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Abstract: Unaccounted for spatial variability leads to bias in estimating genetic parameters and predicting breeding values
from forest genetic trials. Previous attempts to account for large-scale continuous spatial variation employed spatial coordi-
nates in the direction of the rows (or columns). In this research, we use an individual-tree mixed model and the tensor
product of B-spline bases with a proper covariance structure for the random knot effects to account for spatial variability.
Dispersion parameters were estimated using Bayesian techniques via Gibbs sampling. The procedure is illustrated with
data from a progeny trial of Eucalyptus globulus subsp. globulus Labill. Four different models were used in the sequel.
The first model included block effects and the three other models included a surface on a grid of either 8 � 8, 12 � 12,
or 18 � 18 knots. The three models with B-splines displayed a sizeable lower value of the deviance information criterion
than the model with blocks. Also, the mixed models fitting a surface displayed a consistent reduction in the posterior
mean of s2

e, an increase in the posterior means of s2
A and h2

DBH, and an increase of 66% (for parents) or 60% (for off-
spring) in the accuracy of breeding values.

Résumé : Le fait de ne pas tenir compte de la variabilité spatiale engendre des biais dans l’estimation des paramètres gé-
nétiques et la prédiction des valeurs en croisement qui sont faites à partir des tests en génétique forestière. Les tentatives
antérieures pour prendre en compte la variabilité spatiale continue à grande échelle étaient basées sur les coordonnées spa-
tiales dans la direction des rangs (ou colonnes). Dans la présente étude, les auteurs ont employé un modèle mixte basé sur
les valeurs d’arbres individuels et le produit tensoriel de B-splines avec une structure de covariance adéquate pour les ef-
fets aléatoires de nœuds afin de tenir compte de la variabilité spatiale. Les paramètres de dispersion ont été évalués à
l’aide de l’échantillonnage de Gibbs, une méthode basée sur les statistiques bayésiennes. L’approche analytique est illus-
trée à l’aide de données provenant d’un test de descendances d’Eucalyptus globulus subsp. globulus Labill. Les auteurs
ont utilisé quatre modèles différents dans la suite d’analyses. Le premier modèle incluait des effets de blocs alors que les
trois autres modèles impliquaient une surface couchée sur un réseau de 8 � 8, 12 � 12 ou 18 � 18 nœuds. Les trois der-
niers modèles qui impliquaient des B-splines affichaient une valeur sensiblement plus faible quant au critère d’information
sur la déviation comparativement au modèle avec les blocs. De plus, les modèles mixtes qui s’ajustaient à une surface dé-
montraient une réduction constante de leur moyenne a posteriori de s2

e, une augmentation de leurs moyennes a posteriori
de s2

A et de h2
DBH, et une augmentation de 66 % (pour les parents) et de 60 % (pour les descendants) de la précision des

valeurs en croisement.

[Traduit par la Rédaction]

Introduction

Forest genetic trials are prone to a high degree of environ-
mental heterogeneity as compared with other cultivated
plants (Libby and Cockerham 1980): trees are large living
organisms and occupy more space than most cultivated plant

species. Moreover, trees are often planted in places with het-
erogeneous levels of fertility, humidity, soil depth, or slope.
Although spatial heterogeneity is a nuisance effect in forest
genetic evaluation where the main goal is the prediction of
breeding values, ignoring such a source can lead to biases
in the estimation of genetic parameters and the prediction
of individual additive genetic effects (breeding values: Mag-
nussen 1993, 1994). To account for environmental gradients,
tree breeders have devised forest trials using randomized
complete blocks or incomplete block designs. However, set-
ting fixed limits for the blocks makes it difficult to account
for continuously varying environmental factors. Addition-
ally, establishing a priori a design that properly accounts for
all sources of environmental heterogeneity may be a hope-
less task as ‘‘environmental variation is never known prior
to establishment’’ (Fu et al. 1999a). Alternatively, the spatial
variation can be accounted for a posteriori within the model
of evaluation. In these so called ‘‘spatial models’’, the con-
tinuous variability has two main sources: the ‘‘local trend’’,
or small-scale variation, and the ‘‘global trend’’, or large-
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scale variation, across a spatial gradient. The two sources
are observable in forest genetic trials: either component
alone or in combination with each other (e.g., Fu et al.
1999b; Costa e Silva et al. 2001; Dutkowski et al. 2002).

Models that account for large-scale continuous spatial
variation include spatial coordinates expressed as either clas-
sification variables or covariables. The latter are nonstochas-
tic functions such as polynomials (Federer 1998) or
smoothing splines (Verbyla et al. 1999). Costa e Silva et al.
(2001) and Dutkowski et al. (2002) considered the continu-
ous spatial trends by fitting a Kronecker product of first-order
autoregressive (AR(1)) covariance structures for rows and
columns (Gilmour et al. 1997). To account for large-scale
variation, Costa e Silva et al. (2001) proposed the use of
fixed or random classification variables, and Dutkowski et
al. (2002) included fixed effects of spatial coordinates as
quadratic polynomials or cubic smoothing splines (Verbyla
et al. 1999). However, Dutkowski et al. (2002) found that
the variograms in two out of five trials were not stationary,
implying that large-scale covariance was still present in the
spatial errors. Notice that fitting classification variables, ei-
ther in the additive model with row and column effects or
in the model with interaction, does not treat the informa-
tion in a continuous fashion so that a surface cannot be fit-
ted. On the other hand, additive models with polynomials
or splines use only marginalized estimates of row and col-
umns effects so that the information on the inner points of
the grid is lost. Therefore, in forest genetic trials where
continuous spatial variation develops in two dimensions,
analyses using classification variables, covariables, polyno-
mials, or splines in one dimension, or additive models, or a
model with interaction of classification variables may not
completely account for spatial covariance. Thomson and
El-Kassaby (1988) fitted sixth-order-degree polynomials in
two dimensions by least-squares to compare different prov-
enances of Douglas-fir (Pseudotsuga menziesii (Mirb.)
Franco). The use of polynomials for the analysis in two di-
mensions (‘‘trend analysis’’) of forest genetic data can also
be found in the work of Liu and Burkhart (1994) and
Saenz-Romero et al. (2001). However, the fit of polyno-
mials suffers from several drawbacks (Green and Silver-
man 1994, p. 2). First of all, the fit is global and not
local, which means that (i) the method is not capable of
accounting for local variations present in the data, (ii) few
influential observations may exert a large influence in the
resulting fit, and (iii) the fit in the edges is usually poor.
Another serious drawback with polynomials is their numer-
ical instability as the order of the polynomial increases.

