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POWERS OF DISTANCES TO LOWER DIMENSIONAL

SETS AS MUCKENHOUPT WEIGHTS

HUGO AIMAR, MARILINA CARENA, RICARDO DURÁN, AND MARISA TOSCHI

Abstract. Let (X, d, µ) be an Ahlfors metric measure space. We give
sufficient conditions on a closed set F ⊆ X and on a real number β

in such a way that d(x,F )β becomes a Muckenhoupt weight. We give
also some illustrations to regularity of solutions of partial differential
equations and regarding some classical fractals.

1. Introduction

Under different conditions for a domain Ω, weighted norm estimates for
solutions of linear and nonlinear equations have been studied by several
authors (see for example [DS04], [DST08], [DST10], [Sou04]), where the
weight of interest is a power of the distance to the boundary ∂Ω.

The class of Muckenhoupt weights Ap(R
n) is a fundamental tool in real

and harmonic analysis. The first non-trivial examples of weights in Ap(R
n)

are the weights |x|β for −n < β < n(p − 1). The results in [DST08] show
that in a domain whose boundary has dimension n − 1, if the domain is
smooth enough then dβ(x, ∂Ω) ∈ Ap(R

n) for −1 < β < (p− 1). In [DLG10]
this result has been generalized to some s-dimensional compact sets F in
R
n with 0 ≤ s < n. They proved that dβ(x, F ) ∈ Ap(R

n) for −(n − s) <
β < (n− s)(p − 1).

Therefore thinking the domains on R
n as complements of closed sets, it

seems natural to try to consider the somehow heterogeneous situation in
which the boundary shows different dimensions at different points. With
that generality the problem looks hard. But with some extra hypotheses on
the structure of ∂Ω some extensions are possible. The techniques used here
extend naturally to general metric measure space (X, d, µ) satisfying the so
called Ahlfors condition, which is a particular case of space of homogeneous
type.

The paper is organized as follows. In Section 2 we give some definitions
and notation on metric spaces and the Hardy-Littlewood maximal function
of measures obtaining the finiteness of such function for certain measures.
The main results of this note are contained in Section 3. There we prove
that powers of the Hardy-Littlewood maximal function of measures belong
to the Muckenhoupt class and in some cases we can describe the behavior
of such function giving a family of weights on metric measure spaces. In
Section 4 we give some applications. First we obtain weighted bounded
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estimates for gradients of solutions of polyharmonic equations and then we
produce families of weights on some classical fractals.

2. Hardy-Littlewood maximal functions of measures

Let X be a set. A quasi-distance on X is a non-negative symmetric
function d defined on X ×X such that d(x, y) = 0 if and only if x = y, and
there exists a constant K ≥ 1 such that the inequality

d(x, y) ≤ K(d(x, z) + d(z, y))

holds for every x, y, z ∈ X. We will refer to K as the triangle constant for
d. A quasi-distance d on X induces a topology through the neighborhood
system given by the family of all subsets of X containing a d-ball B(x, r) =
{y ∈ X : d(x, y) < r}, r > 0 (see [CW71]). In a quasi-metric space (X, d)
the diameter of a subset E is defined as

diam(E) = sup{d(x, y) : x, y ∈ E},

and the distance between a point x ∈ X and a set E is defined by d(x,E) =
inf{d(x, y) : y ∈ E}.

Throughout this paper (X, d) shall be a quasi-metric space such that the
d-balls are open sets.

We shall say that (X, d, µ) is a space of homogeneous type if µ is a
non-negative Borel measure µ satisfying the doubling condition

0 < µ(B(x, 2r)) ≤ Aµ(B(x, r)) < ∞

for some constant A, for every x ∈ X and every r > 0. If we also have
µ({x}) = 0 for every x ∈ X then we say that (X, d, µ) is a non-atomic

space of homogeneous type.
We shall now recall a basic property of spaces of homogeneous type that

we shall need. This property is actually contained in [CW71], and reflects
the fact that spaces of homogeneous type have finite metric (or Assouad)
dimension (see [Ass79]). The expression finite metric dimension means
that there exists a constant N ∈ N such that no ball of radius 2r contains
more than N points of any r-disperse subset of X. A set U is said to be
r-disperse if d(x, y) ≥ r for every x, y ∈ U , x 6= y. An r-net is a maximal
r-disperse set. It is easy to check that U is an r-net in X if and only if U
is an r-disperse and r-dense set in X, where r-dense means that for every
x ∈ X there exists u ∈ U with d(x, u) < r. It is well known that if a quasi-
metric space (X, d) has finite metric dimension, then every bounded subset
F of X is totally bounded, so that for every r > 0 there exists a finite r-net
on F , whose cardinal depends on diam(F ) and on r.

On the other hand, every compact quasi-metric space with finite metric
dimension carries a nontrivial doubling measure (see [Wu98] or [VK87]).

