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Abstract
The organophosphorus herbicide glyphosate (GLY) and the organophosphate insecticide chlorpyriphos (CPF) are key 
pesticides in modern management cultures worldwide. Sublethal toxicity of the commercial herbicide formulation 
Roundup® and the insecticide formulation Terfos® were evaluated on Eisenia fetida coelomocytes exposed under in vivo 
and ex vivo laboratory conditions. Induction of DNA single-strand breaks evaluated by the single cell gel electrophoresis 
assay and coelomocyte viability as well as alterations in coelomocyte trophic indexes were employed as endpoints for 
genotoxicity and cytotoxicity, respectively. Specimens were exposed at concentrations corresponding to recommended 
pesticide field application rate, and endpoints were evaluated after 7 and 14 days of treatment (in vivo exposure). In addition, 
coelomocytes were exposed to aqueous leachate of pesticide-contaminated soils during 1 h (ex vivo exposure). Earthworms 
exposed to Roundup® and Terfos® showed an increased frequency of DNA damage. Also, a decrease of coelomocyte viability 
and decrease of trophic indexes were observed in all treatments. The results demonstrate that either GLY- and CPF-based 
formulations exerted genotoxic as well as cytotoxic effects in coelomocytes of E. fetida exposed in vivo and ex vivo.
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Introduction
The widely use of pesticides in modern agricultural 

enables increased crop yields. However, pesticides res-
idues can contaminate agricultural and adjacent lands 
and become an ecotoxicological threat to non-target 
organisms, included humans. Nowadays, results almost 
impossible for many countries to decrease the use of pes-
ticides without altering crop yields as agriculture gradu-
ally transformed into a high-tech system for satisfying the 
world’s growing demands for food, feed, fiber and fuel 
[1,2]. It is known that pesticides can also be hazardous 
whether not appropriately employed since many of them 
may represent potential hazards to the environment due 
to the contamination of soil, water, air and food [3]. In 
addition, anthropogenic activities are continuously in-
troducing large amounts of these compounds into the 
environment regardless of their persistence, bioaccumu-
lation and toxicity and thus increasing their jeopardizing 
effects (www.epa.gov/pesticides).

Glyphosate is a non-selective herbicide widely used 
worldwide for post-emergent control of annual and 
perennial plants including weeds on a great variety of 
crops. It is a polar, highly water soluble substance that 
makes complexes easily. It binds tightly to the soil par-
ticles, reaching a usual half-life of 45-60 days in soil and 
persistence from 222 to 835 days [4]. By the other hand, 
Chlorpyrifos is a broad spectrum organophosphate in-
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cells present in the coelomic cavity [23,33,34,35]. Based 
on cytomorphometric, ultrastructural and cytochemical 
properties, coelomocytes can be classified into three ma-
jor cell groups, namely eleocytes, hyaline amoebocytes 
and granular amoebocytes [36]. It has been reported that 
the proportion of the different cellular types of coelo-
mocytes may be related to the health and the immune 
earthworm responses [23,28,35]. Thus, changes in cell 
proportions in the coelomic fluid of organisms exposed 
to different pollutants can be evaluated by means of this 
parameter as a reliable cytotoxic biomarker, as suggested 
elsewhere [15,37,38]. In agreement, it has been demon-
strated that eleocyte proportions of another oligochaeta 
Dendrobaena veneta decreased after exposure to cadmi-
um and copper [36].

The purpose of this study was to evaluate the toxici-
ty of two commercial formulations of GLY and CPFon 
E. fetida exposed in vivo under laboratory conditions to 
treated soils and to its aqueous leachates as ex vivo ex-
posure of extruded coelomocytes. DNA single-strand 
breaks, viability and coelomocyte counts of exposed or-
ganisms were employed as endpoints for genotoxicity 
and cytotoxicity, respectively. Pesticides were selected 
because they are commonly used as agricultural chem-
icals with intensive and overlapping applications in ag-
ricultural fields, not only in Argentinean soybean crops, 
but also around the world in many applications for the 
treatment of transgenic and non-transgenic agronomic 
crops [39].