Splines are a more efficient approach to the use of poly-
nomials. They are segmented polynomial functions that are
locally fitted such that the resulting function is differentiable
at the joints of the segments (‘‘knots’’) up to the order of fit.
Splines are able to capture most sinuosities present in the
data and do not suffer from numerical instability. Eilers and
Marx (1996) introduced ‘‘penalized splines’’ (P-splines) in
one dimension using basic splines (B-splines) with equally
spaced knots and a linear model approach with a roughness
penalty consisting of the differences among the parameters,
i.e., the effects of the knots. T. Speed (see Robinson 1991)
first pointed out the connection between splines and mixed
models, a subject further expanded by Ruppert et al. (2003)

and Wand (2003). Cantet et al. (2005) approached P-splines
in one dimension using proper covariance structures rather
than matrices of differences in an animal breeding context.
Eilers and Marx (2003) extended their methodology to esti-
mate a surface along two dimensions using the tensor product
of B-splines. Either in one or in two dimensions (Eilers and
Marx 1996, 2003), the parameters of the B-spline function
are treated as fixed effects. Similar results can be obtained
by a mixed model approach by treating the B-spline function
parameters as random variables, which from now on we refer
to as ‘‘random knot effects’’ (RKE). The goal of the present
research is to show how to fit a surface using the tensor prod-
uct of B-spline bases to account for large-scale continuous
spatial variation in an individual-tree mixed model for forest
genetic evaluation. To do that, we superimpose a covariance
structure for the RKE in a two-dimensional grid. As in some
recent contributions to forest breeding (e.g., Soria et al.
1998; Cappa and Cantet 2006; Waldmann and Ericsson
2006), we employed the Bayesian approach via Gibbs sam-
pling to make inferences in all dispersion parameters of the
model. Developments are illustrated by means of data on
diameter at breast height from a progeny trial of Eucalyp-
tus globulus subsp. globulus Labill. The resulting estimates
of all dispersion parameters for mixed models that include
the fitted surface are finally compared with corresponding
estimates from the classical model including blocks.

Methods

Two-dimensional tensor product of B-splines
We first briefly introduce P-splines in one dimension as

suggested by Eilers and Marx (1996). Then, we take the ap-
proach of Eilers and Marx (2003) and Green and Silverman
(1994) and extend P-splines to two dimensions using the
tensorial product of B-splines.

Eilers and Marx (1996) advocated using B-splines with
equally spaced knots to obtain P-splines. B-splines are local
basis functions consisting of polynomial segments of degree
d, in general quadratic or cubic, that have d – 1 continuous
derivatives at the joining points, or knots. Therefore, knots
are the parametric values where the polynomial functions
that compose splines join one another. We will denote with
nx the number of knots of the spline function. A B-spline of
degree d is positive on a domain spanned by d + 2 knots and
is zero elsewhere. All in all, d + 1 B-spline coefficients are
nonzero. Eilers and Marx (1996) introduced a penalty that
affects first or second differences of B-spline parameters.
The penalty controls the degree of smoothness while fitting
the function. Let the data vector of length n be denoted by y.
Also, let the vector x contain the positions of the rows (or
columns) of trees expressed as a distance (in metres) from
the beginning row (or column) of the trial. For example,
with a spacing of 3 m between rows, x’ = [0, 3, 6, 9, ...].
Then, the one-dimensional spline function s(x) for rows (or
columns) is written as

½1� sðxÞ ¼
Xnx
i¼1

BiðxÞbi

where Bi = (B1(x), B2(x), ..., Bnx(x))’ is a column vector with
nx B-spline bases (De Boor 1993) and bi = (b1, b2, ..., bnx)’
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denotes the vector of spline parameters in one dimension.
To express one row (or column) in x as a function of B-
spline bases, two linear B-splines bases are needed, or three
quadratic B-splines bases, or four cubic B-splines bases. In
matrix form, expression 1 can be written as Bb, where B is
the n � nx matrix that contains the Bis, and b is the para-
metric vector (nx � 1) containing the bis to form s(x). The
functional 1 is generally fitted by least-squares with an ad-
ditive penalty. Eilers and Marx (1996) observed that the pe-
nalized estimator of b is the solution of the following
system of equations:

½2� ðB0Bþ �D0
dDdÞbb ¼ B0y

where the positive scalar � controls the amount of smooth-
ing and Dd is the matrix of differences of order d. For d = 1
and d = 2, we have, respectively

½3� D1 ¼
�1 1 0 0

0 �1 1 0

0 0 �1 1

24 35
D2 ¼

1 �2 1 0 0

0 1 �2 1 0

0 0 1 �2 1

24 35
Ruppert et al. (2003) and Wand (2003) discussed the con-
nection between P-splines and mixed models (Henderson
1984). The smoothing parameter � is seen as the ratio of
the error variance to the variance of the B-spline parameters
bi. Moreover, D’D is interpreted as a g-inverse of the covar-
iance matrix of the B-spline RKE (Cantet et al. 2005) and
acts as a singular penalization matrix.