Let (X, d, µ) be a space of homogeneous type. For a given locally in-
tegrable function f , the Hardy-Littlewood maximal operator is given
by

Mµf(x) = sup
1

µ(B)

∫

B
|f | dµ,
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where the supremum is taken over the family of the d-balls B containing x.
Since µ is doubling then ‖Mµf‖Lp(dµ) ≤ Cp‖f‖Lp(dµ) for 1 < p < ∞ and

µ ({Mµf > λ}) ≤ C
λ ‖f‖L1(dµ) (see [CW71]).

The definition of the Hardy-Littlewood maximal operator can be extended
to a non-negative Borel measure ν such that every ball has finite ν-measure
by

Mµν(x) = sup
ν(B)

µ(B)
,

where the supremum is taken over the family of the d-balls B containing x.
Since µ is doubling, Mµν(x) is equivalent to its centered version, i.e.

Mµν(x) = sup
r>0

ν(B(x, r))

µ(B(x, r))
.

When ν is a finite measure the analogous of the weak type inequality
given above shows that Mµν is finite µ-almost everywhere. We aim to give
sufficient conditions other than the finiteness of ν in order to have the µ-
almost everywhere finiteness of Mµν.

We shall deal with spaces of finite Hausdorff dimension. Some comments
regarding the terminology are in order. In the bibliography belonging to
geometric measure theory, such as [Fal86], an s-set E is one for which 0 <
H s(E) < ∞ where H s is the Hausdorff measure of dimension s. In some
references related to problems of harmonic analysis and partial differential
equations, see for example [Sjö97], the expression s-set is used to name
a set that supports a measure ν for which ν(B(x, r)) behaves as rs for r
small. This condition implies the above one. On the other hand when
dealing with operators such as the Hardy-Littlewood maximal, the global
behavior of the given set, aside its local behavior, becomes relevant. In this
direction, again, two different terminologies appear in the literature. When
there exists a measure ν such that ν(B(x, r)) behaves as rs for r up to the
diameter of the support of ν, which could be unbounded, the space is said
to be s-Ahlfors. See for example [Sjö97] and [Gro07]. In [MS79] for a given
space of homogeneous type (X, d, µ), a quasi-distance δ can be constructed
on X satisfying that the measure of a δ-ball centered at x with radius r,
behaves as r when µ({x}) = 0 if r is less than µ(X). This property is named
normality.

For the sake of simplicity we shall adopt along this note the following
definitions.

Assume that (X, d) is a fixed quasi-metric space. A subspace (Y, d) of
(X, d) is said to be α-Ahlfors with measure µ if µ is a Borel measure
supported in Y such that there exists a constant c ≥ 1 satisfying the in-
equalities

(2.1) c−1rα ≤ µ(B(x, r)) ≤ crα,

for every x ∈ Y and every 0 < r < diam(Y ). It easy to see that each
α-Ahlfors space with measure µ is a non-atomic space of homogeneous type
with doubling constant for µ which only depends on c and α. We will refer to
the triangle constant K and the constants c and α in (2.1) as the geometric

constants of the space. When (2.1) holds only for 0 < r < r0 for some
positive r0, we say that (Y, d) is locally α-Ahlfors with measure µ. The
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constant c in (2.1) is said to be a constant for the Ahlfors condition

of µ.
The next proposition shows that both concepts coincide when the space

is bounded.

Proposition 1. Let F be a closed and bounded subset of a quasi-metric

space (X, d). If (F, d) is locally s-Ahlfors with measure ν, then we have that

(F, d) is s-Ahlfors with measure ν.

Proof. If diam(F ) ≤ r0 the result is trivial, so that we shall assume that
diam(F ) > r0. Take x ∈ F . If 0 < r < r0 we use that (F, d) is locally s-
Ahlfors with measure ν, so that only we need to consider the case r0 ≤ r <
diam(F ). Being F a bounded set, since (X, d) has finite metric dimension,
there exists a finite r0

2 -net U in F , let us say U = {x1, . . . , xI}, where I
depends only on diam(F ) and r0. Then

ν(B(x, r)) ≤
I

∑

i=1

ν
(

B
(

xi,
r0
2

))

≤ Ic2−srs0 < Icrs.

�

The main result of this section, which we shall use in order to apply
Theorem 3 to build Muckenhoupt weights in the next section, is contained
in the following proposition.

Proposition 2. Let (X, d) be α-Ahlfors with measure µ and F closed in X.

If (F, d) is s-Ahlfors with measure ν, where 0 ≤ s < α, then Mµν(x) < ∞
for µ-almost every x ∈ X.

Proof. If x /∈ F and r ≤ d(x, F ), then B(x, r) ∩ F = ∅ and hence we have
ν(B(x, r)) = 0. So that, in this case, we can assume r > d(x, F ) > 0. Fix
y ∈ F such that d(x, y) < 3

2d(x, F ). Then B(x, r) ⊆ B(y, 3Kr) and we
obtain

ν(B(x, r))

µ(B(x, r))
≤

ν(B(y, 3Kr))

µ(B(x, r))
≤ cc̃(3K)srs−α < Cd(x, F )s−α,

with C = cc̃(3K)s, where K denotes the triangle constant for d, and c and
c̃ are constants for the Ahlfors condition of µ and ν respectively. In other
words, C depends only on the geometric constants of (X, d) and (F, d).
Hence Mµν(x) < ∞ for x /∈ F .

