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Abstract 
 
It has been observed that mutualistic bipartite networks have a nested structure of 
interactions. In addition, the degree distributions associated with the two guilds involved in 
such networks (e.g. plants & pollinators or plants & seed dispersers) approximately follow 
a truncated power law. We show that nestedness and truncated power law distributions are 
intimately linked, and that any biological reasons for such truncation are superimposed to 
finite size effects . We further explore the internal organization of bipartite networks by 
developing a self-organizing network model (SNM) that reproduces empirical observations 
of pollination systems of widely different sizes. Since the only inputs to the SNM are 
numbers of plant and animal species, and their interactions (i.e., no data on local abundance 
of the interacting species are needed), we suggest that the well-known association between 
species frequency of interaction and species degree is a consequence rather than a cause, of 
the observed network structure. 
 
Keywords: nestedness - network - preferential attachment - plant-pollinator – mutualistic 
systems 
 
1.  Introduction 
 
The co-existence of plants and animals on Earth has given rise to interactions of the most 
variegated type. A particularly important type is that of mutualistic interactions, in which 
species may play an important role on each other. For example, birds feed from fruits while 
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they disperse the seeds; insects feed from the nectar of flowers pollinating them in the 
process (Herrera and Pellmyr, 2002). 
 
A great amount of research has been devoted to the study of mutualism as a community-
level phenomenon (Waser and Ollerton, 2006). In traditional studies the interaction of all 
active plant and animal species is recorded within a restricted geographical extension 
(Medan et al., 2002; Memmott et al., 2004). A standard graphical description of these 
systems can be made through bipartite networks in which nodes (species) are linked 
(interact) only with nodes of the opposite guild (plants with animals and vice versa) (Albert 
and Barabási, 2002). These networks may also be mathematically depicted by an adjacency 
matrix where rows and columns represent the two guilds of species, and a 1 in the 
intersection of a row and a column indicates that the corresponding species interact, and 
alternatively a 0 indicates they do not. The network-level pattern of interactions among the 
mutualist species can also be described through the degree distribution, i.e., the number of 
nodes for every degree value (number of links). In graph theory, this distribution plays a 
key role because it provides valuable hints about the internal structure of the network and 
hence, about some behavioral pattern of the species represented by its nodes (Albert and 
Barabási, 2002). 
 
An additional tool widely used to describe the organization of mutualist networks was 
developed by Atmar and Patterson (1993) who originally conceived it to describe how an 
array of species were distributed in a set of islands of different sizes. They found a pattern 
in which bigger islands hosted a larger number of species and in turn, smaller islands 
hosted fewer species but in such a way that the species found in the smaller islands 
represented a subset of those species found in larger ones. Such pattern was thus defined as 
“nested” and is represented by an approximately triangular shape of the distribution of 1’s 
in the adjacency matrix, provided that rows and columns have been reordered by increasing 
number of links. In addition, perfect nestedness is achieved when all 1’s are within a region 
of the matrix delimited by an extinction curve or isocline of perfect nestedness (hereafter: 
IPN). 
 
When analyzed using these tools real mutualistic networks display a remarkable degree of 
internal organization. On the one hand, the adjacency matrix displays nestedness 
(Petanidou and Ellis, 1993; Bascompte et al., 2003). In a nested matrix, ‘generalist’ species 
(those with a high degree) interact with their generalist counterparts constituting a highly-
connected ‘core’ within the matrix. In addition, 'specialists' (species with low degree) also 
tend to interact with generalists, rather than among themselves. On the other hand, most 
observed degree distributions of mutualistic networks fit a truncated power-law (hereafter: 
TPL) function (Jordano et al., 2003). Both features indicate that mutualistic networks are 
far from being a random collection of species and interactions. If this were the case all the 
1’s of the contact matrix should appear randomly distributed and the degree distribution 
should fit a Poisson distribution. 
 