Tensor products of B-splines allow a natural extension of
one-dimensional P-spline smoothing to two dimensions by
means of the Kronecker product of single structures. A
more rigorous approach can be found in Green and Silver-
man (1994, pp. 155–159). The tensor product of two uni-
variate B-splines along the rows (r) and columns (c) is
defined as the r � c rectangle in <2 such that Tkl(r,c) =
Brk(r)Bcl(c), where Brk(r) and Bcl(c) are B-spline bases for
the row (k = 1, 2, ..., nxr) and column (l = 1, 2, ..., nxc)
RKE, respectively. The scalar nxr is the number of knots for
rows and nxc is the number of knots for columns. If row and
column knots are chosen to be equally spaced and cubic B-
splines are used, the r � c space can be divided into small
rectangular panels such that [rk, rk+1] � [ck, ck+1]. Let S =
[�kl] be the nxr � nxc matrix containing the parameters from
the tensor product of B-splines that have to be estimated.
Then, for a given set of knots, the surface !(r,c) can be ap-
proximated using the following matrix expression:

½4� vecf!ðr; cÞg ¼ Bb

where B has dimension n � (nxr � nxc) and is equal to
B ¼ ðBr � 10nxcÞ#ð1

0
nxr

� BcÞ. The notation ‘‘vec’’ stands for
the operator that results from stacking the columns of a ma-
trix into a vector (Harville 1997, p. 339), and the symbols
: and # indicate the Kronecker and Hadamard products of
matrices, respectively (Harville 1997). The order of the re-
sulting vector b is (nxr � nxc) � 1.

In analogy to what they had done for one dimension (Eilers
and Marx 1996), Eilers and Marx (2003) and Marx and Eilers
(2005) proposed a two-dimensional penalized estimation of a
surface. Let �r and �c be the parameters controlling the de-
gree of smoothness for rows and columns, respectively,
whereas Dr and Dc are the respective difference matrices 3.
Then, the solution for bb is obtained by solving the equations

½5�
�
B0Bþ �rðInxr � D0

rDrÞ þ �c ðD0
cDc � InxcÞ

�bb
¼ B0y

The expression above is similar to the system in one dimen-
sion where B is replaced by Br or Bc and �D0D is replaced
by �r ðInxr � D0

rDrÞ þ �c ð D0
cDc � InxcÞ. In the next section,

we show how to fit data in two dimensions using the tensor
product of B-splines by means of a mixed linear model.

Mixed model representation of a two-dimensional tensor
product of B-splines

In forest genetic trials, trees are usually arranged in regu-
lar grids arrayed in rows and columns. To position any tree,
let r and c be the row and column coordinates, respectively,
measured in metres or degrees. Let Y be a matrix of order nr
(number of rows) � nc (number of columns) containing the
observations for a trait (such as height or diameter). To
transform Y into a vector, we again use the vec operator in
which the nrnc � 1 vector y results from stacking the col-
umns of Y:y = vec(Y). Then, an individual-tree mixed
model with a smoothed surface to account for environmental
heterogeneity is given by

½6� y ¼ X� þ Bbþ Zaþ e

where � is a p � 1 vector of fixed effects associated with y
by the incidence matrix X(n � p) such that the matrix X is
of full column rank p. In case the rank of X is less than p, it
is always possible to find a reparametrization that turns X
into a matrix of full-column rank (Christensen 1987). The
random q � 1 vector a contains the additive genetics effects
(or breeding values) of individual trees and is related to y by
the incidence matrix Z (of order n � q). The expectation of
a is 0 and the covariance matrix is A�2A where A is the ad-
ditive tree-level relationship matrix (Henderson 1984) for
the trial trees and their known ancestors and �2A is the addi-
tive genetic variance. The distribution of the random (nxr �
nxc) � 1 vector b containing the parameters of the tensor
product of B-splines (i.e., the RKE) is such that
b � Nð0;U�2bÞ. The scalar �2

b is the variance of the RKE
for rows and columns and U is the covariance structure in
two dimensions. Finally, random error terms are included in
the n � 1 vector e, which is distributed as e � Nð0; I�2

eÞ
and �2e is the error variance.

The covariance structure U plays an important role in
model 6. The matrix should reflect the correlation decay
among B-spline knots that are farther apart, either row- or
column-wise. A possible choice for U is �r ��c, a Kro-
necker product of matrices for the rows (�r) and for the col-
umns (�c). If U is a linear covariance structure (Anderson
1973), the estimation process is simplified and there is only
one parameter to estimate: �2b. Then, estimation can be per-
formed with simpler methods and algorithms, i.e., REML-EM
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or Gibbs sampling. The challenge is to find a U that is in-
formative enough among the correlation decay among knot
effects and at the same time that does not depend on extra
parameters. A possibility is to set �r and �c to be equal
to the one-dimensional covariance structure originally pro-
posed by Green and Silverman (1994, p. 13) and then used
by Durban et al. (2001) to fit a fertility trend. In this tri-
diagonal matrix, correlations are nonzero for neighbor
knots and are zero otherwise. More explicitly, if �ij is ele-
ment ij of any of the matrices �r or �c, diagonals are �ii =
4/6, whereas off-diagonals are either �i+1,i = �i,i+1 = 1/6 or
�ij = 0 for |i – j| ‡ 2, i = j = 1, 2, ..., nxr or nxc. Thus,

besides being positive definite, U ¼ �r ��c is strictly di-
agonally dominant as j&iij >

