1%CZTSPCE. In this work, after a systematic investigation, refined
plating parameters and an optimized electrolyte led to the obtaining of electrodeposits with outstanding layer
uniformity in terms offilm appearances and compositions, of comparable quality to those obtained by vacuum-
basedmethods (figure 11).

3.Overview of coatingmethods

CZTSSe absorbers have been deposited from liquid-based precursors using a large range of deposition
techniques. The quality of the finalmaterial is affected by all process parameters, such as compositional control,
extrinsic doping or annealing parameters, in a rather complexway.Nonetheless, the depositionmethod itself is
highly important, since compact and uniform layers (both in terms of thickness and stoichiometry) are required
to obtain high performance solar cells in the subsequent steps. For a uniform and crack-free coating, the
depositionmethod should be carefully combinedwith an ink that exhibits the appropriate rheological

Figure 11.Uniformity evaluation of one-stepCZTS electrodeposited precursors onMo, ITO, and FTO substrates (2×2 inch size).
(A)–(C) cross-section SEM images on different substrates (D) photographic pictures ofmirror-like CZTS precursors showing the grid
used to record 42 EDSmeasurements in the precursors (6×7), and (E) element distribution of the precursor onMo substrate (after
Ge et al [116]).
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properties, such as the viscosity, density and surface tension. The compactness of the filmmust bemaintained
after any intermediate drying step, which is performed to evaporate the solvent and remove impurities. Drying
of the film often results in the formation of cracks, which can act as shunting paths in the solar cell and reduce its
performance. To eliminate this effect, the absorber is typically deposited through a series of deposition/drying
cycles, such that the deposited filmdoes not exceed a ‘critical’ thickness, related to the tensile strength and the
Young’smodulus of thefilm [117].

Typical depositionmethods for CZTSSe thinfilms involve two separate steps—i.e., thematerial coating
followed by a post-deposition step, in the formof a thermal or chemical treatment. The processes where the high
qualitymaterial is obtained in a separate step from the coating, have also been referred to as sequential or ‘two
step’ approaches [118]. The benefit of sequential approaches is that the deposition step can be performed using a
low capital costmethod and/or at rather low temperatures. The ideal depositionmethodwould have a low
thermal budget, high deposition rates and lowoperating costs to be industrially relevant. This sectionwill give an
overview of themost popular coatingmethods for research-scale CZTSSe precursor layer deposition, and the
highest PCE values for the givenmethods are compared in table 1.

3.1. Spin coating
Spin coating has been extensively explored in kesterite research, as it is well suited for processing of small
substrates [2]. It typically involves the application of a liquid to a substrate, followed by the acceleration of the
substrate up to a certain angular velocity rotational speed [120]. Thismethod is typically combinedwith
solutions of fairly low viscosity (< 0.01 Pa s) and it requiresmultiple depositions to build-up the necessary film
thickness [117, 120]. The obtained film thickness depends on the angular velocity during deposition and the
physical properties of the ink [120]. For obtaining a finalfilm thickness on the order of 1–2 μm, aminimumof
five successive layers are typically needed [12]. Despite the process simplicity, the lowmaterial utilization and the
restriction to small substratesmakes thismethod industrially less attractive [120]. Table 1 summarizes the
record efficiencies obtained inCZTSSe to date with each coatingmethod. Among the solution-basedmethods,
the highest reposted efficiency of 12.6%was obtained using spin coating, andwith hydrazine as the solvent [2]
(see part (2.1) of the thin film synthesis section).

3.2. Spray coating
Spray coating is amethod that is also compatible with low viscosity inks and it is suitable for large area
deposition. Thismethod involves forcing the ink through a nozzle to form afine aerosol [120]. For the ink
transport to the substrate, a carrier gas or electrostatic charging (electrostatic spraying)may be applied, and the
spray jet is scanned continuously to cover the entire substrate area [81]. Althoughwaterwould be themost
benign and safest choice as the solvent, itmay introduce substantial oxygen content in the final layer.Water also
tends to be unsuitable for spray deposition due to its high surface tension, causing large droplet size and film
disjoining upon drying. As a result, alcohol-based protic solvents have been themost commonly explored for
spray coating, which allow for uniform films and fast solvent evaporation.However, the highest efficiency
CZTSSe devicesmade by spray-coating employed eitherDMSOorDMF as a solvent, both of which have a
surface tension substantially less thanwater, but higher than ethanol. The large number of drops in a spray
deposition process, their varying velocity and droplet sizewith time due to evaporation and coalescence, and the
temperature gradient between neighboring droplets, are typically so complex that computational resources fail
to predict the dynamical and thermal interactions involved. Therefore, the optimum spray process parameters
for obtaining device-grade kesterite films tend to be experimentally defined.