Materials and Methods
Chemicals

Agrochemicals used included the 48% isopropyl-
amine salt of glyphosate-based [N-(phosphonomethyl] 
glycine; CAS1071-83-6) commercial grade trade formu-
lation Roundup® (Monsanto S.A.I.C., Buenos Aires, Ar-
gentina) and the 48% chlorpyriphos-based (O,O-diethyl 
O-3,5,6-trichloropyridin-2-ylphosphorothioate; CAS 
2921-88-2) commercial grade trade formulation Terfos® 
(Chemotecnica S.A., Buenos Aires, Argentina). Hydro-
gen peroxide (H2O2, CAS 7722-84-1) was obtained from 
Sigma-Aldrich Co. (St. Louis, MO) whereas copper (II) 
chloride 2-hydrate (CuCl2.2H2O, CAS 10125-13-0) was 
purchased from Biopack Co. (Buenos Aires, Argentina). 
All other chemicals and solvents were of analytical grade. 
Nominal concentrations of GLY and CPF were con-
trolled by HPLC-UV and GC-MS methods respectively 
according APHA [40].

Test organism
Specimens of E. fetida adults, average wet weight 

300 mg, were purchased from local source (Luján, Bue-
nos Aires, Argentina). Earthworms were maintained in 

secticide that is widely used to control insect pest in ag-
ricultural fields. Likewise, Chlorpyrifos is a moderately 
persistent environmental contaminant, with a half-life 
ranging from several days to months [5]. High volumes 
of agrochemicals applied to great variety of crops, togeth-
er with agricultural expansion and its persistence in the 
ecosystem generate great concerns due to the impact for 
the environment and large risk implicated for wildlife.

The ecotoxicological effects of pesticides can be as-
sessed by monitoring the use of laboratory toxicity test. 
Earthworms, among soil organisms, are considered 
highly appropriate terrestrial model organisms for eco-
toxicity test. They are powerful regulators of soil process-
es participating in the maintenance of its structure and 
regulation of organic matter dynamic [6-8]. Not only 
due to their natural contact with the soil but also for the 
ingestion of soil, earthworms can be easily influenced by 
pollutants. Thus, earthworms are sensitive indicators of 
anthropogenic stress factors and then are used as mod-
el organisms in the environmental risk assessments of 
chemicals [6,9]. In particular, the species  Eisenia feti-
da has been widely used for soil toxicity assessments be-
cause standardized tests are available [10-12] Survival, 
growth, and reproduction are the usual endpoints for 
such tests, which provide eco-toxicologically relevant in-
formation. However, ecotoxicological approach by using 
biomarkers at low levels of biological organization is use-
ful for damage detection before the community is affect-
ed [13]. The need to detect and assess the effects of con-
tamination at sublethal levels has led to the development 
of molecular and cellular indicators of exposure to and 
effects of contaminants, referred as biomarkers [14,15].

The use cellular and molecular biomarkers can be 
complementary approach providing information about 
organism-stress response to toxicants before higher lev-
els are affected [14]. In this sense, genotoxic evaluation 
is very important due to genotoxic influence can lead 
changes in one or more generations [16,17]. It can result 
in reduced fertility of soil populations, and thus causing 
biodiversity depletion [18].

It is well known that the single cell elelectrophoresis 
(SCGE) assay, also called comet assay, has been shown 
to be a sensitive and recommended method for the eval-
uation of DNA damage in individual cells induced by 
different xenobiotics [16,18-21]. In particular, the SCGE 
when applied on earthworms has resulted as a high sen-
sitivity bioassay for evaluating the genotoxic damage in-
duced for wide group of pollutants. Among them, metals 
[22-25] polycyclic aromatic hydrocarbons [23] and other 
organic compounds [26], ionic [27] and, overall, several 
pesticides [28-32] can be included.

Earthworm coelomocytes are the group of circulating 
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ex vivo treatments, a non-invasive extrusion method was 
used for collecting earthworm coelomocytes according to 
Di Marzio, et al. [23]. Earthworms were rinsed in tap water 
at RT and placed on a damp paper towel overnight to void 
gut contents during the extrusion procedure. Afterwards, 
organisms were immersed in an extrusion medium consist-
ed in 5% v/v ethanol in saline solution (0.85% NaCl, 2.5 mg/
mL EDTA, pH 7.5). A pooled castings of five organisms was 
obtained and then placed into centrifuge tubes containing 
2 mL of extrusion medium/individual and incubated for 1 
min at RT. Coelomic fluid containing the extruded cells was 
diluted in calcium and magnesium free phosphate-buffered 
saline (PBS), washed twice, and centrifuged at 2000 rpm (4 
°C, 10 min), and then coelomocyte pellets resuspended in 2 
mL of PBS.