X
j 6¼i
j&ijj for every i. To

exemplify, suppose nxr = nxc = 4, then

�r ¼ �c ¼
1

6

4 1 0 0

1 4 1 0

0 1 4 1

0 0 1 4

2664
3775

and U ¼ �r ��c is given by

1

6

16 4 0 0 4 1 0 0 0 0 0 0 0 0 0 0

4 16 4 0 1 4 1 0 0 0 0 0 0 0 0 0

0 4 16 4 0 1 4 1 0 0 0 0 0 0 0 0

0 0 4 16 0 0 1 4 0 0 0 0 0 0 0 0

4 1 0 0 16 4 0 0 4 1 0 0 0 0 0 0

1 4 1 0 4 16 4 0 1 4 1 0 0 0 0 0

0 1 4 1 0 4 16 4 0 1 4 1 0 0 0 0

0 0 1 4 0 0 4 16 0 0 1 4 0 0 0 0

0 0 0 0 4 1 0 0 16 4 0 0 4 1 0 0

0 0 0 0 1 4 1 0 4 16 4 0 1 4 1 0

0 0 0 0 0 1 4 1 0 4 16 4 0 1 4 1

0 0 0 0 0 0 1 4 0 0 4 16 0 0 1 4

0 0 0 0 0 0 0 0 4 1 0 0 16 4 0 0

0 0 0 0 0 0 0 0 1 4 1 0 4 16 4 0

0 0 0 0 0 0 0 0 0 1 4 1 0 4 16 4

0 0 0 0 0 0 0 0 0 0 1 4 0 0 4 16

2666666666666666666666666664

3777777777777777777777777775

In this example, nonzero elements of U are correlations
between neighbor knots. Take, for example, the second
knot (row 2 of U) having as proximal neighbors the knots
1, 3, and 6 and as diagonal neighbors the knots 5 and 7.
Notice that correlations with neighbors in proximal posi-
tions are stronger (4/6) than with neighbors located diagon-
ally (1/3). Implicit is the assumption that the spacing
between both columns and rows is equal. There are other
structures that allow modeling a gradual decay in correla-
tion as knots are separated farther in the direction of the
rows or of the columns, such as those proposed by Hynd-
man et al. (2005) or Cantet et al. (2005). Finally, given the
random effects in eq. 6, the covariance matrix y (say V) is
as follows:

½7� V ¼ ZAZ0�2
A þ BUB0�2

b þ In�
2
e

and mixed model equations (Henderson 1984) for eq. 6 are

½8�
X0X X0B X0Z
B0X B0Bþ U�1� B0Z
Z0X Z0B Z0Zþ A�1�

24 35
�

b�bbba
24 35 ¼

X0y
B0y
Z0y

24 35
where � ¼ �2e =�

2
b and � ¼ �2e =�

2
A. Notice that in the Baye-

sian view of the mixed linear model (Sorensen and Gianola
2002), the likelihood of the data is proportional to

½9� pðyj�; a; bÞ / ð�2eÞ�
1
2 � exp

� � 1

2�2
e

ðy� X� � Za� BbÞ0ðy� X� � Za� BbÞ
� �

Bayesian estimation
The Bayesian approach via Gibbs sampling was used

to estimate the parameters in model 6 (Sorensen and Gia-
nola 2002). We now specify the prior distributions as
well as the joint and marginal conditional posterior den-
sities.

Specification of prior distributions
Conjugate prior densities were chosen for all parameters.

To reflect a prior state of uncertainty for the fixed effects
and to keep a proper posterior distribution (Hobert and
Casella 1996), we set � ~ Np(0, K) and K is a diagonal ma-
trix with very large elements (kii > 108). Therefore, this prior
density is proportional to

½10� pð�jKÞ / j
Yp
i¼1

kiij�
1
2exp � 1

2

Xp
i¼1

�2
i

kii

( )
The Bayesian view of mixed model 6 is that of a hierarchi-
cal model (e.g., see Hobert and Casella 1996, expression 5,
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p. 1462). Under this approach, the vectors b and a are consid-
ered first stage parameters, whereas the dispersion parameters
of the distributions of b and a are second-stage parameters,
such as the variance components �2

b and �2A. Hence, we de-
fine the prior distribution of b conditional on �2b and the
prior distribution of a conditional on �2A. Then, the vector
b is distributed a priori as b � Nbð0;U�2bÞ so that

½11� p ðbj�2
bÞ / ð�2bÞ�

nx�nx
2 exp � b0U� 1b

2�2
b

� �
The prior density for the vector of breeding values is
a � Nqð0;A�2AÞ (see eq. 13.2 in Sorensen and Gianola
2002, p. 564) so that

½12� p ðaj�2
AÞ / ð�2AÞ�

q
2exp � a0A� 1a

2�2A

� �
Following Sorensen and Gianola (2002), we chose to use in-
dependent scaled inverted w2 densities as prior distributions
for the variance components �2b, �2A. and �2e :

½13� pð�2bj�b; �2bÞ / ð�2bÞ
� �b

2
þ1

� �
exp � �b�

2
b

2�2b

� �

½14� pð�2Aj�A; �2A Þ / ð�2AÞ
� �A

2
þ1

� �
exp � �A�

2
A

2�2
A

� �

½15� pð�2e j�e; �2eÞ / ð�2
eÞ

� �e
2
þ1

� �
exp � �e�

2
e

2�2
e

� �
Parameters in the densities 13, 14, and 15 are the hypervar-
iances �2b, �2A, and �2e and the degrees of freedom �b, �A, and
�e, respectively.

Joint and conditional posterior densities
By multiplying eq. 9 by eqs. 10, 11, 12, 13, 14, and 15,

the joint posterior density of all parameters is proportional
to

½16� pð�; a; b; �2b; �2A; �2e jy; �b; �A; �e; �2b; �2A; �2eÞ / pðyj�; a; bÞpð�jKÞpðbj�2b Þpðaj�2
AÞpð�2bj�b�2bÞpð�2

Aj�A�2AÞpð �2e j�e�2eÞ

Inference on any parameter by means of the Gibbs sampler requires conditional posterior densities in close form. The joint
conditional density of �, b, and a is given by

½17�
�

b
a

24 35y; �2A; �2b; �2e � N

b�bbba
24 35; X0XþK�1 X0B X0Z

X0X X0Bþ U�1� X0Z
X0X X0B X0Zþ A�1�

24 35�10@ 1A
Vectors b� , bb, and ba are the solutions to the following set of equations:

X0XþK�1 X0B X0Z
X0X X0Bþ U�1� X0Z
X0X X0B X0Zþ A�1�

24 35 b�bbba
24 35 ¼

X0y
X0y
X0y

24 35

We sample the elements of the vectors �, b, and a on a one-
by-one basis using the procedure discussed by Sorensen and
Gianola (2002, expressions 13.11 and 13.12, p. 566). The
conditional posterior distribution of �2

A is scaled inverted w2:

½18� pð�2Aj�; b; a; �2b; �2
e ; y Þ / Inv� 	2ð ~� A; ~�

2

AÞ

with parameters ~�A ¼ qþ �A and ~�
2

A ¼ ða0A�1aþ �A�
2
AÞ=~�A.