So we have to prove that µ(F ) = 0. Fix x0 ∈ F and for each natural num-
ber n let Fn = F ∩B(x0, n). Then µ(F ) ≤

∑∞
n=1 µ(Fn), so that it is enough

to prove that µ(Fn) = 0 for every n. To see this, fix n ∈ N and 0 < ρ < n.
Since (X, d) has finite metric dimension and Fn is bounded, there exists a
finite ρ-net U in Fn, let us say U = {x1, x2, . . . , xIρ}. Hence {B(xi, ρ) : i =

1, . . . , Iρ} is a cover of Fn, so that µ(Fn) ≤
∑Iρ

i=1 µ(B(xi, ρ)) ≤ cραIρ. To
estimate Iρ, notice that B

(

xi,
ρ
2K

)

∩B
(

xj,
ρ
2K

)

= ∅ for i 6= j. Then

Iρ
ρs

c̃(2K)s
≤

Iρ
∑

i=1

ν
(

B
(

xi,
ρ

2K

))

= ν





Iρ
⋃

i=1

B
(

xi,
ρ

2K

)



 ≤ ν(B(x0, 2Kn)).
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So that Iρ ≤ ν(B(x0, 2Kn))c̃(2K)sρ−s and we have that

µ(Fn) ≤ cc̃ν(B(x0, 2Kn))(2K)α+sρα−s.

Taking ρ → 0 we obtain µ(Fn) = 0. �

Notice that if x ∈ F , then we have that

ν(B(x, r))

µ(B(x, r))
≥

1

cc̃
rs−α,

and taking supremum over r > 0 we obtain Mµν(x) = ∞.

3. Main results

The theory developed by Muckenhoupt in [Muc72] provides necessary and
sufficient conditions on a weight w defined on (Rn, | · |, λ) in order to obtain
weighted estimates for the maximal operator. These functions w are known
as Ap-Muckenhoupt weights.

Let (X, d, µ) be a quasi-metric measure space such that every d-ball has
positive and finite µ-measure. A weight w on X is a locally integrable non-
negative function defined on X. By locally we mean integrable over balls,
i.e.

∫

B w dµ < ∞ for every d-ball B in X.
For 1 < p < ∞ the Muckenhoupt class Ap(X, d, µ) is defined as the

set of all weights w defined on X for which there exists a constant C such
that the inequality

(

1

µ(B)

∫

B
w dµ

)(

1

µ(B)

∫

B
w

− 1
p−1 dµ

)p−1

≤ C

holds for every d-ball B in X. For p = 1, we say that w ∈ A1(X, d, µ) if
there exists a constant C such that

1

µ(B)

∫

B
w dµ ≤ C w(x)

holds for every d-ball B in X and µ-almost every x ∈ B. Set A∞(X, d, µ) =
⋃

p≥1Ap(X, d, µ).

It is a well known result in the theory of Muckenhoupt weights that if
w ∈ Ap(X, d, µ), then wdµ is doubling on X provided that (X, d, µ) is a
space of homogeneous type. The classical reference for the basic theory of
Muckenhoupt weights is Chapter IV in the book [GCRdF85]. A celebrated
result of the theory proved in R

n by P. Jones in [Jon80], which extends to
space of homogeneous type, is the factorization theorem: every Ap weight w

can be written as w = w0w
1−p
1 with w0 and w1 in A1. This is an important

result of the Muckenhoupt weights and it is known as factorization property.
The basic general result which shall be useful for the construction of

Muckenhoupt weights as powers of the distance to some particular sets in
X is contained in the following statement.

Theorem 3. Let (X, d, µ) be a space of homogeneous type. Let ν be a

Borel measure such that Mµν(x) < ∞ for µ-almost every x ∈ X. Then

(Mµν)
γ ∈ A1(X, d, µ) for every 0 ≤ γ < 1.
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The proof of Theorem 3 is based in Kolmogorov inequality. We will follows
the lines that in R

n for ν absolutely continuous are given in [Duo01] and for
general ν in R

n in [GCRdF85]. However, non trivial technical modification
are needed to extend the result to a general space of homogeneous type.

Proof of Theorem 3. We have to prove that there exists a constant C such
that the inequality

(3.1)
1

µ(B)

∫

B
(Mµν)

γ dµ ≤ CMµν(x)
γ

holds for every d-ball B in X and µ-almost every x ∈ B. Let us fix a d-
ball B = B(x0, r0) and write ν = ν1 + ν2, where ν1 is the restriction to
B(x0, 2Kr0) of ν and ν2 = ν − ν1. Then for 0 ≤ γ < 1 we have

(Mµν)
γ ≤ (Mµν1)

γ + (Mµν2)
γ ,

and it is enough to prove (3.1) with ν1 and ν2 on the left hand side.
Since Mµ is of weak type (1, 1) and ν1 is finite, we can apply the Kol-

mogorov’s inequality on (X, d, µ), namely
∫

E
(Mµν1)

γ dµ ≤ µ(E)1−γν1(E)γ = µ(E)1−γν(E ∩B(x0, 2Kr0))
γ

for every measurable subset E of X with finite measure, see for example
[dG81], and obtain a constant C depending on γ such that

1

µ(B)

∫

B
(Mµν1)

γ dµ ≤ C

(

ν(B)

µ(B)

)γ

≤ CMµν(x)
γ .