Coelomocyte counts and in vivo and ex vivo cyto-
toxicity

Extruded cells were counted using a counting cham-
ber improved Neubauer hemocytometer. The extruded 
cells were characterized according to their morphology 
as eleocytes, amoebocytes or granulocytes according to 
Adamowicz and Wojtaszek and Adamowicz [34,36]. Af-
ter cell counting, the following trophic indexes were cal-
culated as follows:

Absolute trophic index earthworm (ATIE): En/Cn, 
where En is total eleocytes number average per individ-
ual/mL of celomic fluid and Cn is total coelomocytes 
number average per individual/mL of celomic fluid. Rel-
ative trophic index earthworm (RTIE): ATIE/wwf where 
wwf is wet weight without feces.

The cell viability was expressed as the percentage of 
viable cells measured with 0.4% of Trypan blue. One 
hundred cells were counted on each slide and three rep-
licate slides were analyzed per specimen. Data were ex-
pressed as average of total viable coelomocytes per indi-
vidual/mL of coelomic fluid. Copper, as CuCl2, was used 
as positive control according Irizar, et al. [38] and Svend-
sen and Week [15].

Single cell electrophoresis (SCGE) assay
The SCGE assay protocol proposed by Di Marzio, et al. 

[23] was used. Assays were performed under indirect in-
candescent light at 4 °C. Gels were composed of three lay-
ers of agarose. The suspensions of earthworm’s cells were 
diluted (1:2) with 1% low-melting-point agarose (LMPA) 
giving a final agarose solution of 0.66% and then 80 µL 
of the cell suspension were transferred to a slide having a 
thin layer of solidified 0.5% normal-melting agarose. The 
slides were covered with a coverslip and left on ice for 10 
min to allow the second layer of agarose to solidify. The 
coverslip was gently removed, and 80 µL of 0.5% LMPA 
were spread over the second layer. A coverslip was placed 

moistened control soil (pH 6.6 ± 0.26, 25% sand, 48% 
slime, 27% clay, moisture 40-60% of water holding ca-
pacity, WHC 60 ± 5 mL/100 g), at room temperature 
(RT) under natural photoperiod and fed with 10% of al-
falfa forage. The worms were allowed to acclimate to lab-
oratory conditions for several weeks before testing. Spec-
imens were maintained in plastic containers in a control 
soil corresponding to a natural soil of the experimental 
surrounding field of National University of Lujan, previ-
ously characterized elsewhere [24].

Pesticide exposure
The genotoxicity, cytotoxicity and trophic indexes 

in coelomocytes of E. fetida exposed in vivo and ex vivo 
were determinate. The control soil was artificially treated 
with both pesticides chosen. The applications rate corre-
sponded to the manufacturers recommended application 
dose. Applied dose were CPF 1 and 2 L/ha (480 and 960 g 
CPF/ha) and GLY 2.5, 4 and 6 L/ha (1200, 1920 and 2880 
g GLY/ha). The artificial treatment of soils was performed 
simulating the conditions of application followed by 
producers in the field. A soil surface of minimum depth 
and 0.04 m2 was used. Thus, soils sieved to 1000 µm were 
distributed in a homogeneous layer of 1 cm of depth in 
a glass vessel. Soil was treated with the corresponding 
amount of pesticide as application recommended rate 
of manufacturers. Commercial formulations were dis-
persed in Milli-Q water and applied into the soil by using 
a commercial sprayer. Once treated with pesticides, soils 
were mechanically homogenized and used immediately 
to avoid volatilization losses. To evaluate endpoints of ex 
vivo manner, coelomocytes were extruded of untreated 
organisms and incubated 1 h (RT) in the soil leachates. 
Soil leachates were prepared from pesticides-treated soils 
to evaluate the mobility of self inter environment com-
partments. Soil leachates were prepared according to US 
EPA [41] recommendations. For SCGE assay, solutions 
of PBS and H2O2 (100 µM in PBS) were used as negative 
and positive controls, respectively [19,23]. Solutions of 
PBS and CuCl2 were used as negative and positive con-
trols, in cytotoxicity evaluation, respectively [15,38]. To 
evaluate endpoints of in vivo manner, coelomocytes were 
extruded of organism exposed during 7 and 14 days in 
pesticides-treated soils. For each test, 750 g fresh weight 
of the test medium (control soil and pesticides-treated 
soils) was placed into each plastic container and then 
adult earthworms with clitellum observable were added. 
The containers were covered with perforated plastic film 
to prevent the test medium from drying and kept under 
the test conditions for 7 and 14 days. Two replicates for 
each treatment were performed.