Also, for �2b, we have

½19� pð�2bj�; b; a; �2A; �2
e ; y Þ / Inv� 	2ð ~� b; ~�

2

bÞ

with ~�b ¼ nx� nxþ �b and ~�
2

b ¼ ðb0U�1bþ �b�
2
bÞ=~�b. Fi-

nally, the error variance has the following conditional poster-
ior:

½20� p �2e j�; a; b; �2b; �2
A; y

� �
/ ð�2

eÞ
� nþ�eþ2

2
þ 1

� �
�exp � ~�e

~�
2

e

2�2e

( )
with ~�e ¼ nþ �e degrees of freedom and scale parameter

~�
2

e ¼ ðe0eþ �e�
2
eÞ=~�e. At any iteration of the Gibbs algo-

rithm, we first sampled from distribution 17, then from
eq. 20, then from eq. 18, and finally from eq. 19 to start
the process back again. A program was written in FOR-
TRAN to perform all calculations (the FORTRAN program
is available from the first author on request).

A working example: analysis of an
E. globulus subsp. globulus progeny trial

Data
An E. globulus subsp. globulus progeny trial was used in

the study. The trial was chosen, as there was indication of
spatial trends affecting the data, making the information
suitable to illustrate the methodology. The data were col-
lected at Licenciado Matienzo (37859’578@S, 59800’107@W)
in the southeastern part of Buenos Aires province, Argen-
tina, where E. globulus has traditionally being planted
(Lopez et al. 2001). The soil was a Petrocalcic Paleudoll. It
is characterized by a fine texture and a subsuperficial petro-
calcic horizon starting at 0.81 m from surface and with vari-
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able depth, and soil capability is III. The A horizon is made
of loam and has a granular structure, pH = 6, and 6.2% or-
ganic matter. The textures of the B and BC horizons are
clay and silty clay loam. The trait was diameter at breast
height (DBH, 1.3 m) measured in centimetres when trees
were 6 years old on all surviving trees. Records from
stunted and damaged trees were removed from the analysis.
The resulting data set consisted of 1021 recorded trees from
72 seed lots: 36 open-pollinated families from eight native
stand sites in Australia, 28 open-pollinated families, and
eight bulk collections from land race originated in Argen-
tina, Portugal, Spain, and Chile. A detailed description of
the genetics materials used in this study can be found in Lo-
pez et al. (2001, table 1, p. 245). Fourteen genetic groups
were formed according to provenance. After including all
known genetic relationships, a total of 1089 individual trees
(1021 plants with data plus 68 ancestors) were used in the
pedigree file. In calculating the relationship matrix, it was
assumed that both the selfing rate and the inbreeding were
zero. There were only 113 bulk trees (assumed to be unre-
lated) in the data set so that no extra independent additive
variance was assumed for these individuals. Trees were
planted in single-tree plots on a rectangular grid of 32 rows
and 36 columns (93 m � 105 m) arrayed in squares of 3 m �
3 m, with 15 replicates per family. Then, rows have coor-
dinates ri, i = 1, 2, ..., R = 32, and columns coordinates cj,
j = 1, 2, ..., C = 36. To fit the surface and for numerical
purpose, row (r) and column (c) spatial coordinates were
expressed in metres and the origin was taken to be the
north corner. The first tree (r = 1, c = 1) was set to coor-
dinates (0, 0) so that R = 93 m and C = 105 m. As a con-
tinuous scale (in metres) is used to fit the data, the
approach can be used for planting designs when the dis-
tance between rows and columns is not the same.

Models of analysis
Four individual additive tree models were evaluated. All

models included a fixed effect of genetic group to account
for the means of the different origins of parents, random ad-
ditive genetic effects (breeding values), and random errors.
Model 1 also included fixed block effects. In the other three
models (2, 3, and 4), a surface was fitted using the tensor
products of cubic B-splines. These models differ in the num-
ber of knots: 8 � 8, 12 � 12, and 18 � 18 for models 2, 3,
and 4, respectively. The minimum number of knots was
chosen using the criterion suggested by M. Wand (see Rup-
pert 2002) who chose to place a knot every t observations
and t = min(R/4 (or C/4), 35). As in P-spline methodology,
knots are equally spaced; once the number of knots is
chosen, the issue of the placement of the knots does not
arise (Eilers and Marx 1996). The coefficients for the cubic
B-splines in B were calculated using the recursive algorithm
of De Boor (1993), and the order of the resulting matrix was
n � (nxr � nxc). Accordingly, the vector b was of order (nxr �
nxc) � 1 and the covariance structure U of order (nxr � nxc) �
(nxr � nxc). In these data, n = 1021 and nxr = nxc = 8, 12, and
18. The deviance information criterion (DIC) (Spiegelhalter
et al. 2002) was employed to compare the fit from different
models. The model with the smallest value of DIC should be
favored, as this indicates a better fit and a lower degree of
model complexity. Numerical details for the calculus of DIC

in individual tree models are given in Cappa and Cantet
(2006).

To select the covariance matrix of the RKE, we tried the
covariance structures used by Cantet et al. (2005), Hyndman
et al. (2005), and Durban et al. (2001). The three different
matrices U were fitted to the model with 12 � 12 knots,
and model comparison was based on the DIC. Although the
estimates of �2A and �2e from the models with the three cova-
riance structures were similar, the values of the DIC were
2860.87, 2851.19, and 2833.46 for the U matrices used by
Cantet et al. (2005), Hyndman et al. (2005), and Durban et
al. (2001), respectively, which supports the use of the latter
structure to analyze the current data set.

Further model comparison was provided by the accuracy
of prediction of breeding values, which was computed using
the following expression:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � PEV

�2
A

s
The acronym PEV stands for ‘‘prediction error variance’’
(Henderson 1984) of predicted breeding values using the
‘‘best linear unbiased predictors’’ (BLUPs) of parent and
offspring. The PEV is calculated as the diagonal elements
of the inverse of the coefficient matrix from the mixed
model equations (Henderson 1984) in eq. 8. The required
variance components to set up the mixed model equations
were those estimated from the Bayesian analysis. Spearman
correlations were also calculated to compare whether the
ranking of predicted breeding values differed among mod-
els.