Both power-law degree distributions and nestedness have been associated with a high 
tolerance of pollination networks to species extinctions (Memmott et al., 2004; Vázquez, 
2005) and unexpected perturbations (Bascompte et al., 2003). However, the underlying 
causes of both features and the reasons why they are so widespread have not yet been 
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properly established. Two explanatory approaches exist. First, Jordano et al. (2003) suggest 
preferential attachment (i.e. the tendency of new species to interact with already highly 
connected partners) as the main mechanism (see also Guimarães et al. 2005) for network 
creation. Additional factors preventing particular interactions such as phenological 
incompatibilities represented by forbidden links (hereafter: FL) are mentioned (Waser et 
al., 1996; Jordano et al., 2003) also. A second approach (Vázquez and Aizen, 2003, 2004, 
2006; Vázquez, 2005) suggests that species degree may simply be a function of species 
abundance in the community. Species represented by many individuals will have the most 
links, and rare species will have the fewest. This approach is based on a model of 
interaction matrices which attempts to reproduce the degree distribution of real networks.  
However some questions remain that call for a unified picture for the organization of 
mutualist networks. First, concerning the relationship between degree distributions and 
local species abundance, the reverse interpretation is also possible, i.e., that accumulation 
of interactions occurs first, and the ensuing higher reproductive success leads to local 
abundance. Second, remarkably, nestedness and power-law patterns (including truncated 
variants) always co-occur suggesting that both features are, in fact, “two sides of the same 
coin”. The claim that nestedness and TPL can be linked to a mechanism of preferential 
attachment is hard to work out. That mechanism has been originally developed by Barabási 
and Albert (1999) in a model involving a purely stochastic attachment rule of newly added 
nodes to a continuously growing network. This framework does not seem appropriate for 
real mutualist networks where it is necessary to preserve a given number of nodes and 
links. Third, although the IPN represents an intuitively sound and apparently 
straightforward approximation to the limiting shape of a perfectly nested distribution, on 
closer view some caveats arise. The curve is said to be a function of the number of islands, 
the number of species and the probability of contact between them, but its derivation arises 
from a purely geometric interpolation and is not clearly linked to any underlying biological 
mechanism or statistical analysis. 
 
In the present paper we provide a unified picture for the internal organization of mutualist 
networks deriving the empirical evidence of nestedness, degree distributions and the 
theoretical IPN, from a few biological hypotheses concerning the interaction of mutualist 
species. The structure of the paper is as follows: 
 
1) We provide a mathematical derivation of the IPN and also analytically demonstrate that, 
as long as nestedness is measured by comparing the pattern of contacts to that curve, a 
network with a nested pattern of interaction will present at the same time a truncated power 
law for the degree distribution, and vice versa. 
 
2) We present some theoretical implications of this derivation. We show how the 
cumulative degree distributions can be used to derive a direct measure of the IPN. We also 
show why the power laws that are experimentally observed appear to be truncated and that 
the degree distributions of either plant and animal species of a given mutualist system 
remain mathematically related to each other. 
 
3) Finally, we show how the collective nested pattern of contacts and TPL degree 
distributions can naturally emerge from a Self-organizing Network Model (SNM), which is 
first presented here, for the allocation of interactions between species within a mutualistic 
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bipartite network. The SNM model thus provides a biologically plausible foundation for the 
IPN and is validated by the quantitative fitting of degree distributions empirically observed 
in systems of widely different sizes. We also show how the SNM can be used to obtain a 
quantitative estimate of the effects of forbidden links on the behavior of the network. 
 
2. The isocline of perfect nestedness 
 

2.1 The analytic expression  
 
As mentioned above, a nested pattern of contacts is represented by an approximately 
triangular shape of the distribution of 1’s in the adjacency matrix, and perfect nestedness is 
achieved when all 1’s are within a region of the matrix delimited by the IPN. By 
quantifying the departure from this perfectly nested theoretical matrix, Atmar and Patterson 
(1993) proposed a measure of the disorder of a real network, expressed as a temperature, 
which has been widely used both in biogeography and community ecology (Memmott et 
al., 2004; Bascompte et al., 2003; Jordano et al., 2006). The curve is said to be a function of 
the number of islands, the number of species and the probability of contact between them. 
If n and m are respectively the number of columns and rows of the matrix and φ is the 
probability of a contact between both types of species, a perfectly ordered matrix is 
expected to concentrate the nmφ 1’s in a region similar to the one limited by the two 
straight lines UW1 and UW2 shown in Fig. 1, where U is the point of coordinates (nφ,mφ). 
 
The IPN is however not expected to involve straight lines or vertices. It is therefore 
represented by a function that is a continuous modification of the straight segments. Neither 
the derivation of the IPN nor its analytic expression are provided by Atmar and Patterson 
(1993). We develop below an analytic expression of an IPN that has all the same properties 
as that proposed by Atmar and Patterson (1993) although, in absence of a formal expression 
for the latter, the equivalence is only supported by numerical evidence. 
We describe the IPN in terms of the two continuous variables a ( 0 ≤ a ≤ n) and p ( 0 ≤ p ≤ 
m) that can be assimilated respectively to the columns (animal species) and rows (plant 
species) of the adjacency matrix. This approximation may be considered to be exact in the 
limit of very large systems. 
 