Coelomocyte extrusion
At the end of the exposure period either for in vivo and 
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1 to 100 µg/mL, were statistically different with respect 
to negative controls (PBS). Coelomocyte cytotoxicity fell 
within the expected values showing confidence limits 
at 95% between 13.68 - 80.07 µg/mL, and LC50-1 hour 
mean of 33.10 µg/mL. The values for coelomocyte viabil-
ity for ex vivo and in vivo exposure are indicated in Fig-
ure 1 and Figure 2, respectively. Coelomocytes exposed 
to aqueous leachate of pesticides-treated soils showed 
a significant increase (p < 0.05) in the percentage of 
non-viable cells (Figure 1). Both pesticides produced the 
increase of coelomocytes cytotoxicity in a positive con-
centration-response relationship. Earthworms exposed 
in vivo of pesticide-treated soils during 14 days showed 
a significant increase (p < 0.05) in the percentage of 
non-viable coelomocytes (Figure 2). CPF-based formu-
lation showed an increase of non-viable cells concomi-
tant with increase of application rates. On the contrary, 
GLY-based formulation showed a similar and significant 
increase (p < 0.05) of non-viable cells at all application 
rates evaluated. For the same application rate coelomo-
cytes exposed of ex vivo manner showed higher toxicity 
than coelomocytes exposed of in vivo manner.

Trophic indexes (ATIE and RTIE)
Values for calculated trophic indexes are showed in 

Figure 3A and Figure 3B. The number of eleocytes in 
control earthworms during in vivo and ex vivo exposure 
remained without significant differences among all of 
them during the experiment. After in vivo exposure to 
pesticides-treated soils, the total number of eleocytes de-
crease significantly (p < 0.05) after 7 and 14 days of treat-
ment. ATIE and RTIE indexes, that have into account 
the total number of eleocytes, decreased for both pesti-
cides and exposure times (p < 0.05).

on top of third layer and the agarose solidified. This last 
coverslip was removed and each slide was immersed in 
freshly prepared cold lysing solution (2.5 M NaCl, 100 mM 
Na2EDTA, 10 mM Tris (pH 10), 1% N-laurylsarcosinate, 
1% Triton X-100 and 10% dimethyl sulfoxide (DMSO) 
during 10 min. Slides were then placed in an electropho-
resis tank and covered with electrophoresis buffer (300 
mM NaOH, 1 mM Na2EDTA, pH 13.5) for 25 min at RT 
to allow unwinding. Electrophoresis (300 mA, 30 min, 1 
V/cm) was then performed in the some buffer. The slides 
were washed in the neutralization buffer (0.4 M Tris, pH 
7.5, 10 min). Afterwards, slides were stained with 30 µL of 
20 µ/mL ethidium bromide solution. The images of nucle-
oids were analyzed with Nikon Eclipse 600, microscope 
provided with epifluorescence (541-560 nm excitation fil-
ter and 590 nm emission filter) linked to an image analysis 
system (Image Pro Plus, V4.0, Media Cybernetics, Mary-
land, USA). The images obtained were analyzed with the 
CASP software [42]. Tail DNA% was used as final geno-
toxicity endpoint. The % Tail DNA comet assay parameter 
was chosen as it is not measured in arbitrary units, being 
more meaningful and advisable for regulatory purposes 
and for inter-laboratory comparisons [43].

Statistical analysis
Cytotoxicity and genotoxicity data were analyzed by 

non-parametric Kruskal-Wallis, and median and Dunn 
tests using Statistica software version 8.0 [44,45]. The 
Student t-test was used for pair comparisons in in vivo 
experiments between 7 and 14 days. The chosen level of 
significance was 0.05 unless indicated otherwise.