Spatial analysis of residuals
To identify spatial patterns in the data, we examined the

spatial distribution as in Gilmour et al. (1997) using a model
with fixed genetic groups and random breeding values. The
distribution of the DBH residuals is displayed in Fig. 1. The
color intensity represents the magnitude of the residuals: the
darker the dot, the larger the residual value. Additionally, re-
siduals were plotted against row and column position to de-
tect dissimilar patterns in any row (across columns, Fig. 2a)
or in any column (across rows, Fig. 2b). To exemplify, only
rows 1, 16, and 32 and columns 1, 16, and 32 are displayed.
Notice the different residual patterns across rows or col-
umns, which indicate the presence of interaction between
row and column position and the need for a two-dimensional
smoothing.

Computational details and posterior inference
The values of the hypervariances �2A and �2e were esti-

mated from the same data set using an empirical Bayes ap-
proach via Gibbs sampling, with an individual-tree model
including fixed effects of blocks and genetic groups and
random additive genetic effects. As there was no prior in-
formation on the hypervariance of the RKE, we tried dif-
ferent values of �2b in the interval ½0; �2eÞ and found that
the algorithm converged always to the same posterior
mean of �2b in all spatial models. The degrees of belief
were set to 10 (i.e., nA = 
k = 10) to reflect a relatively
high degree of uncertainty. The DIC was computed for
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each model using the output from the Gibbs sampling. At
the end of each iteration, heritability of DBH was calcu-
lated as h2DBH ¼ ~�2

A=ð ~�2
A þ ~�2

eÞ, where ~�2
A and ~�2

e are the
values of the additive and error variance sampled at a
given iteration.

A single Gibbs chain of 1 010 000 iterations was sampled,
and the first 10 000 iterates were discarded due to ‘‘burn-in’’.
This number was calculated using the diagnostics of Raf-
tery and Lewis (1992) as implemented in ‘‘Bayesian output
analysis’’ (BOA) version 1.0 (Smith 2003). This software
was also used to calculate the autocorrelations for all lags
from 1 to 50. To evaluate the impact of autocorrelations in
the variability of the samples, the ‘‘effective sample size’’
proposed by R. Neal (Kass et al. 1998) was calculated for
each parameter as

ESS ¼ 1 000 000

1þ 2
X50
i ¼ 1

�ðiÞ

where �(i) is the autocorrelation measured at lag i. Marginal
posterior densities for the variance components were esti-
mated by the Gaussian kernel method (Silverman 1986,
chap. 2):

½21� f ð�iÞ ¼
1

1 000 000 h

X1 000 000

j ¼ 1

1ffiffiffiffiffiffi
2

p
�exp � 1

2

z� �ij

h


 �2
" #

where f(�i) is the estimated posterior density of �i (i = �2A,
�2
b, or �2

e) and �ij is the jth (j = 1, ..., 1 000 000) sampled
value of variance component �i. The scalar h is the window
width estimated by unbiased cross-validation. Mean, mode,
median, standard deviation, and 95% high posterior density
interval were then calculated with BOA for all parameters
from the individual marginal posteriors using the free soft-
ware R (www.r-project.org/).

Results
The values of DIC for models 1–4 were 3152.66,

2868.64, 2833.46, and 2835.12, respectively. Note that all
models including a tensor product of B-splines had a smaller
DIC (i.e., better fits) than model 1 with block effects. Model
3 (12 � 12 knots) showed the smallest DIC, closely fol-
lowed by model 4 (18 � 18 knots). The presence of spatial
effects can be observed in Fig. 3, which displays the esti-
mates of the block effects for model 1 or the estimated sur-
face for models 2–4. There seems to be similarities in the
locations of the high and low areas in all four contour plots.
The fit for model 1 is expectedly abrupt, as block effects are
parameters for a categorical variable. On the other hand, the
estimated surfaces with models 2–4 show that the degree of
smoothness decreases with the increase in the number of
knots from 8 to 18.

Posterior statistics for �2
A, �2b, �2

e , and h2DBH are shown in
Table 1. Posterior means, medians, and modes of the var-
iance components and h2DBH were similar except for �2

A

from models 2 and 3 and �2
e from model 1, where the modes

were smaller than the means and medians. Estimates of �2
A

and �2e were similar in models 2–4, and this resulted in sim-
ilar posteriors means of h2DBH: 0.243, 0.267, and 0.262 for
the models with 8, 12, and 18 knots, respectively. Con-
versely, the estimated posterior mean of h2DBH from the
model with blocks was sensibly smaller (0.08). Also, the es-
timate of �2b from model 2 (17.351) was smaller than the
estimated values from models 3 (22.317) and 4 (21.758).
The estimates of �2e from models 2–4 were about half the
magnitude of the parameter estimate for model 1. This is
due to the spatial variation not being completely accounted
for by the blocking procedure in model 1. The 95% high
posterior density intervals for �2

A, �2b, �2e , and h2DBH were
shifted away from the zero value for all parameters. The
standard errors indicate that all estimates were quite precise,
although large numbers of samples were drawn to attain rea-
sonable effective sample size (last column in Table 1).

To quantify the effect of using a single additive variance
for trees with one or both parents known versus both parent
unknown (bulk), we performed an analysis excluding the
data of bulk trees. The posterior means of �2A, �2b, �

2
e , and

h2DBH were 3.914, 21.943, 10.181, and 0.277, respectively,
estimates that are similar to those obtained with the entire
data set.

The average accuracy of prediction of breeding values,
calculated from model 3 (the one with the smallest DIC),
was higher for parents (0.61) and progeny (0.54) than corre-
sponding values (0.40 and 0.32) calculated from model 1
(Table 2). Thus, fitting a surface using B-splines resulted in
a gain in accuracy of 66% for parents and 60% for off-
spring, a result that is due to the larger value of h2DBH esti-
mated in the model with B-splines. The Spearman
correlation between predicted breeding values from models
1 and 3 (Table 2) was 0.97 for parents and 0.94 for off-
spring, indicating that some reranking took place between
the individuals with the least information, i.e., the progenies.