It is convenient to consider separately the two branches of the IPN, lying respectively 
below (branch 1) and above (branch 2) the diagonal of the adjacency matrix (see Fig.1).  
 
To begin with, we write the coordinates (a’, p’) of each point of the segment UW1 as  
a’ = β + d cos θ = β + d n/D, and p’ = d sinθ = d m/D, where the segment d is parallel to 
the main diagonal, D = (n2 + m2)1/2, and β is a parameter (0 < β < n) . Next, we map each 
point (a’, p’) of the segment UW1 into the corresponding point (a1, p1) on branch-1. We do 
this by means of a continuous stretching or shortening of each segment d. More 
specifically, this amounts to multiplying d by a factor (d / d0)µ, where d0 is the d-segment 
associated with the crossing point of branch-1 and UW1. Hence, using d /φ D = (n - β)/n, 
the Cartesian coordinates a1 and p1 of the points of branch-1, are: 
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A completely analogous set of equations can be found for branch-2. We use for this case 
the parameter η (0 < η < m) playing a role analogous to β in the previous expression: 
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The constants d0 and µ are determined by imposing that the area limited by the isocline is 
nmφ and that both branches of the curve meet at the diagonal with a continuous first 
derivative. The two conditions correspond to: 
 

( )( )1 1 2φ µ µ= + +                                                                                                          (5) 

( ) ( )0 2 1d D µµ φ φ µ= +                                                                                                      (6) 
 
that completely specify the IPN. We have thus built up a set of two of parametric equations, 
one for each branch, with parameters β  and η, respectively. 
 

2.2 The cumulative degree distribution 
 
The IPN presented above contains also the information of the two degree distributions for 
rows and columns. This is so because it provides the number of contacts of each species 
with its mutualist counterparts. In graph theory parlance this is the degree of each node of 
the bipartite graph. One further step is needed to link the IPN to the degree distribution 
because the latter measures how many animal or plant species have the same degree (in 
what follows for shortness we will omit the word species, and refer to plants and animals). 
To trace the relationship of the IPN with the degree distributions of plants or animals (rows 
and columns), we write it as p = p(a). We assume that all plants p and animals a have been 
ordered in such a way that p(a) is a monotonously decreasing function. 
 
A different way of reading this curve is by realizing that a point (ao, po) (see Fig. 2) is 
directly related to the degree of animals and plants. Indeed the value po indicates the degree 
of the animal ao and vice versa, ao indicates the degree of the plant po. Since the curve is 
monotonous, ao is also the number of animals that are connected to po or more plants 
(shaded area in Fig. 2) and, equivalently, po is the number of plants that are connected to ao 
or more animals (shaded area in Fig. 2). This means that the IPN can also be read as a 
cumulative degree distribution. 
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These cumulative distributions are reported in the literature with no reference to the IPN, 
and are usually normalized to 1. In Fig. 3 we show an example of the direct comparison of 
the IPN with the two possible cumulative degree distributions, one for plants and the other 
for animals. The example is taken from a real system as reported by Robertson (1929). In 
order to compare them with the IPN the two cumulative degree distributions are not 
normalized as they are usually shown in the literature; in addition the degree distribution of 
plants must be read as referred to the vertical axis, while that of animals must be referred to 
the horizontal axis. The endpoint at a ≈ 300; p ≈ 1 (indicated with an arrow in Fig. 3) shows 
that there are no plants that are connected to more than 300 animals. Analogously, the 
endpoint at a ≈1; p ≈ 240 indicates that there are no animals with a degree greater than 240. 
In a perfectly ordered system, i.e. one with vanishing temperature, both degree distributions 
would have reached the two corners of the matrix, namely a = 456; p = 1 and a = 1; p = 
1428. 
 

2.3 The degree distributions 
 
From the above arguments one can readily see that the regular degree distributions can be 
related to the two possible derivatives of the IPN, either dp(a)/da or da(p)/dp 
where a(p) is the inverse function of p(a). Alternatively this can be seen by approximating 
the IPN by a stair-like function obtained by dividing the a-axis into equal bins of a width 
∆a (see Fig. 2). The IPN may thus be replaced by a stair-like line in which all steps have 
the same width ∆a and a varying height. Within this approximation all the plants belonging 
to the same step of the stair are ∆p in number, and have the same degree that is equal to the 
value ao that is at the center of the interval ∆a. Since ∆p ≈∆a |dp(a)/da| it follows that, in 
the limit in which ∆a ≈. 1 << amax , the stair-like curve approaches the IPN and the 
(ordinary) degree distribution of the animals can well be approximated by the derivative 
|dp(a)/da| as anticipated above. The absolute value is used to ensure that the degree 
distribution is a positive number. A completely similar argument can be made for plants, 
reading the IPN as a = a(p) and approximating it by a stair-like curve with steps of equal 
height ∆p and varying widths ∆a. 
In the left panel of Fig. 4 we show as an example the log-log plot of the analytic 
expressions of both degree distributions for an experimentally observed adjacency matrix 
(Robertson, 1929). As can readily be seen both have the shape of truncated power laws. 
Within the present derivations it is not necessary to resort to forbidden links or other 
biological justification to explain the truncation of the power law of the degree distribution. 
 