Results
Cell viability

All assayed concentrations of CuCl2, ranged between 
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Figure 1: Cytotoxic effects of soil leachates in coelomocytes 
E. fetida exposed ex vivo for 1 h. Error bars represent stan-
dard deviation of the mean. *Statistically significant differ-
ences with control group (p < 0.05).
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Figure 2: Cytotoxic effects of chlorpyriphos (CPF) and gly-
phosate (GLY) contaminated-soils on coelomocytes of E. 
fetida exposed in vivo for 14 days. Error bars represent stan-
dard deviation of the mean. *Statistically significant differenc-
es with control group (p < 0.05).
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L/ha did not show difference between 7 and 14 days of 
exposure. In the case of CPF-based formulation, the ap-
plication rate of 1 L/ha showed a significant decrease (p 
< 0.05) in the Tail DNA% between both exposure time. 
On the contrary, the application rate of 2 L/ha showed a 
significant increment in the Tail DNA% between 7 and 
14 days of exposure.

Discussion
Pesticides usually enter the soil as sprays applied to 

crop plants from above ground, and in a lesser extend 
when applied directly on soils. In the environment, ter-
restrial organisms are most commonly exposed to appli-

SCGE assay
DNA damage, measured as % of tail DNA, in coelo-

mocytes exposed to 100 µM H2O2 was statistically differ-
ent with respect to PBS solutions (negative controls). All 
pesticides-treated soils leachates exerted genotoxic effects 
in coelomocytes after 1 h of exposure (Figure 4). In the 
case of DNA damage after 7 and 14 days of exposure, the 
entire evaluated application rates were statistically dif-
ferent with respect to the control soil for both pesticides 
(Figure 5 and Figure 6). With the respect to the exposure 
time, different results were observed between both pesti-
cides. In the case of GLY-based formulation a significant 
increase (p < 0.05) was observed in DNA damage for the 
application rates of 2.5 and 6 L/ha between 7 and 14 days 
of exposure. By the other hand the application rate of 4 
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negative control (p < 0.001). 
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of active defense. Due to this functional characteristic 
could led us to compare earthworm coelomocytes with 
human leukocytes as they share similar immunobiolo-
gy [28]. Thus, the use of coelomocytes of E. fetida is an 
accurate technique for the toxicity assessment of pesti-
cides in earthworms. The absolute and relative trophic 
index earthworm (ATIE and RTIE) were sensitive for 
to evaluate short and longer exposure times. These in-
dexes take in account the density of eleocyte cells, which 
are mainly related with nutritive and immune functions 
[36]. The change in the relative proportions of coelomo-
cytes seems indicate a physiological stress in earthworms 
provoked for the pesticides exposure [35].

Studies on the biological effects of currently used 
pesticides have increased in recent years. Evaluation of 
genotoxic effects of treated-soil pesticides and its leach-
ate have acquired particular importance, especially in 
the case of a constant exposure as result of repeated ap-
plications. Thus, due to genotoxic influence can lead to 
changes in one or more generations [16,17], is very im-
portant to determinate in a sensitive manner any plausi-
ble interactions between pesticides and DNA. Pesticides 
tend to be very reactive compounds that can form cova-
lent bonds with various nucleophilic centers of cellular 
biomolecules, including DNA [47]. Besides, it was also 
showed that several pesticides induce reactive oxygen 
species (ROS) formation which may be involved in the 
production of DNA-single strand breaks [30,32,48].