Discussion

Unaccounted for spatial variability in forest genetic trials
leads to bias in estimating genetic parameters and predicting
breeding values (Magnussen 1993, 1994) so that accuracy of
selection decreases, thus reducing genetic gain. In the cur-
rent research, we showed how to fit a two-dimensional sur-
face using the tensor product of B-spline bases by means of
a mixed model in the spirit of the P-splines of Eilers and
Marx (1996, 2003). P-splines in two dimensions have also
been obtained by a Bayesian approach, as shown by Lang
and Brezger (2004). These authors regarded the difference
matrices 3 as a first- or a second-order random walk, re-
spectively. Our approach is different from theirs in the re-
placing of the singular matrix of the differences 3 by a
proper variance–covariance matrix of the RKE in two di-
mensions. In doing so, we extend the tensor product of B-
spline bases to an individual-tree mixed model to account
for large-scale continuous spatial variability. Thus, the
model incorporates a surface that is smoothed in the direc-
tion of both columns and rows. Gilmour at al. (1997) mod-
eled the large-scale variation in one dimension of
agricultural trials by fitting either polynomials or a cubic
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smoothing spline. However, in forest genetic trials where
trees are planted in squares or rectangles, a large portion
of the global trend is usually present in the two dimen-

sions. Moreover, it is extremely rare that large-scale con-
tinuous spatial variability is found only in the direction of
the rows or of the columns, and some sort of interaction
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Fig. 1. Spatial patterns of the residuals of tree DBH. The shading of the squares represents the magnitude of the residuals: the darker the
square, the larger the residual.
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Fig. 2. Plots of the residuals after fitting provenance and additive genetic effects: (a) numbers of column for different rows and (b) number
of rows for different columns.
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between rows and columns has to be considered to account
for such variability (Federer 1998). Although there exist
several statistical methods of smoothing to capture nonli-
nearity of the variation in one dimension, methods in two
dimensions are less abundant. For such a purpose, Federer
(1998) proposed fitting interactions between polynomials
for rows and columns. However, polynomials do a poor
job when fitting observations in the extremes. Moreover,
small changes in the data produce a dramatic effect in the
estimated values of the parameters, and this is especially
so for polynomials of higher degree. Additionally, the de-
gree of the polynomial should be selected, which in turn
introduces the issue of model selection. Instead, we pro-
pose estimating a smoothed surface using P-splines. The
approach is flexible, as B-spline functions are locally sensi-
tive to the data and are numerically well conditioned. The

variance �2
b was used to smooth the effects of both rows

and columns. In the approach of Eilers and Marx (2003)
and Lang and Brezger (2004), different variances for rows
and columns were used. Lang and Brezger (2004) went
further and used a locally adaptive estimator of the disper-
sion parameters. In future research, we may consider
smoothing rows and columns with different dispersion pa-
rameters, although it is not clear to us that this approach
may be more advantageous than ours regarding the quality
of the fit, i.e., the value of the DIC.

The P-splines methodology of Eilers and Marx (1996,
2003) consists of using cubic B-splines with equally spaced
knots. In this approach, the crucial parameter is the penalty
or smoothing factor � (see eqs. 2 and 5), and the number of
knots in the spline is not vital to the fit as long as there are
‘‘sufficiently’’ many (Eilers and Marx 1996; Cantet et al.
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Fig. 3. Contour plots of the estimates of block effects (model 1) and the surfaces from the fitting of the tensor product B-splines with either
8 (model 2), 12 (model 3), or 18 knots (model 4).
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2005). In the mixed model approach to P-splines, � is the
ratio �2e =�

2
b (Cantet et al. 2005) in eq. 8. Looking at Table 1,

one may infer that the magnitude of �2b (the denominator of
�) was sensitive to the number of knots as compared with
the other variance components. It is known that the fit of
very few knots produces bias, which rapidly decreases as
the number of knots increases (Ruppert 2002). Once the
minimum number is reached, increasing the number of knots
gives satisfactory fits (Ruppert 2002). Cantet et al. (2005)
found almost equal values of the modified Akaike informa-
tion criterion for models with 20, 40, 60, 80, or 120 equally
spaced knots. However, restricted maximum likelihood esti-
mators for the variance components did not converge for
certain models with 120 knots. For those situations with
120 knots where convergence was attained, there were
some inconsistencies in the fit for intervals where no data
were recorded. It is concluded that the number of knots is
not critical except for extreme quantities, and there are usu-
ally several knot numbers that yield similar fit and produce
similar estimates of the variance components. In the current
research, decreasing the number of knots from 18 to 8 pro-
duced a smoother surface (Fig. 3). Although the model with
12 � 12 knots displayed the smallest DIC, the difference in
DIC between the models with 12 � 12 and 18 � 18 knots
was minor. This was also true for the estimates of h2DBH ob-
tained from both models: a difference in the third decimal
place. In the mixed model approach to P-splines, the cova-
riance structure of the RKE replaces any of the singular ma-

trices of the differences in eq. 3. In the present research, the
tridiagonal matrix proposed by Durban et al. (2001) was se-
lected to model the covariances between the RKE for col-
umns and for rows. The formulation is simpler than the
dense correlation structures used by Cantet et al. (2005) and
Hyndman et al. (2005), where there is complete dependence
among all RKE. The latter covariance structures had larger
DICs than the one used by Durban et al. (2001), as ex-
plained in the section entitled Models of analysis. However,
similar estimates were obtained for �2A (3.668, 3.753, and
3.754), for �2

e (10.994, 10.763, and 10.275), and for h2DBH
(0.250, 0.258, and 0.267) from the models with the cova-
riance structure used by Cantet et al. (2005), Hyndman et
al. (2005), and Durban et al. (2001), respectively. On the
other hand, the estimates of �2b from these three models
were quite different: 11.931, 1.611, and 22.317. This is in
agreement with the results obtained by Cantet et al. (2005).