2.4 Consistency of the degree distributions for plants and animals 
 
The two degree distributions for rows and columns are related to the two possible 
derivatives of the IPN, namely one in which a is the independent variable and the other in 
which p plays that role. A way to relate the derivative dp(a)/da with that of the inverse 
function da(p)/dp is by realizing that both functions are related to each other in the same 
way as branch-1 (in Eqs. (1,2)) and branch-2 (in Eqs. (3,4)). In fact the function a(p) can be 
mapped into p(a) in the same way. This can be made by setting η/m = β/n and realizing 
that then a1; p1; a2 and p2 fulfill: 
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and, by using Eq.(7), both remain related as 
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These equations indicate that if both distributions are plotted as usual in a log-log plot 
(using in each case the appropriate independent variable), they show the same slope, thus 
approaching a power law with the same exponent ν.  According to the above equations both 
curves can be made to collapse into each other. This requires stretching the x-axis of one of 
the degree distributions by a factor equal to the ratio of the two dimensions of the adjacency 
matrix (as suggested by Eq. (7)), and dividing the resulting distribution by the square of the 
same factor as indicated in Eq. (10). This mapping is exactly fulfilled by the analytic curves 
but is only approximately fulfilled by the empirical data. In Fig. 4 we show the 
experimental degree distributions of rows and columns of the Robertson (1929) matrix 
together with the distributions obtained from the derivatives of the IPN. The minor 
departures between the empirical data and the theoretical curves may arise from the fact 
that the real system does not correspond to a perfectly nested bipartite network. The 
agreement should improve for systems with a greater nestedness. 
 
In the right panel we show how the two degree distributions collapse into each other after 
the renormalization of the column data following the calculations explained above. The two 
analytic curves are exactly superimposed. The empirical data of rows and columns show 
similar slopes as predicted by the theory. Despite the fact that both degree distributions 
show sizable fluctuations for large degrees, they are quite consistent with each other once 
the renormalization procedure is carried out. 
 
The exponent ν of the power law associated with the degree distributions can also be 
discussed with the aid of Eqs. (2) through (6). In the limit a/n → 0 the degree distribution 
approaches the power law (a/n) -µ/(µ+1). On the other hand from Eq. (6) it follows that µ is 
the positive root of the equation 1 = φ(µ + 1)(µ + 2) . We therefore conclude that  
ν = - µ/(µ+1) is a function of the probability of contacts between mutualist counterparts and 
is therefore independent of the number of species involved in the system. 
If expanded for small values of φ then ν = -1- φ  + O(φ). 
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3. A model for mutualist bipartite networks 
 
The two distinct features of mutualist networks, namely their nestedness and the truncated 
power law for the degree distributions, have been hitherto considered in the literature to be 
independent features. We have shown that as long as a nested distribution of contacts is one 
that approaches the IPN, they are actually two ways of looking at the same structure and 
they therefore should not be considered unrelated. In fact both are intimately related and the 
same biological arguments should be applied to understanding both features. 
 

3.1 The Self-organizing Network Model (SNM) 
 

We now turn to considering the biological mechanisms that may cause a mutualistic system 
to approach the nested pattern of contacts that we have just discussed. From the point of 
view of the theory of complex systems (Bar-Yam, 1997) a proper understanding can be 
achieved if the global features of a system can be explained in terms of a minimal set of 
microscopic interactions among its constituents. The model that we present below has 
precisely the aim of accounting for the main features of mutualist networks in terms of the 
structure of interactions between species. The SNM has to meet several basic requirements. 
In the first place it should represent a gradual ordering process so as to describe the 
partially ordered situations that are found in real world mutualist systems. Secondly it 
should produce data amenable to the same calculations that are used to study such systems, 
namely to determine its temperature (Atmar and Patterson 1995) or its cumulative degree 
distributions. Finally the rules applied for the gradual ordering of the system must approach 
asymptotically to a perfectly nested organization. If this is achieved a side benefit of the 
model would be its use as a benchmark to test other hypotheses that have been suggested to 
play a relevant role in the organization of mutualistic webs, e.g. the presence of forbidden 
links (FL).  
 