Spray coating can theoretically be used as a single coatingmethod, as the solvent evaporates upon contact or
in proximity to the substrate surface. In theCZTS system, however, it is only exploited as a two-step approach.
The synthesis of kesterites-based absorber layers in an ambient environment using this techniquewasfirst
reported byNakayama in 1997 [121]. Following this work, different reports on the spray pyrolysis technique
have been published, where the precursor type, substrate temperature, post thermal treatments and solution
pHhave been investigated [122–125]. The substrate temperature in particular, is a key process parameter, as it
can influence both themorphology and the stoichiometry of the final film [126]. A drawback of thismethod is
the relatively small grain size and high surface roughness, in comparison to other techniques [127]. The absorber
roughness can directly influence the absorber/CdS interface, for solar cells prepared in the substrate
configuration. This effect can be less detrimental for superstrate solar cells, where the kesterite is deposited on
theCdS buffer layer. The relationship between secondary phase formation and chemical compositionwas also
investigated [128]. It has been shown that non-optimumCu/(Zn+Sn) andZn/Sn compositional ratios can
result in the formation of conductive secondary phases related to copper and sulfur compounds [128]. Spray
processing generally leads to rougher films than other depositionmethods, but offers several advantages over the
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Table 1.A selected summary of the record power conversion efficiency values obtained from each deposition route, including the precursor type, any post-deposition treatments and self-reported efficiency limitations. PCE is total area,
unless otherwise stated.

Solution/Nanoparticles Coating Precursor Post-deposition step Self-reported limitation Efficiency

Solution (hydrazine) Spin coating [2] Zinc formate, Cu2S/S, SnSe/Se, hydrazine Annealing atT>500 °C Toxicity, Zn (S,Se) Secondary phases, Cu
migration intoMoSe2

12.6%

Solution (aprotic) Spin coating [49] DMSO, thiourea,metal chlorides,metal acetates Annealing inN2, annealing in Se (gra-
phite box)

None reported 11.5%12.3%

(active area)
Solution (aprotic) Doctor blade [44] DMSO, thiourea,metal chlorides,metal

acetylacetonates

Annealing in Se Fine-grainedmiddle layer 10.3%

Solution

(aprotic) Spray [22] DMF, thiourea,metal chlorides Annealing in Se (graphite box) Film roughness, plus inherent CZTSSe

limitations.

11.0% (active area)

Suspension (protic) Spray [60] Cu–Zn–Sn sulfide colloid dispersed inwater and

ethanol

Annealing inN2, annealing in Se Porosity accelerating surface oxidation 10.8% (11.5%)a [119]

Suspension Doctor blade [85] CZTSNPdispersed in 1-hexanethiol RTP in Se Fine-grain layer after annealing 9.3%

Solution Electro-deposition [115] Metal sulfates inwater RTP in S ZnS secondary phase, remaining fine-grain

layer

8.7%

a IMRAEurope –publication in preparation.

14

J.P
hys.:E

nergy
2
(2020)012003

T
T
odorov

etal



more common spin- and dip-coating procedures, including reducedmaterial loss during fabrication, higher
sample throughput, and deposition over a larger area [81].

The highest efficiencyCZTSSe PVdevice from a spray-coatedmolecular ink is 11.0%PCE and is based on
DMFas a solvent [22]. Previous reports by the same group usingDMSOachieved 9.5%PCE [129].With regards
to nanoparticle-based precursors, Larramona et al have reported an efficiency of 10.8%by (non-pyrolytic)
spraying of a colloidal dispersion of CZTS nanoparticles in a solvent comprised of 90%water and 10% ethanol
[60]. It is likely that these efficiencies (for bothmolecular inks andNP inks)will increase to similar levels as spin
coated devices. As a case in point, a recent private communication reports that a 11.5%PCEdevice was achieved
by the same team at IMRA for a 0.25 cm2 total area small cell (so far unpublished data). This process was scaled to
1 cm2 for a certified large areaCZTSSe record of 9.8%PCE [84], and has nowbeen pushed to 50 cm2 [130]. The
lattermethod has a high commercialization perspective due to the low toxicity of the precursors used.