There are several examples of the use of B-spline func-
tions in one dimension when analyzing breeding data. Thus,
animal breeders used splines to model functional breeding
values (White et al. 1999; Bohmanova et al. 2005) or the ef-
fects of management unit and time (Cantet et al. 2005). In
forest genetic breeding, Cornillon et al. (2003) used B-
splines to model time functional breeding values of clones
in Eucalyptus using a fixed-effects model. Magnussen and
Yanchuk (1994) fitted spline functions to observed data so
as to estimate the individual heights at nonrecorded times
from Douglas-fir trees. The resulting data were then used to

Table 1. Posterior statistics for the additive genetic variance (s2
A), the variance of the RKE (s2

b), the error
variance (s2

e), and the heritability of DBH (s2
DBH).

Model Parameter Mean Median Mode SD 95% HPD ESS

1 �2
A

1.835 1.801 1.609 0.37149 1.291–2.503 24 119

�2
e

23.043 20.144 14.070 8.69251 15.182–40.520 87 274

h2DBH 0.080 0.079 0.084 0.02520 0.040–0.123 43 572
2 �2

A
3.596 3.480 2.642 0.98973 2.191–5.381 16 181

�2
b

17.351 16.558 16.875 5.17173 10.457–26.887 169 158

�2
e

11.156 11.191 10.476 1.01469 9.432–12.760 24 207

h2DBH 0.243 0.237 0.259 0.06401 0.151–0.358 16 254
3 �2

A
3.754 3.643 2.933 1.00390 2.310–5.573 16 474

�2
b

22.317 21.649 23.716 5.47972 14.682–32.132 109 973

�2
e

10.275 10.301 9.900 1.01309 8.558–11.871 23 568

h2DBH 0.267 0.261 0.244 0.06872 0.167– 0.389 16 519
4 �2

A
3.661 3.558 3.439 0.98475 2.254–5.458 16 526

�2
b

21.758 21.409 18.998 4.17318 15.463–29.223 81 522

�2
e

10.312 10.339 9.683 1.00670 8.595–11.920 24 305

h2DBH 0.262 0.256 0.205 0.06706 0.164–0.383 16 588

Note: Model 1, blocks fitted as fixed effects; model 2, P-splines with 8 knots for rows and 8 knots for columns; model 3, P-
splines with 12 knots for rows and 12 knots for columns; model 4, P-splines with 18 knots for rows and 18 knots for columns.
HPD, high posterior density interval; ESS, effective sample size.

Table 2. Accuracy of prediction of breeding values from models 1 and 3 and
Spearman correlation between predicted breeding values from models 1 and 3.

Accuracy of breeding
values for parents

Accuracy of breeding
values for offspring

Spearman correlation
of breeding values

Model 1 Model 3 Model 1 Model 3 Parents Offspring

0.40 0.61 0.32 0.54 0.97 0.94
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predict breeding values at nonrecorded ages and genetic dis-
persion parameters. The fit of a smoothed surface to the
progeny trial in E. globulus subsp. globulus with the tensor
product of B-splines instead of the a priori block design
consistently increased the posterior means of �2A and of
h2DBH (Table 1). The results agree with those of Zas (2006)
that accounted for spatial variability using kriging and are
different from those of Dutkowski et al. (2002, 2006). In
this latter case, inconsistent estimates of �2A were obtained
after adjusting an AR(1) � AR(1) covariance structure to
the residuals of the model. In our data, the spatial models
produced an increase in precision for the estimation of �2

e ,
which can be noticed in the much lower standard deviations
and the narrower values for the 95% high posterior probabil-
ity density intervals when compared with the estimate from
the model with blocks (Table 1). Moreover, accuracies of
breeding values from parents and offspring calculated with
the spatial models were higher than corresponding values es-
timated from the model with block effects (Table 2) due to
the increase in the estimated additive variance and the de-
crease of estimated error variance (Table 1). When compar-
ing with randomized complete block designs, increases in
accuracy from spatial models were reported by Costa e Silva
et al. (2001) for tree height and Zas (2006) for tree diameter.
Costa e Silva et al. (2001) analyzed 12 trials and found up
to 71% increases in accuracy of predicted additive effects
of the parents and offspring. Also, Zas (2006) reported sub-
stantial increases in the accuracy of BLUPs of family ef-
fects, going from 0.40–0.63 to 0.72–0.79 after correcting for
spatially correlated variation. A smaller gain in accuracy
was found by Dutkowski et al. (2002, 2006), but still in the
direction of the spatial model over the model with blocks. A
substantial fraction of the gain in accuracy is due to the fact
that not all spatial variability is accounted for as interblock
variability by using block designs (Singh et al. 2003), varia-
tion that otherwise would go to the error variance. There-
fore, analysis of data displaying large-scale continuous
spatial variation, such as the one induced by a petrocalcic
layer at variable depth, by spatial models will most likely
improve the accuracy of selection as compared with an anal-
ysis using a model with blocks.

In the current research, we modeled spatial variability that
is continuous and permanent along a site using an individ-
ual-tree mixed model with a smoothed surface. In forest ge-
netic evaluation, the spatial variation at the microsite level
has been modeled with nearest neighbor techniques (Mag-
nussen 1990; Costa e Silva et al. 2001; Dutkowski et al.
2002) or with kriging (Hamann et al. 2002; Zas 2006).
Nevertheless, interplant competition may be another source
for small-scale spatial variation that affects the correlation
between neighbors (Magnussen 1994). The mixed model 6
does not account for genetic competition among trees, and
this can bias the estimation of �2

A (Cappa and Cantet 2007).
However, the trees used in the analysis were 6 years old so
that competition was weak or absent. For those situations
where trees are measured at an age where competition effects
are sizeable, it would be desirable to fit simultaneously con-
tinuous spatial variation and genetic effects of competition.
More important, it is worthwhile to compare the method pre-
sented in this research with other spatial techniques by com-
puter simulation, and this is the topic of future research.
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