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ABSTRACT

This article presents a review of the research
results obtained in the ICMASA (Institute of Civil
Engineering and Environment of Salta). Reference
information sources are primarily papers in the open
literature generated in the last years. The results
reviewed correspond to the area of analysis of the
statical and dynamical behaviour of beams and plates
with complicating effects. Also some relevant results
obtained by other investigators are included.

1. INTRODUCTION

The basis of modern vibration analysis can be
found in the classical textbooks: A Treatise on the
Mathematical Theory of Elasticity by A. Love and The
Theory of Sound by Lord Rayleigh. The advent of the
digital computer made it possible to generate semi-
closed form solutions of a great number of vibrating
systems. On the other hand the development of large
digital computers allow the construction of algorithms
which simulate the systems directly using the famous
Finite Element Method. Today the natural frequencies,
mode shapes and other responses of almost all linear
system can be obtained with the use of the mentioned
method. Nevertheless the closed form solutions and
approximate analytical solutions which can be
obtained, for example, with the classical methods of
Galerkin and Ritz are particularly interesting. The
physical insight into the nature of the solutions is a
great advantage of this type of solutions.
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The determination of natural frequencies in
transverse vibration of beams and plates with
complicating effects, are problems that have been
extensively studied by several researches in the last
decades.

This article presents a review of the research
results obtained in the ICMASA (Institute of Civil
Engineering and Environment of Salta). Information
sources referenced are primarily papers in the open
literature generated in the mentioned institute in the
last years.

The major part of the articles present solutions
obtained with the classical Rayleigh and Rayleigh-Ritz
methods and some of the extensions, such as the
optimized Rayleigh method.

2. VIBRATING BEAMS.

Several works dealing with transverse
vibrations of tapered beams have been published.
Mabie and Rogers [1,3] have presented analyses for
tapered beams with different end conditions. Goel [4]
analysed the case of transverse vibrations of linearly
tapered beams elastically restrained against rotation at
either end. Laura et. al. [5,6] treated several cases of
non-uniform beams.

Grossi and Bhat [7] presented the analysis of the
approximate determination of frequency coefficients of
linearly tapered beams with ends elastically restrained
against rotation. Two approaches were used: the
modified Rayleigh-Schmidt method and the
characteristic ~ orthogonal ~ polynomials = method
developed by Bhat. The approximate determination of
frequency coefficients of linearly tapered beams
elastically restrained against rotation at one end and
with a concentrated mass at the other, was considered
in [8].
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Grossi and Aranda [9] presented the
construction and application of a functional that yields
the mathematical model which describes the dynamical
behaviour of Timoshenko Beams with general
boundary conditions.

Auciello [10] showed that a discrepancy of
values obtained by Grossi and Bhat in [7] and the
values obtained by Goel in [4], was due to a trivial
error in the interesting Goel theory.

Grossi and Aranda [11] considered the
application of an extension of the Rayleigh method to
generate results for a vibrating beam which supports a
concentrated mass. A discussion about the analytical
and numerical performances is included.

Grossi and Arenas [12] presented a work
concemed with the use of the Rayleigh-Schmidt
method in the determination of frequencies
corresponding to the first two modes of vibration of a
linearly tapered beam with both ends elastically
restrained against rotation and translation.

Grossi et. al. [13] considered the problem of
weak solutions in beams. The existence and uniqueness
of the weak solutions of a boundary value problem and
an eigenvalue problem, which correspond, respectively,
to the statical and dynamical behaviour of a tapered
beam with ends generally restrained, has been
demonstrated.

Arenas and Grossi [14] analysed the exact and
approximate determination of frequency coefficients of
a uniform beam, with one end spring-hinged and a
rotational restraint in a variable position.

Nallim and Grossi [15] presented a simple,
accurate and flexible general algorithm for the study of
a great number of beam vibration problems. The
approach has been developed based on the Rayleigh-
Ritz method with characteristic orthogonal polynomial
shape functions.

3. VIBRATING PLATES.

3.1 ISOTROPIC PLATES.

The determination of natural frequencies in
transverse  vibration of isotropic plates with
complicating effects, such as elastically restrained
edges, presence of holes with free edges, variable
thickness, etc, is a problem that has been extensively
studied by several researches.

Leissa’s works [16,17] constitute excellent
compilations of the literature conceming isotropic
plates.

Grossi and Bhat [18] studied the problem of
natural frequencies of tapered plates with edges

elastically restrained against rotation and translation by
using boundary characteristic orthogonal polynomials
in the Rayleigh-Ritz method and applying the
Rayleigh-Schmidt method.

Grossi and Laura [19] used the optimized
Rayleigh-Ritz method to generate values of the
fundamental frequency and the one corresponding to
the first fully antisymmetric mode for rectangular plates
elastically restrained against rotation and with located
circular holes.

Arenas and Grossi [20] dealt with the
development and application of a general algorithm for
the determination of values of frequency coefficients
for a rectangular plate with a central free hole.