Concept and aim. The SNM is an iterative procedure in which the only inputs are the two 
dimensions of the adjacency matrix (i.e. the number of plants and flower visitors) and the 
total number of contacts. The model is inspired in evolutionary computational techniques in 
which species are assumed to change progressively the pattern of contacts. At the start, 
contacts are randomly distributed among mutualists, as if all information on network wiring 
had been suddenly lost in a real-world mutualistic web. During the subsequent iterative 
procedure the SNM reconstructs the web structure by applying a simple rule. 
 
Assumptions.  The following assumptions are made: (1) In order to facilitate the 
comparison with real systems, the initial number of species and interactions is kept fixed; 
i.e. no extinctions among species are allowed, and interactions are allowed only to 
reallocate between species. (2) The proportion of FL, i.e. impossible interactions, such as 
those caused by morphological or phenological barriers, does not change with time. 
 
Basic operation. Initially FLs are randomly assigned to fixed positions in the matrix, and 
the interactions are randomly distributed in adjacency matrix, with the only restriction that 
all mutualists have at least one interaction. Interactions and no-interactions among species 
are coded respectively with a 1 and a 0. In each iteration of the SNM the following two 
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steps are alternatively applied to the rows and columns of the adjacency matrix: (a) two 
sites of a column (row) - species respectively having a 1 and a 0 are randomly selected, (b) 
the 1 is swapped with the 0 if a specified acceptance rule it satisfied (see below), otherwise 
the swap is rejected.  
Swap acceptance rule. The swap is only accepted if it satisfies three conditions: (i) The 
degree of the new partner is higher than that of the previous partner. This rule favors the 
allocation of interactions to already well-connected species, i.e., it encourages interaction 
with generalists, (ii) The swap can not take place if any species loses its last interactioni.e. 
if there is an extinction. (iii) The swapped interaction can not be allocated to a FL position. 
This swap acceptance criterion may be regarded as a modification of the usual rule of 
preferential attachment (see below). 
 
Stopping criteria. We have used two criteria to stop iterating the model. The first one 
involves a comparison between the level of nestedness of the model and that of some real-
world web. A useful measure of nestedness is the above-discussed Atmar and Patterson 
(1993) ‘temperature’. Temperature provides an estimate of the degree of disorder of the 
matrix or, equivalently, its departure from the maximum possible nestedness. We calculated 
it at selected stages of any run of the SNM using the Nestedness Calculator (Atmar and 
Patterson, 1995) (see Bascompte and Jordano, 2005 and Jordano et al., 2006) for a similar 
application). Whenever the temperature of the model (Tm) closely matches that of the real 
system (Tr), the simulation ends. The second stopping criterion focuses on degree 
distributions: the simulation ends whenever a good qualitative ‘match’ between the degree 
distributions of the SNM run and of the real web is obtained. 
 
Biological plausibility. The reallocation of contacts promotes the interaction with 
generalists. Such change can be assumed to simulate either the adaptation or the 
replacement of an existing species by another one that makes a more efficient use of the 
available contacts. Although this change entails increased competition, the interaction with 
a ‘popular’ mutualist may be preferable for two reasons: a generalist species offers 
‘guaranteed’ efficacy (were this not the case, it would not have so many partners), and it is 
dependable in the long run (having many mutualists, its own survival is assured). Running 
the SNM using a contrary rule (i.e. swapping the available contact with a partner species 
having a lesser degree, an alternative that minimizes competition with other species of the 
same guild), results in all species tending to share evenly all the available contacts (results 
not shown). In a sense, one could say that all species tend to become equally specialized 
because all tend to have the same number of counterparts. 
 
SNM and preferential attachment. The swap acceptance criterion used in the iterative 
procedure favors the progressive allocation of interactions with already well-connected 
species and also species of a each guild tend to become generalists by acquiring the largest 
possible number of available contacts. From this point of view this criterion is reminiscent 
of preferential attachment. Barabási and Albert (1999) introduced a stochastic growth 
model, in which new nodes are added continuously and attach themselves to existing nodes, 
with probability proportional to the degree of the target node (known as ‘preferential 
attachment rule’). At variance with this model, in the SNM the topology of a non-growing 
network with a fixed number of nodes is progressively reshaped: in each iteration a 
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connection between two nodes of a different kind is rewired to favor a contact with a more 
connected node.  
 