In order to analyze Mµν2, note that if y ∈ B and B1 = B(x1, r1) is

any d-ball containing y with ν2(B1) > 0, then r1 > 1
2K r0. In fact, for

z ∈ B1 ∩ (X \B(x0, 2Kr0)) we have

2Kr0 ≤ d(z, x0) ≤ K(d(z, y) + d(y, x0)) < K(2Kr1 + r0).

This implies that B ⊆ B(x1, 5K
3r1). To see this, notice that for x ∈ B we

have

d(x, x1) ≤ K2(d(x, x0) + d(x0, y) + d(y, x1)) < K2(2r0 + r1),

so that x ∈ B(x1, 5K
3r1). Therefore

ν2(B1)

µ(B1)
≤

µ(B(x1, 5K
3r1))

µ(B1)
Mµν(x).

Since B1 is an arbitrary d-ball containing y,

Mµν2(y) ≤
µ(B(x1, 5K

3r1))

µ(B1)
Mµν(x).

Integrating with respect to y we obtain

1

µ(B)

∫

B
(Mµν2)

γ dµ ≤ CMµν(x)
γ

and the theorem is proved. �
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The first elementary use of Theorem 3 to produce weights in the Ap(X, d, µ)
class is obtained taking ν = δ0 the Dirac delta measure in x0. In this case
we have

Mµδ0(x) = sup
r>0

δ0(B(x, r))

µ(B(x, r))
=

1

µ(B(x, d(x, x0))
,

where B(x, s) = {y ∈ X : d(x, y) ≤ s}. Since for the doubling condition
we have µ(B(x, s)) ≤ µ(B(x, s)) ≤ Aµ(B(x, s)), applying Theorem 3 we
obtain that µ(B(x, d(x, x0)))

−γ ∈ A1(X, d, µ) for 0 ≤ γ < 1. Consequently
µ(B(x, d(x, x0)))

β ∈ Ap(X, d, µ) for −1 < β < p− 1.

As an immediate consequence of Proposition 2 and Theorem 3, we have
the following result.

Corollary 4. Let (X, d) be α-Ahlfors with measure µ and F closed in X.

If (F, d) is s-Ahlfors with measure ν, where 0 ≤ s < α, then (Mµν)
γ ∈

A1(X, d, µ) for every 0 ≤ γ < 1. The same is true when F =
⋃H

i=1 Fi and

ν =
∑H

i=1 νi, where {F1, . . . , FH} is a family of pairwise disjoint closed and

bounded subsets of X such that (Fi, d) is si-Ahlfors with measure νi, where
0 ≤ si < α for i = 1, 2, . . . ,H. Moreover the weight max{Mγ

µν(x), C} ∈
A1(X, d, µ) for every C > 0.

In the following result we explore the behavior ofMµν to obtain an explicit
family of Muckenhoupt weights. Here we use the notation f(x) ≃ g(x) to
indicate that there exist positive and finite constants k1 and k2 such that
k1g(x) ≤ f(x) ≤ k2g(x) for every x.

Theorem 5. Let (X, d) be α-Ahlfors with measure µ. Let {F1, . . . , FH} be a

family of pairwise disjoint closed and bounded subsets of X such that (Fi, d)
is locally si-Ahlfors with measure νi, where 0 ≤ si < α for i = 1, 2, . . . ,H.

Set F =
⋃H

i=1 Fi and ν =
∑H

i=1 νi. Then there exist open sets U1, . . . , UH

pairwise disjoint with Ui containing Fi such that

(i) if d(x, F ) < 2Kdiam(F ) then we have

(a) Mµν(x) ≃ d(x, Fi)
si−α, for every x ∈ Ui \ Fi, for every i =

1, 2, . . . ,H;

(b) if x /∈
⋃H

i=1 Ui then Mµν(x) ≃ 1;
(ii) if d(x, F ) ≥ 2Kdiam(F ) then Mµν(x) ≃ d(x, F )−α ≃ d(x, x0)

−α

for every x0 ∈ F .

Proof. Let us start by proving (ii). Let us fix x such that d(x, F ) ≥
2Kdiam(F ). Since F is bounded, we only need to prove the first equi-
valence in (ii). Since for r ≤ d(x, F ) we have B(x, r) ∩ F = ∅, in order to
estimate Mµν(x) we only have to consider balls centered at x with radius
r > d(x, F ). Hence

ν(B(x, r))

µ(B(x, r))
≤

cν(F )

d(x, F )α
,

where c denotes a constant for the Ahlfors condition of µ.
On the other hand, taking r = 3Kd(x, F ) we obtain

Mµν(x) ≥
ν(B(x, 3Kd(x, F )))

c(3Kd(x, F ))α
.
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Now fix y ∈ F such that d(x, y1) <
3
2d(x, F ). Then

B(y, 2Kdiam(F )) ⊆ B(y, d(x, F )) ⊆ B(x, 3Kd(x, F )),

and therefore

Mµν(x) ≥
ν(B(y, 2Kdiam(F )))

c(3Kd(x, F ))α
=

ν(F )

c(3Kd(x, F ))α
.