3.3. Printing
Printing techniques, such as screen, pad and gravure printing describe a group of techniqueswhere a layer of ink
is transferred from a stamp to a substrate by a reversing action [120]. These techniques can have a very high
throughput and offer the possibility of patterning. According to this definition, doctor blade and inkjet printing
may rather be regarded as coating techniques, since they involve pouring or casting the ink, rather than
stamping.However, they are included in this section as they share important features withmore traditional
printingmethods; namely the compatibility with complex patterns, for the case of inkjet printing, and the
necessity for high viscosity inks, for the case of doctor blading [131]. Inkjet printing is a highly versatile coating
technique, as it allows deposition of both dissolved and dispersed inks, on any substrate. Theworking principle
consists of the droplet formation and ejection, the spreading and coalescence of the droplets on a surface, and
finally the solvent evaporation [131]. Inkjet printing offers the advantage of extremely high lateral resolution and
roll-to-roll (R2R) compatibility. Itsmain disadvantages are its slow drying (compared to techniques like spin
coating) and the requirement for very specific ink properties –namely viscosity and surface tension.Doctor
blading involves a blade thatmoves over the substrate surface at a certain distance and at a constant velocity,
spreading the ink. It offers highmaterial utilization and it is easily transferrable toR2R, in the formof ‘knife-
over-edge’ coating. Itsmain disadvantage is the necessity for high viscosity inks (> 100mPa s), which generally
requires additives [131].

Despite the versatility of these approaches, printing has not yet been substantially explored on the research
scale for theCZTSSe system. In comparison to other coatingmethods, printing generally requires higher
viscosity inks, inwhich case the viscosity adjustment is done using organic additives. The presence of the
additivesmay leave carbon impurities in the film, thereby necessitating an additional high temperature
annealing step for their removal. Especially when combinedwith the use of suspensions rather than solutions,
long chainmolecules are also used for the stabilization of the particles, which is an additional source of carbon in
thefilm. This, together with the low yield for fabricating nanoparticles [132] can be regarded as the limitations
for printing dispersed inks. The highest PCE achieved for CZTSSe films prepared using nanoparticle precursors
is 9.3%, obtained using a doctor blading technique [85] (see the synthesis section nanoparticle part 2.4).

3.4. Electrodeposition (ED)
EDmethods involve electron transfer reactions between electrodes and dissolved reactant ions, the latter usually
being in an aqueous solution phase. To achieve uniform layers the reactant ionsmust arrive and reduce
everywhere on the electrodes surface at the same rate, failure to do so leads to compositional and thickness non-
uniformities likely resulting in secondary phase formation. The biggest advantage of these approaches is the low-
cost, high uniformity and highmaterial utilization efficiency exceeding 90% [133]. EDmethods have already
been successfully implemented in industry, which confirms their large area compatibility is possible [133]. In
addition to the deposition of SELs, a ‘one-pot’ED approach can be used, where all the elements (including S) are
deposited in a single step. Still, a post-deposition annealing stepmust be performed to obtain highly crystalline
and single phasematerial quality. The highest efficiency to date fromEDwas obtained using the co-
electrodeposition approach, followed byRTP sulfurization [115]. This improved efficiency of 8.7%was achieved
by increasing the background pressure during sulfurization. The increased partial pressure of sulfur during
annealing has been shown to improve the crystallinity of the absorber and reduce the thickness offine-grain
layer [115].

4. SWOTanalysis

Having reviewed the state-of-the-art solution-based strategies and the principal coatingmethods, it is worth
comparing their relative strengths andweaknesses, as well as the possible opportunities and threats to future
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Table 2.Comparison of the strengths, weaknesses, opportunities and threats for each of the different solution-basedmethods. It offers guidance for future research in that it highlights the relative promise and challenges thatmust be
overcome for increased efficiency or forwidespread implementation.

Strength Weakness Opportunity Threats

(1)Hydrazine-based suspen-

sions and solutions

-Carbon-free solution leaves no residue -Hydrazine is a dangerous and regulated

solvent

-Enables synthesis of high quality absorber layers

in order to carry out advanced characterization

so that thematerial can be better understood

-Safety and environmental concernswith hydrazine if

used for industrial purposes-High efficiency 12.6% (IBM)
-Continuously tunable composition

-Does not require selenization (but does
require high temperature anneal)

(2)Aproticmolecular inks -Simple ink preparation by dissolving salts -Highest efficiency preparations require 3

to 5 spin-coated layers plus annealing

-Ease of doping inkswith other elements to passi-

vate defects

-Controlling the thermal exposure during the anneal-

ing and selenization steps to removeC andN spe-

cies andwhile forming dense grains.