3.2 Consistency of the SNM with perfect nestedness 
 

We first checked the consistency of the SNM with the theoretical IPN. In Fig. 5 we show 
the frequency distributions of the degree of animal species of the Kato et al. (1990) system 
in three stages of the SNM with no FL and using the swapping criterion that promotes 
increasing generalization. Notice that an approximate TPL develops without the need of 
introducing FL. For comparison we also show in the inset of Fig. 1 the same frequency 
distributions for the same system but arising when the alternative swap criterion promoting 
interactions with lower-degree mutualists (increasing specialization). The frequency 
distribution of contacts is seen to approach the unrealistic situation in which all species tend 
to have the same number of contacts. 
 
A further check is made in Fig. 6 in which the internal ordering of the system is gauged 
using the change in the temperature parameter Tm  with an increasing number of iterations 
of the SNM in which the swapping criterion promoting generalization is used. Tm  is seen to 
tend to 0, proving that the SNM converges to an IPN that is indistinguishable from that of 
Atmar and Partterson (1995) . In the case in which the alternative swapping criterion is 
used, Tm  tends to grow (data not shown), and therefore a nested matrix is never 
approached.  
 
The gradual changes in the adjacency matrix of the network of the same system are shown 
in Fig. 7 in several snapshots of the gradual reordering produced by the SNM. The rows 
and columns of the adjacency matrix  are ordered from left to right and from bottom to top 
in a decreasing number of contacts (rows and columns with equal number of contacts are 
randomly ordered). The stages of ordering are identified with the same letters that appear in 
Fig. 2. The experimental adjacency matrix is also compared with an intermediate stage of 
the SNM. The asymptotic “perfect” ordering that is reached after a very large number of 
iterations is also shown.  
 

3.3 A comparison with real world systems 
 
The quality of the model is tested against five real-world pollination networks, which span 
the full size range known for this type of webs (Table 1). This comparison can easily be 
made because the proportion of FL and the total number of iterations are the only free 
parameters of the model. In all cases, the SNM yields degree distributions and levels of 
nestedness that agree with the experimental observations. 
 
Theoretical and experimental cumulative degree distributions are shown in Fig. 4. For 
simplicity, given that the analyses based on plants yielded similar results, we only show 
degree distributions of animals (corresponding to columns of the adjacency matrix). In all 
cases a highly satisfactory agreement is found. The two smaller real systems (Dupont et al., 
2003; Devoto et al., 2005) approximately fit an exponential distribution. For the three larger 
systems (Kato et al., 1990; Clements and Long, 1923; and Robertson, 1929) the SNM 
generates degree distributions which approach TPLs. 
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A good agreement is found using either stopping criteria for the SNM. The temperature is a 
statistical parameter that is less stringent than a direct comparison of the degree distribution 
curves. Therefore it should not be surprising to find SNM stages with  different degree 
distributions to have the same temperature. Likewise, with the nestedness stopping 
criterion, the experimental power-law portions of the distributions are consistently larger 
than the theoretical ones (Fig. 4), indicating that for Tr ≈ Tm the SNM provides less nested 
systems. The use of the second stopping criterion improves considerably the fit of the 
degree distributions (see Table 1).  
 
Remarkably, the behavior of the SNM model does not change essentially when the 
proportion of FL changes. Approximate TPL distributions are found even in the absence of 
FL. If the proportion of FL is increased the only effect is to reduce the speed of the self 
organization process. In the limit in which the proportion of FL is very large the network 
hardly evolves as there are practically no available pairs to swap and so the degree 
distribution does not develop TPL features. On the other hand nestedness is not affected by 
the presence of an intermediate proportion of FL, the only change being the length of the 
power law regime. In the panel devoted to the Kato et al. (1990) system in Fig. 4 we 
compare the results obtained with 0% and 80% of FL. In the latter case the number of 
iterations (greater than 500,000) is large enough to reach the asymptotically ordered state. 
These figures indicate that for a broad range of proportions of FL, the results are the same 
as running the SNM without FL and a smaller number of iterations. 
 
4. Discussion and conclusions 
 
We investigated the IPN and showed some examples from real systems. We proved that the 
cumulative degree distributions provide a direct measure of such a curve when they are not 
normalized as they usully are when presented in the literature. The degree distributions for 
rows and columns can therefore be related to the derivatives of the IPN. We also proved 
that the degree  distributions of a same adjacency matrix are closely related to each other. 
In fact a very simple geometric trick can be used to map one set of data onto the other, thus 
providing a check for the consistency of empirical observations. 
 