To prove (i), let ci be the constant for the Ahlfors condition of νi. In
other words, ci is a constant satisfying

c−1
i rsi ≤ νi(B(y, r)) ≤ cir

si ,

for every 0 < r ≤ ri and every y ∈ Fi, for some ri > 0. Let us define
∆ = min{d(Fi, Fj) : i 6= j} and

Ui = {x ∈ X : d(x, Fi) < κi} ,

where κi ≤ min{2ri,∆/2} is a constant that we shall define later. Notice
that Ui ∩ Uj = ∅ for i 6= j.

In order to show (ia), let us fix i ∈ {1, . . . ,H} and x ∈ Ui \ Fi. To obtain
the lower bound, let y ∈ Fi such that d(x, y) < 3

2d(x, Fi). Then

Mµν(x) ≥
ν (B (x, 2Kd(x, Fi)))

µ (B (x, 2Kd(x, Fi)))

≥
νi (B (x, 2Kd(x, Fi)))

µ (B (x, 2Kd(x, Fi)))

≥
νi
(

B
(

y, 12d(x, Fi)
))

c(2Kd(x, Fi))α

≥ Cid(x, Fi)
si−α,

where Ci =
1

cci2si (2K)α .

To obtain the upper bound, let us keep consider the case x ∈ Ui \ Fi.
Hence if r ≤ d(x, Fi) we have that r < ∆/2, so that B(x, r) ∩ F = ∅
and ν(B(x, r)) = 0. Assume then r > d(x, Fi) and fix y ∈ Fi such that
d(x, y) < r. Then

ν(B(x, r))

µ(B(x, r))
≤

ν(B(y, 2Kr))

µ(B(x, r))
≤

cν(B(y, 2Kr))

rα
.

We shall consider two cases taking into account the size of r.
Case 1: d(x, Fi) < r < ∆

2K . In this case we have 2Kr < ∆, so that
B(y, 2Kr) ∩ Fj = ∅ for every j 6= i. Then

ν(B(y, 2Kr))

rα
=

νi(B(y, 2Kr))

rα
≤ ci(2Kr)sir−α < ci(2K)sid(x, Fi)

si−α.

Case 2: r ≥ ∆
2K . In this case

ν(B(x, r))

µ(B(x, r))
≤

cν(F )

rα
≤ c

(

2K

∆

)α

ν(F ).
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To obtain the result we only need to take x such that ci(2K)sid(x, Fi)
si−α ≥

c
(

2K
∆

)α
ν(F ). In other words, it is enough to take

κi = min

{

2ri,
∆

2
,

(

c2αKαν(F )

ci∆α2siKsi

) 1
si−α

}

in the definition of Ui.
Finally, to prove (ib) take x /∈

⋃H
i=1 Ui such that d(x, F ) < 2Kdiam(F ).

Then d(x, Fi) ≥ κi for each i, so that d(x, F ) ≥ minκi =: κ. As before, in
order to estimate Mµν(x) we only need to consider r > d(x, F ) ≥ κ. In this
case

ν(B(x, r))

µ(B(x, r))
≤

cν(F )

κα
.

On the other hand, since d(x, F ) < 2Kdiam(F ) we have F ⊆ B(x, 3K2diam(F ))
and therefore

Mµν(x) ≥
ν(B(x, 3K2diam(F )))

µ(B(x, 3K2diam(F )))
≥

ν(F )

c(3K2diam(F ))α
.

�

As a consequence of Corollary 4 and Theorem 5, we have the following
result.

Theorem 6. Let (X, d) be α-Ahlfors with measure µ. Let {F1, . . . , FH}
be a family of pairwise disjoint closed and bounded subsets of X such that

(Fi, d) is a locally si-Ahlfors space with measure νi, where 0 ≤ si < α for

i = 1, 2, . . . ,H. Then

(i)

w(x) =

{

d(x, Fi)
(si−α)γ , for x ∈ Ui;

1, for x ∈
(

⋃H
i=1 Ui

)c

belong to A1(X, d, µ) for every 0 ≤ γ < 1, where Ui is the open set

containing Fi given by Theorem 5;

(ii)

v(x) =

{

d(x, Fi)
βi , for x ∈ Ui;

1, for x ∈
(

⋃H
i=1 Ui

)c

belongs to Ap(X, d, µ) for every −(α− si) < βi < (α− si)(p− 1).

Proof. Since the equivalence w1 ≃ w2 preserves A1(X, d, µ), in order to prove
(i), from Corollary 4 we only need to check that w(x) ≃ max{Mγ

µν(x), C} =:
u(x) for some positive constant C.