Two methods can be used to evaluate DNA damage: 
the micronucleus test and Comet assay, the latter being 
much more sensitive than the former [23,29]. In the pres-
ent study, the SCGE or comet assay was used as a rapid 
and sensitive method for determine genotoxicity by mea-
suring DNA damage such as single- and double-strand-
ed DNA breaks as well as alkali-labile sites [16,20,21]. In 
the case of GLY, the results observed in the present study 
showed an increase of DNA migration in coelomocytes 
of E. fetida exposed both in vivo and ex vivo. These re-
sults are in accordance with previous reports of geno-
toxic effects provoked by GLY-based formulations by 
using several endpoints. Bolognesi, et al. [48] observed 
that GLY increase sister chromatid exchanges in human 
peripherical blood and adducts formation in kidney and 
liver cells in bone marrow cells. Grisolia [49] observed 
an increase in MN frequency in Tilapia rendalli fish. Ve-
ra-Candioti, et al. [50] observed the induction of primary 
DNA damage in peripheral blood cells of the ten spotted 
live-bearer fish Cnesterodon decemmaculatus. Also, dif-
ferent authors have obtained positive genotoxic results 
for GLY-based formulations through comet assay using 
a variety of cells and organisms. Clements, et al. [51] ob-
served DNA damage in circulation blood cells of Rana 
catesbeiana tadpoles. Cavas and Konen [52] observed an 

cation rate of pesticides recommended by manufactur-
ers. The current study examined the toxic effects of two 
pesticides widely used at application rate recommended 
and over a non-target organism such as E. fetida. The 
results considering the viability response, DNA damage 
and trophic indexes showed that both pesticides exert-
ed deleterious response in coelomocytes of E. fetida ex-
posed in vivo and ex vivo.

Beside, results further demonstrated that it was pos-
sible to evaluate the DNA damage by using the SCGE 
assay, cytotoxicity and cellular proportions as non-inva-
sive biomarkers starting from the coelomic cells or coel-
omocytes from exposed earthworms.

Ecological hazard assessment of chemicals has tra-
ditionally relied on the use of Standard Toxicity Tests 
(OECD, ISO), which in soils are based on short and 
long-term experiments using several terrestrial organ-
isms [46]. It was recommended that an acute toxicity test 
with E. fetida was being employed as a valid test stan-
dard for soil evaluation [46]. Because of the low sensi-
tivity of the acute endpoint mortality, alternative meth-
ods with more sensitive endpoints have to be checked as 
the chronic earthworm reproduction test [10]. Howev-
er, the application of the latter is complicated because 
it requires 56 days of exposure against 14 days of acute 
exposure. Thus, it is necessary the development of sensi-
tive biomarkers at short exposure times. In this aspect, 
the analysis of toxicity response taking into account cell 
types and trophic indexes was used as effective biomark-
er. Coelomocytes are free-circulating immune cells in the 
coelomic fluid, and have a central function in the earth-
worm’s immunity against environmental pathogens and 
toxicants [28,35,36,38]. Coelomocytes are the first line 

         
120

100

80

60

40

20

0

-20

Ta
il 

D
N

A 
%

Application rate (L/h)
GLY CPF

Control   2.5      4.0     6.0      1.0      2.0    H2O2

Figure 6: Genotoxic effects of chlorpyriphos (CPF) and gly-
phosate (GLY) contaminated-soils and hydrogen peroxide in 
coelomocytes exposed in vivo during 14 days. (Line: medi-
an, box limits: 25% to 75%, bars: min-max values). *Statisti-
cally significant differences with negative control (p < 0.001).



• Page 88 •

Citation: Curieses SP, Sáenz ME, Alberdi JL, et al. (2018) Genotoxic Evidences of Glyphosate and Chlorpyriphos 
on Eisenia fetida Coelomocytes. Advances Environ Stud 2(2):82-90

Curieses et al. Advances Environ Stud 2018, 2(2):82-90 ISSN: 2642-4231  |

posed ex vivo to both pesticides. Previous reports have 
demonstrated that runoff is a one of the major source 
of non-point pesticide contamination of steams [60]. 
Thus, pesticides are capable to migrate into the liquid 
phase and representing, then, a high ecological risk for 
aquatic biota [39,61,62]. The behavior of pesticides on 
the environment will depend not only on their intrinsic 
properties but also on environmental conditions and ag-
ricultural practices. Thus, pesticides can exert deleterious 
effects in aquatic organisms as previously reported. Bio-
markers are an important element in the ecological risk 
assessment of pesticide pollution. Also, pesticides geno-
toxicity is a matter of interest, and its environmental de-
tection is an important topic. The different ways in which 
pesticides are being applied are continuously increasing, 
as well as the resultant risks. The use of pesticides is rec-
ommended, in order to obtain the beneficial effects in 
crops, but without to produce effects in the biota and in 
human health.
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