We also proved mathematically that for a perfectly nested organization, both the degree 
distributions and the IPN approach a truncated power law. In addition, the power law 
exponent can be obtained in this limit and we proved that it depends only on the probability 
of contacts between the mutualist partners. This is a universal property that allows a direct 
comparison between different systems. These considerations help to understand the widely 
observed truncation of the power law adjusting the degree distribution. However, these 
proofs largely depend on the assumption of large systems. Real mutualist networks are 
rather small and most statistical features remain obscured by this fact. Empirically observed 
distributions that are usually claimed to be adjusted by a power law hardly contain more 
than a few tens of species before truncation becomes a dominant feature. Under these 
conditions, truncation may be the result, among other possible factors, of finite size effects. 
 
We have next introduced a SNM that explains the nested organization pattern in terms of 
the kind of interaction between the mutualist partners. On the one hand, using the SNM we 
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were able to generate networks that fit very well the degree distribution and level of 
nestedness that are observed in systems of the most diverse sizes. On the other hand, the 
SNM is fully consistent with theoretical patterns of perfect nested order that have been 
previously introduced, thus providing a plausible biological explanation for this widely 
observed property. We believe we have made progress in understanding the interaction 
behavior of mutualist species by identifying the relevant element primarily responsible for 
the global organization of the network. 
 
Several aspects of the SNM deserve commentary: first, we have shown that contacting 
preferentially to already highly connected partners drives the system towards a nested 
organization. This feature reminds the rule of preferential attachment that has a widespread 
application in network theory. However, that model can not be applied to the case of 
mutualist networks without strong conceptual changes. The SNM could be regarded as the 
closest one can get to preferential attachment whe modelling a bipartite network with 
constant number of nodes and links. 
 
Secondly, as the model assigns all species an equal opportunity to interact, the fact that a 
given species accumulates many interactions is not a consequence of its being more 
abundant and/or more frequently interacting than other species in the system, but of the 
self-organization process itself. 
 
Thirdly, a better match of the degree distributions requires that the SNM be iterated beyond 
the point where Tr ≈ Tm at least for larger systems. Although variants of the SNM could 
perhaps be developed to correct this, it is important to bear in mind that nestedness being a 
statistical feature of the system, in general one can not expect to measure it with a single 
parameter such as Tm. This is essentially the second moment of the statistical distribution of 
contacts with respect to the IPN and one should therefore expect that different distributions 
may be associated with the same temperature. 
 
Fourthly, the SNM is robust against the introduction of FL. An important consequence is 
that, even if FL were present in very high density, this should not be an obstacle for the 
development of nestedness. On the other hand, truncated degree distributions emerge also 
in the absence of FL. Therefore the results of the SNM suggest that the presence or absence 
of FL in a real mutualistic network cannot be established from the observation of the  
statistical features of the web. 
 
In conclusion, given the number of plants, animals, and interactions, the model generates a 
highly realistic pattern of interactions. It shows in which proportion species will behave as 
extreme generalists, moderate generalists, and extreme specialists. Many biological factors 
are probably involved in the establishment of every particular interaction in each real-world 
web, and this complexity cannot be accounted for by a model primarily designed  to 
elucidate network structure. Admittedly, the model makes thus no statement about which 
particular species will adopt which role. Explaining the interaction behavior of individual 
species certainly calls for a much more elaborate model and for the inclusion of additional 
parameters. Interestingly, one such possible factor (species’ frequency of interaction) has 
been shown to be strongly and positively associated to species degree (Vázquez and Aizen, 
2006) which suggests that locally abundant species are prone to accumulate interactions 
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(and rare species, conversely; Stang et. al., 2006), thus being the ‘natural candidates’ to 
become the generalists (specialists) in the system. However, since the SNM generates a 
realistic distribution of species degree under no assumptions on species abundance, the 
reverse interpretation is also possible, i.e., that accumulation of interactions occurs first, 
and that the resulting higher reproductive success leads later to local abundance. 
 
Plant-pollinator and plant-disperser networks are complex systems whose structure we are 
still beginning to understand. Different modelling approaches (e.g. based on some set of 
individual encounter rules and data on local abundance of mutualist species) seem worth 
exploring and would perhaps be complementary to the present contribution. 
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TABLE 1. Main attributes of the five real pollination networks whose parameters were used as 
input for modelling. 
 
 Dupont et al. 