As we saw in item (ia) in Theorem 5, for each i = 1, ...,H, there exists a

constant C̃ such that if x ∈ Ui \ Fi then Mµν(x) ≥ C̃d(x, Fi)
si−α and, since

d(x, Fi) ≤ 2ri, taking s∗ = max{s1, . . . , sH} and r∗ = max{r1, . . . , rH}, we
have that Mγ

µν(x) ≥ C̃γ(2r∗)γ(s
∗−α).

Then, if we will consider C := C̃γ(2r∗)γ(s
∗−α) in the definition of u we

obtain that for x ∈
⋃H

i=1 Ui \ Fi we have

u(x) = Mγ
µν(x) ≃ d(x, Fi)

(si−α)γ = w(x).
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For the case of x /∈
⋃H

i=1 Ui, w(x) = 1, and to see that u(x) ≃ 1 we shall
consider the following possibilities for x:

• d(x, F ) < 2Kdiam(F ). By (ii) of Theorem 5, Mγ
µν(x) ≃ 1 and we

have that u(x) ≃ w(x), not depending on the value of u(x).
• 2Kdiam(F ) < d(x, F ) ≤ Λ, with

Λ = max

{

2Kdiam(F ),

(

cν(F )

C1/γ

)1/α
}

and c a constant for the Ahlfors condition of µ. Item (ii) of Theo-
rem 5 together with the bounds for d(x, F ) implies that Mγ

µν(x) ≃
d(x, F )−αγ ≃ 1. Then, as in the previous case, u(x) ≃ 1.

• d(x, F ) > Λ. In the proof of (ii) in Theorem 5 we can see that

Mµν(x) ≤
cν(F )

d(x,F )α . Then

Mγ
µν(x) ≤

(

cν(F )

Λα

)γ

≤ C.

Hence u(x) = C ≃ 1.

Item (ii) is an immediate consequence of item (i) and the definition of
Muckenhoupt class. �

In the particular case of an s-Ahlfors space F , we can take out the re-
striction of boundedness and we obtain the following result.

Theorem 7. Let (X, d) be α-Ahlfors with measure µ and F closed in X. If

(F, d) is s-Ahlfors with measure ν, where 0 ≤ s < α, then d(x, F )γ(s−α) ∈
A1(X, d, µ) for every 0 ≤ γ < 1. Consequently d(x, F )β ∈ Ap(X, d, µ) for

−(α− s) < β < (α− s)(p− 1).

Proof. The results follows if we prove that Mµν(x) ≃ d(x, F )s−α for µ-
almost every x ∈ X.

Take x /∈ F . The upper bound was proved in Proposition 2. To obtain
the lower bound, let y ∈ F be such that d(x, y) < 3

2d(x, F ). Then

Mµν(x) ≥
ν (B (x, 2Kd(x, F )))

µ (B (x, 2Kd(x, F )))
≥

ν
(

B
(

y, 12d(x, F )
))

c(2Kd(x, F ))α
≥ Cd(x, F )s−α,

where C = c
c̃(2K)α2s , with c and c̃ constants for the Ahlfors condition of µ

and ν respectively.
For x ∈ F , as we proved in Proposition 2, Mµν(x) = ∞ but µ(F ) = 0. �

4. Applications

This section contain three topics. The first one deal with weighted Sobolev
regularity for solutions of elliptic partial differential equations of large order.

Second we give a criteria to decide wether or not a given set is locally
s-Ahlfors in terms of the s-dimensional Hausdorff measure.

Third, we provide some non trivial Ap weights on the Sierpinski gasket
built from Theorem 7.

Weighted Sobolev regularity. Let (X, d) be α-Ahlfors with measure µ
and Ω subset of X with diam(Ω) < ∞.
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Given an operator R : Ω× Ω −→ R and f : Ω −→ R we define

u(x) :=

∫

Ω
R(x, y) f(y) dµ(y).

If there exists a positive constant C such that

(4.1) |R(x, y)| ≤ Cd(x, y)−α+1,

we can see that u satisfies

|u(x)| ≤ CMµf(x),

where Mµf(x) is the Hardy-Littlewood maximal operator in (X, d, µ). In
fact, if we denote δ the diameter of Ω and using (4.1) we have

|u(x)| ≤ C

∫

d(x,y)≤δ

|f(y)|

d(x, y)α−1
dµ(y)

= C

∞
∑

k=0

∫

{2−(k+1)δ≤d(x,y)≤2−kδ}

|f(y)|

d(x, y)α−1
dµ(y)

≤ C 2α−1
∞
∑

k=0

2−k

µ(B(x, 2−kδ))

∫

{d(x,y)≤2−kδ}
|f(y)|dµ(y)

≤ CMµf(x).

Since Mµf(x) is a bounded operator in Lp(Ω, wdµ) if w ∈ Ap(X, d, µ),
follows immediately that

(4.2) ‖u‖Lp(Ω,wdµ) ≤ C ‖f‖Lp(Ω,wdµ)

i.e. there exists a positive constant C such that
(
∫

Ω
|u|p w dµ

)1/p

≤ C

(
∫

Ω
|f |p w dµ

)1/p

,

provided that w ∈ Ap(X, d, µ).
As in general we are interested in sources f as singular as possible the

above inequality allows unbounded growth of f close to some subset of Ω if
the weight w vanishes there. This is precisely the case for weights produced
by Theorem 6.