-Continuously tunable composition

-Some (but not all) annealing profiles
leave a carbon-rich layer ormultilayer

morphology

-Ease of scale-up by spray coating, blade-coating,

or other depositionmethods
-Relatively benign solvent (DMSO) used

-Requires selenization for high efficiency

-High efficiency and reproducible across

multiple labs, 11.8% (UW), 12.3%
(Empa), 10.3% (ZSW)

(3)Protic solvents and the
sol-gelmethod

-Simple ink preparation -Metal oxide formation in the precursor

requires reduction or aggressive seleni-

zation to remove oxide

-Ease of scale-up by spray coating, blade-coating,

or other depositionmethods

-Removal ofO andC related impurities is challenging.
-Most environmentally friendly green

solvents

-Continuously tunable composition

(4)Nanoparticle-Inks -Tunable composition >3 steps (Particle Synthesis, Ink For-
mulation, FilmDeposition,

Annealing)

-Ease of scale-up by spray coating, blade-coating,

or other depositionmethods

-Presence of S due to incomplete conversion of CZTS

nano-particles toCZTSe film-Decouples primary kesterite formation

from film deposition

-Possible carbon residue from ligands on

particles

-Surfacemodification via ligand exchange to

eliminate or reduce carbonaceous residue

-Maintaining uniformity of particles in scaled up

synthesis-Mild conditions forfilm deposition

-Synthesis involves use of organic and

inorganic compoundswith foreign

elements (Cl, O, C,N etc)
(5)Electrochemical coating -Metal only deposition scalable tometer

square areas

-Only applicable to conductive substrates -Roll-to-roll capabilities -Contaminants frombath or electrodes incorporated

during the plating process

-Low temperature operation

-Some approaches yield extremely

uneven coating even in small areas

-For larger areas develop new (ED) cell geometry

to improve current distribution and coating

uniformity
-Uncontrollable precursor composition leading to

detrimental secondary phase formation-Stable benign precursor solutions which

are recyclable -Stacked elemental layer precursor can be used as

a replacement to vacuum sputtered precursors
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research in these directions. A SWOT analysis is presented in table 2. The aimof this analysis is to highlight and
offer guidance about the relative challenges faced by each route, rather than identifying amore suitable way over
another. In general, except for perhaps the hydrazine-based approach, the detection/measurement and removal
of impurities is still a topic which requires further research effort for all solution-based routes.

This analysis is explicitly based on solutionmethods, thus a direct comparisonwith vacuumor single crystal
methods is avoided.However, even if not included in the table, an inherent strength of solutionmethods over
vacuummethods is the highmaterial utilization of Cu, Zn, and Sn. In comparison to vacuum-basedmethods,
solution processes exhibit twomain challenges. Thefirst is to achieve reduced or impurity-free absorber layers,
since impurities seem to be one of the factors which limit PCEs. The second relates to upscaling to industrially
relevant sizes in an economically viablemanner, which is proven for vacuum-basedmethods, but only
somewhat for solution-basedmethods. Of course, themain challenge for all scientists working on the kesterite
material is to further improve the PCE towards 20%.

5. Conclusion

For any photovoltaic absorber technology to succeed in the globalmarketplace, itmust offer high performance,
low-cost processing, and facile integrationwithin existingmanufacturing infrastructure. Kesterite-related
technologies,most notably CZTSSe, have recently received a great deal of interest. Themain reason for this is the
performance increase achieved in laboratory-scale devices, as well as the high potential of thismaterial system to
serve as a ‘drop-in’ replacement for already commercialized CIGS absorbers. Key to this argument is the
abundance/ low-cost of Zn, Sn rawmaterials (for substitution of rare and expensive In, Ga elements), and
availability of cost-competitive approaches for fabricating theCZTSSe absorber layers. In this review, we have
explored only an aspect of CZTSSe film processing that depends on liquid-based deposition. Such approaches
not only provide a prospective pathway for low capital cost fabrication, but also the ability for depositing films of
varying composition/morphology for defect and other chemical/physical studies, which are critical for
overcoming current performance bottlenecks.While hydrazine-based approaches provided an early lead in
terms of PVperformance, at least in part because of the near-ideal solvent properties of hydrazine for
chalcogenide-basedmaterials, other less-toxic alternatives (based on protic, aprotic or nanoparticle-inks) have
reached near parity. Overall, the leadership shownby liquid-based processing in terms of performance for the
kesterite absorbers shows that such processing approaches provide a viable pathway for achieving state-of-the-
art PCE values relative to vacuum-based approaches, whichmore typically are associatedwith high
performance. However, in order for solution-basedmethods for CZTS to have further impact on the
technology, an improvement in PCE towards>18% is required. Assuming this point is addressed, the
combination of high performance and lower-cost liquid-based processing, coupledwith readily-availablemetal
component elements, should lead to a promising future for these technologies.
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