(2003) 
Devoto et al. 
(2005) 

Clements & 
Long  (1923) 

Kato et al. 
(1990) 

Robertson 
(1929) 

Nr. of plant 
species (P) 

11 29 96 91 456 

Nr. of animal 
species (A) 

38 101 275 679 1428 

Nr. of 
interactions (I) 

106 146 923 1206 15254 

Connectance  
[=I/P*A] 

0.253 0.049 0.034 0.019 0.023 

Tr 33.89 5.56 2.41 0.95 0.79 
Tm 32.2 5.28 2.41 0.95 0.78 
Nr. of iterations 
for a Tm ≈ Tr 
(FL=0) 

60 600 2,200 6,700 72,000 

Nr. of iterations 
for a better fit 
(FL=0) 

60 600 10,000 20,000 400,000 

Nr. of iterations 
for a Tm ≈ 0 
(FL=0) 

2,000 30,000 50,000 150,000 750,000 

 
 
Captions to figures 
FIG. 1: A matrix of n columns and m rows is shown together with the IPN that corresponds to a 
probability of contact φ between the two mutualistic species. The area limited by each branch of the 
curve is nmφ/2 and it is the same as either of that the two triangles T1 ≡OUW1 and T2 ≡OUW2. The 
IPN is a smooth distortion of the two straight lines UW1 and UW2. The segment d is parallel to the 
diagonal of the matrix and indicates the way in which the distance of any point of the straight lines 
to the sides of the matrix is measured. 
 
FIG. 2: Example of an IPN for an arbitrary adjacency matrix of 1500 animal species (columns) and 
500 plant species (rows) and φ = 0.2. The shaded area with lines from top right to bottom left 
indicates the number of animal species with degree po or more and the shaded area with lines top 
left to bottom right indicates the number of plant species with degree ao or more. A discrete stair-
like approximation with steps of constant width ∆a is included in order to obtain the degree 
distribution of the animal species (columns). 
 
FIG. 3: Experimental data of the two possible cumulative degree distributions for animal species 
(circles) and plant species (black triangles) for the system described in Robertson (1929), involving 
1428 animals and 456 plants with φ  = .023. The continuous curve is the IPN obtained with the 
analytic expressions reported above. The endpoints of the cumulative degree distributions are 
indicated by arrows. Since both distributions are referred respectively to the horizontal and vertical 
axis, circles should be read from right to left, and triangles from top to bottom. 
 
FIG. 4: Left panel: The empirical degree distributions for rows (open squares) and columns (filled 
triangles) for the adjacency matrix of the Robertson (1929) system, are shown together with the 
corresponding distributions derived from the IPN (rows: continuous line; columns: dashed line) for 
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a matrix with the same dimensions and probability of contact φ  than those empirically observed. 
Right panel: The same as in the left panel but with the data for columns renormalized using the 
procedure given in the text. 
 
Fig. 5. Degree distributions of animal species of the Kato et al. (1990) system in three stages of the 
SNM with no FL (stars: after 1 iteration; triangles, after 10,000 iterations; open circles, after 
100,000 iterations). Inset: same with an alternative swap criterion promoting interactions with 
lower-degree mutualist; All the distributions shown are the average over 100 realizations of the 
SNM. 
 
Fig 6. Change of Tm, with the number of iterations of the SNM for the Kato et al. (1990) system. 
The letters indicate the corresponding adjacency matrices shown in the panels of Fig. 7. 
 
Fig 7. Changes in the adjacency matrix of the pollination network of the Kato et al. (1990) system 
in several stages of the SNM. Contacts between species are shown as black pixels. Panel A, 
iteration 100 (Tm=9.3); panel B, iteration 1000 (Tm =5.42); panel C, iteration 6665 (Tm = Tr = 0.95); 
panel E, iteration10,000 (Tm =0.6) (the corresponding degree distribution is shown as triangles in 
Fig 5); panel F, iteration 100,000 (Tm =0.02) (the corresponding degree distribution is shown as 
open circles in Fig 1). The experimentally observed distribution of contacts is shown in panel D. 
 
Fig 8. Cumulative and normalized degree distributions of the animal mutualists of five real 
pollination networks (open circles). The corresponding distributions obtained with the SNM when 
Tm ≈ Tr are shown with filled squares. A better fit is obtained for the three larger systems when the 
SNM is run for a larger number of iterations and Tm is allowed to drop below Tr (theoretical 
distributions are shown with crosses). The number of iterations for each case is given in Table 1. 
The effect of introducing FL is shown in the panel for the Kato et al. (1990) system as a continuous 
line. In this case the degree distribution is the asymptotic one with a proportion of 80% of FL. In all 
cases the distributions that are shown are averages of 100 realizations. 
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