In the particular case of the n-dimensional Euclidean space (Rn, | · |, λ),
taking R as the Green function associated with the polyharmonic Dirichlet
problem in Ω

{

(−∆)mu = f in Ω
(

∂
∂ν

)j
u = 0 on ∂Ω 0 ≤ j ≤ m− 1,

(4.3)

where ∂
∂ν is the normal derivative, it is known that the solution of (4.3) is

given by

(4.4) u(x) =

∫

Ω
R(x, y) f(y) dy.

Then, to prove some weighted Sobolev a priori estimates for the solution
of this problem we need estimates for the Green function R(x, y) and its
derivatives.
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For Ω a regular domain in R
n, some of this estimates was given in [DST10],

where the authors proved that

(4.5) ‖u‖W 2m,p(Ω,wdx) ≤ C ‖f‖Lp(Ω,wdx)

for w ∈ Ap.
Let us remember that for η a multi-index, η = (η1, η2, . . . , ηn) ∈ ZZn

+ we
denote as usual |η| =

∑n
j=1 ηj , D

η = ∂η1
x1 ...∂

ηn
xn . The Sobolev spaces are

defined by

W k,p
w (Ω) = {v ∈ Lp(Ω, wdx) : Dηv ∈ Lp(Ω, wdx) ∀ |η| ≤ k}

and the norm of v ∈ W k,p
w (Ω) is given by

‖v‖
W k,p

w (Ω)
=

∑

|η|≤k

‖Dηv‖Lp(Ω,wdx) .

For Ω a general bounded open set in R
n there exists a constant C such

that the Green function satisfies the estimate

(4.6) |DηR(x, y)| ≤ C|x− y|2m−n−|η|,

for n ∈ [3, 2m+1]∩N odd and 0 ≤ |η| ≤ m− n
2 + 1

2 and for n ∈ [2, 2m] ∩N

even and 0 ≤ |η| ≤ m− n
2 (see [MM09]).

Then, since |η| ≤ 2m− 1, it follows that

(4.7) ‖u‖
W k,p

w (Ω)
≤ C ‖f‖Lp(Ω,wdx)

for values of n, m and k = |η| given above, provided that w ∈ Ap(R
n).

Hausdorff measure based criteria for the local s-Ahlfors condition.
In the hypothesis of the results obtained in the previous section we require
that the spaces are locally s-Ahlfors. In order to check that a given (F, d)
is locally s-Ahlfors, we should be able to find a Borel measure ν supported
on F and a real number r0 > 0 such that (2.1) holds for every x ∈ F and
every 0 < r < r0. This does not seem to be an easy task. However, if (F, d)
is locally s-Ahlfors, then there exists essentially only one Borel measure ν
satisfying the condition required in the definition. This fact is known in the
Euclidean setting (see for instance [Tri11]), and for the sake of completeness
let us extend it to general metric measure spaces in Lemma 8. First we shall
need recall some definitions. The basic aspects of Hausdorff measure and
dimension can be found in [Fal86].

For ρ > 0, we say that a sequence {Ei} of subsets of X is a ρ-cover of
a set E if E ⊆

⋃

Ei and diam(Ei) ≤ ρ for every i. Let E ⊆ X and s ≥ 0
fixed. We define

H
s
ρ (E) = inf

{

∞
∑

i=1

diams(Ei) : {Ei} is a ρ-cover of E

}

.

Clearly H s
ρ (E) increases when ρ decreces, so that the limit when ρ tends

to 0 exists (although it may be infinite). Then we define

H
s(E) = lim

ρ→0
H

s
ρ (E) = sup

ρ>0
H

s
ρ (E).

We shall refer to H s(E) as the s-dimensional Hausdorff measure of E.



POWERS OF DISTANCES AS MUCKENHOUPT WEIGHTS 13

If in the above definition we replace the arbitrary ρ-cover by coverings by
d-balls centering in the set E and with diameter less than ρ, we obtain the
s-dimensional spherical Hausdorff measure of E, which will denote S s.

Lemma 8. Let (X, d) be a quasi metric space.

(i) For every s > 0 and every E ⊆ X we have that

H
s(E) ≤ S

s(E) ≤ Ks2sH s(E),

where K denotes de triangle constant for d. In other words, the

measures H s and S s are equivalents.

(ii) If F is locally s-Ahlfors with measure ν, then there exists a constant

c̃ such that

c̃−1(diam(B(x, r)))s ≤ ν(B(x, r)) ≤ c̃(diam(B(x, r)))s

for every x ∈ F and every 0 < r < r0.
(iii) If (X, d) has finite metric dimension and (F, d) is locally s-Ahlfors

with measure ν, then (F, d) is locally s-Ahlfors with the restriction

of H s to F .