3.2 ORTHOTROPIC AND

ANISOTROPIC
PLATES.
Natural frequencies of orthotropic and

anisotropic plates with any combination of classical
boundary conditions, (i.e.: free, clamped and simply
supported) have been studied extensively. Reference
[21] is an important survey of the literature concerning
dynamics of plate-type structural elements of composite
material. Laura and co-workers have supplied much of
the information regarding the use of polynomial
expressions as approximating functions and the
treatment of elastically restrained boundaries [22,28].

In the articles [29] and [30], Ashton considered
the analysis of anisotropic plates using the Ritz method
in conjunction with beam mode shape functions to
approximate the deflected shape. These papers
considered clamped, simply-supported and free edges.
In reference [31] this author extended the analysis to
include elastically restrained edges.

Grossi [32] considered the application of the
Rayleigh-Ritz method to generate results for a great
number of flexural vibrations problems for rectangular
orthotropic and anisotropic plates.

Laura, Bambill and Grossi [33] presented a
discussion about relevant references which have been
omitted by the authors of the article [34] in which they
analysed the free vibration of anisotropic rectangular
plates with various boundary conditions.

Nallim, Grossi and Laura [35] proposed a
simple approach for determining the fundamental
frequency of transverse vibration of a circular plate of
rectangular orthotropy carrying a central concentrated
mass.

Nallim and Grossi [36] studied the problem of
natural frequencies of tapered orthotropic rectangular
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plates with a central free hole and edges restrained
against rotation and translation by using orthogonal
polynomials in the Rayleigh-Ritz method and applying
a generalization of the Rayleigh method.

Grossi and Lebedev [37] dealt with the
application of the Ritz method to the determination of
the natural frequencies of a rectangular anisotropic
plate with a free coer formed by the intersection of
two free edges.

Grossi [38] demonstrated the existence and
uniqueness of the weak solutions of boundary value
problems and eigenvalue problems, which correspond,
respectively, to the statical and dynamical behaviour
of rectangular anisotropic plates with edges elastically
restrained against rotation.

4. CONSIDERATION ABOUT VARIATIONAL
METHODS.

After Walter Ritz presented in 1908 his now
famous variational method, several mathematician
became interested in his method and gave it lengthy
treatment, [39, 43]. On the other hand, investigators in
the field of applied sciences generated an immense
quantity of papers in which approximate solutions of
various problems of mathematical physics were
constructed with the aid of the mentioned method.
Particularly, the Ritz method has been used extensively
over the years to study the problem of flexural vibration
of rectangular isotropic, orthotropic and anisotropic
plates.

Grossi [44] used a problem to illustrate the
following relevant property: when using the Ritz
method we choose a sequence of functions v, which

constitute a base in the space V, where only the
homogeneous stable boundary conditions are included,
so there is no need to subject the functions v, to the

natural boundary conditions. The fact that the natural
boundary conditions of a system need not be satisfied
by the chosen co-ordinate functions is a very important
characteristic of the Ritz method, especially when
dealing with problems for which such satisfaction is
very difficult to achieve. For instance, this is the case of
a rectangular anisotropic, orthotropic or isotropic plate
with edges elastically restrained against rotation.

Grossi [45] presented an informative review of
several applications of the Rayleigh-Schmidt method
and also he has shown that this technique yields
accurate results in several rather difficult elastodynamic
problems. In [46] a discussion about certain general

boundary conditions is presented.  Rigorous
considerations by means of functional analysis are
stated. In [47] it is shown that the use of a two-term
approximating function = with several undetermined
exponents in the Rayleigh- Schmidt method leads to a
simple and accurate algorithm for the determination of
the fundamental frequency of a vibrating beam.

Grossi and Mac Gaul [48] demonstrated that
for certain assumed functions, the use of more than
one adjustable exponent in the optimised Rayleigh
method, does not increase the labour and difficulties in
the analytical developments, but instead it leads to an
improvement of the accuracy in the numerical results.

Grossi  [49] presented a brief review of
asssumed-mode methods and the approximate solutions
of several vibrating problems.

Grossi and Albarracin [50] presented a variant
of Bhat’s method, based on the use of the Rayleigh-
Schmidt method of undetermined powers. This new
procedure allows the use of a lower number of
orthogonal polynomials than the classical Bhat's
method, avoiding cases of numerical instability.

Grossi and Albarracin [51] dealt with the

applicatibility of the Rayleigh-Ritz method for the
determination of frequency coefficients of beams and
plates. It has been shown that the approximate
satisfaction of boundary conditions introduces
additional constraints into the formulation that bring
unexpected results. The adequate procedure for
constructing the co-ordinate functions to avoid
numerical errors has also been included.
Lebedev and Grossi [52] outlined the connection
between the traditional ideas of mechanics and the
newer mathematical concepts of generalised solutions
and distributions.
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