Proof. The first inequality in (i) is straightforward. For the second one, let
us fix ρ > 0 and let {Ei} a ρ-cover of E. We can assume that Ei ∩ E 6= ∅
for every i. Let ε > 0 given. For each i, let us fix xi ∈ Ei ∩ E and set
Bi = B(xi,diam(Ei)+ ε). Then Ei ⊆ Bi, so that {Bi} is a covering of E by
d-balls with diameter less than 2K(ρ+ ε). Then

S
s
2K(ρ+ε)(E) ≤

∑

i

diams(Bi) < 2sKs
∑

i

diams(Ei) + 2sKsεs.

Hence S s
2K(ρ+ε)(E) ≤ 2sKsH s

ρ (E) + 2sKsεs. Taking ε = ρ and by making

ρ → 0 we obtain the result.
To prove (ii), let c such that c−1rs ≤ ν(B(x, r)) ≤ crs for every x ∈ F

and every 0 < r < r0. Fix x ∈ F and 0 < r < r0 and set B = B(x, r). Since
diam(B) ≤ 2Kr, the first inequality follows immediately with c̃ = c2sKs.
To obtain the second one, let us consider two cases according to the size
of diam(B). If diam(B) < r0 there exists 0 < ε < diam(B) such that
diam(B)+ε < r0. Also for each x ∈ F we have B(x, r)∩F ⊂ B(x,diam(B)+
ε) ∩ F . Then

(4.8) ν(B(x, r)) ≤ ν(B(x,diam(B) + ε)) ≤ c2s(diam(B))s.

Otherwise, if diam(B) ≥ r0, since r < r0 we have r < diam(B). So that
c̃ = c2sKs works.

Finally, in order to prove (iii), let us fix x ∈ F and 0 < r < r0, and set
F (x, r) to denote the set F ∩B(x, r). By hypothesis there exists a constant
c such that

c−1rs ≤ ν(F (x, r)) ≤ crs.

Let {Bj} be a covering of F (x, r) by d-balls centering in F (x, r), and let rj
the radio of Bj. Since we can assume 0 < rj < r0 for every j, from (4.8) we
have that

ν(Bj ∩ F ) ≤ c2s(diam(Bj))
s.
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Then

c−1rs ≤ ν(F (x, r)) ≤
∑

j

ν(Bj∩F ) ≤ c2sS s(F (x, r)) ≤ c4sKs
H

s(F (x, r)).

On the other hand, we claim that there exists a constant Λ, which does
not depend on x or r, such that H s(F (x, r)) ≤ Λrs. To prove it we shall
consider two possibilities. First let us assume that 0 < r < r0/K, and
let 0 < ρ < r0/K − r. Set U a finite ρ-net in F (x, r), let us say U =
{x1, x2, . . . , xIρ}. Then {B(xi, ρ) : i = 1, . . . , Iρ} is a 2Kρ-cover of F (x, r)
and each y ∈ F (x, r) belongs to at most N of such balls, where N is the
constant from the finite metric dimension of X, which does not depend on
ρ, r or x. In fact, for a fixed y ∈ F (x, r), we have that y ∈ B(xi, ρ) if and
only if xi ∈ B(y, ρ), so that the number of balls B(xi, ρ) to which y belongs
is equal to the cardinal of U ∩B(y, ρ). Then we have

H
s
2Kρ(F (x, r)) ≤

Iρ
∑

i=1

ρs

≤ c

Iρ
∑

i=1

ν (B(xi, ρ))

≤ cNν





Iρ
⋃

i=1

B(xi, ρ)





≤ cNν (B(x,K(r + ρ)))

≤ c2NKs(r + ρ)s.

Taking ρ → 0 we obtain the desired result for this case. Then only remains
to consider the case r0

K ≤ r < r0. In this case, being B(x, r) a bounded set,

there exists a finite r0(2K)−1-net in B(x, r), let us say U = {x1, . . . , xIr0}.

Then F (x, r) ⊆
⋃Ir0

i=1B
(

xi,
r0
2K

)

. Applying the previous case we obtain

H
s(F (x, r)) ≤

Ir0
∑

i=1

H
s
(

B
(

xi,
r0
2K

)

∩ F
)

≤ Ir0Λ
( r0
2K

)s
≤ Ir0Λ2

−srs.

Moreover, we have that Ir0 ≤ N1+log2 K , since every s-disperse subset of X
has at most Nm points in each ball of radius 2ms, for all m ∈ N and every
s > 0 (see [CW71] and [Ass79]). �

Muckenhoupt weights on the Sierpinski gasket. We shall apply
Theorem 7 to a classical fractal set. Set T any equilateral triangle in R

2.
Let S be the Sierpinski’s gasket constructed in T equipped with the usual
distance d inherited from R

2 and with the α-dimensional Hausdorff measure
H α, where α = log 3

log 2 . It is well known that (S, d) is α-Ahlfors with measure

H α (see [Mos97]). Set F the boundary of the triangle T . Then F is 1-
Ahlfors with measure ν, taking ν as the length. So that Theorem 7 says
that

d(x, F )(1−α)γ ∈ A1(S, d,H
α),

for every 0 ≤ γ < 1.
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