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Abstract: In forest genetics, restricted maximum likelihood (REML) estimation of (co)variance components from nor-
mal multiple-trait individual-tree models is affected by the absence of observations in any trait and individual. Missing
records affect the form of the distribution of REML estimates of genetics parameters, or of functions of them, and the
estimating equations are computationally involved when several traits are analysed. An alternative to REML estimation
is a fully Bayesian approach through Markov chain Monte Carlo. The present research describes the use of the full
conjugate Gibbs algorithm proposed by Cantet et al. (R.J.C. Cantet, A.N. Birchmeier, and J.P. Steibel. 2004. Genet.
Sel. Evol. 36: 49–64) to estimate (co)variance components in multiple-trait individual-tree models. This algorithm con-
verges faster to the marginal posterior densities of the parameters than regular data augmentation from multivariate nor-
mal data with missing records. An expression to calculate the deviance information criterion for the selection of linear
parameters in normal multiple-trait models is also given. The developments are illustrated by means of data from dif-
ferent crosses of two species of Pinus.

Résumé : En génétique forestière, la méthode d’estimation par le maximum de vraisemblance restreinte (REML) des
composantes de la variance et de la covariance à partir de modèles normaux à caractères multiples d’arbres individuels
est influencée par les observations manquantes pour un caractère ou un individu. Les données manquantes influencent
la forme de la distribution des estimations par REML des paramètres génétiques ou des fonctions mathématiques qui
les représentent. De plus, les équations d’estimation sont aussi impliquées dans le calcul lorsque plusieurs caractères
sont analysés. Une approche bayésienne complète recourrant aux méthodes de Monte Carlo par chaînes de Markov
constitue une alternative à la méthode d’estimation par REML. Les auteurs décrivent une utilisation de l’algorithme de
Gibbs dans sa version complètement conjuguée, tel que Cantet et al. (R.J.C. Cantet, A.N. Birchmeier et J.P. Steibel.
2004. Genet. Sel. Evol. 36 : 49–64) l’ont proposé, pour estimer les composantes de la variance et de la covariance
pour des modèles à caractères multiples d’arbres individuels. Cet algorithme converge plus rapidement vers les densités
marginales a posteriori des paramètres que la méthode traditionnelle d’augmentation des données à partir des données
normales multivariées comprenant les observations manquantes. Les auteurs fournissent également une équation permet-
tant de calculer le critère d’information de la déviance pour la sélection des paramètres linéaires dans les modèles nor-
maux à caractères multiples. Les développements mathématiques sont illustrés à partir des données provenant de
différents croisements chez deux espèces du genre Pinus.

[Traduit par la Rédaction] Cappa and Cantet 1285

Introduction

Genetic evaluation in forest trees is usually performed
with data from progeny tests on full or half-sib families. The
individual-tree mixed model, introduced in forest genetics
by Borralho (1995), appropriately takes into account additive
relationships, especially for multiple-trait data where
(co)variance components are the parameters to estimate. Re-

stricted maximum likelihood (REML; Patterson and Thomp-
son 1971) is frequently employed by forest breeders (e.g.,
Huber et al. 1994; Dieters et al. 1995) to estimate those pa-
rameters. From a Bayesian standpoint, REML is seen as the
mode of a joint posterior distribution of all (co)variance
components, with noninformative prior densities, once the
fixed effects are marginalized by translation invariance func-
tions of the data (Harville 1974). However, there may be dif-
ferences between estimates obtained from joint or marginal
modes if the model contains several parameters and the
amount of information present in the data differs among pa-
rameters (Sorensen and Gianola 2002). In addition, REML
relies on asymptotic theory to obtain a measure of the preci-
sion of the estimates, since the estimating equations have to
be solved iteratively so that sampling distributions of the es-
timators are impossible to obtain. An alternative to REML
estimation is a full Bayesian approach through Markov
chain Monte Carlo (MCMC) methods.

During the last decade, the contribution of Bayesian the-
ory to statistical analyses in most scientific fields has in-
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creased tremendously because of the feasibility of doing
posterior inference by means of MCMC algorithms. These
methods allow marginal inferences on each individual pa-
rameter and produce measures of precision of the estimators
through posterior variances or posterior standard errors
(Sorensen and Gianola 2002). In addition, the distributions
of complex, meaningful genetic parameters, such as heri-
tabilities and genetic correlations, which are functions of the
(co)variance components, are obtained as byproducts of the
MCMC sampling scheme. Note that in multiple-trait models
with additive relationship matrices and several additive and
environmental covariance components, there is no
frequentist counterpart to a posterior distribution: there are
no small sampling distributions for (co)variance parameters
(or functions of them). After the lead of D. Gianola and co-
workers, animal breeders have used MCMC techniques such
as the Gibbs sampling to estimate (co)variance components
since 1994 (Sorensen et al. 1994; Wang et al. 1994). More
recently, forest geneticists have become acquainted with
Bayesian inference using MCMC algorithms (Soria et al.
1998; Gwaze and Woolliams 2001; Zeng et al. 2004). Soria
et al. (1998) applied Gibbs sampling to the genetic analysis
of growth from 260 families of Eucalyptus globulus and lo-
cal genetic material using two-trait individual-tree models.
Gwaze and Woolliams (2001) employed Gibbs sampling for
a decision-making process on the choice of site for locating
progeny tests. Finally, Zeng et al. (2004) used a Gibbs block
sampler to make inferences about major genes and poly-
genic effects in a population derived from a half-diallel mat-
ing design.

Frequently, multiple-trait estimation of genetic parameters
in forest genetics is affected by missing observations due
death or damage of trees or practical and technical problems
of data recollection. Cost considerations or operational prob-
lems with measuring certain characteristics result in a fewer
number of records for those traits. Examples of expensive
traits are those related to wood quality (Apiolaza et al. 1999)
or to “branching” (Shepherd et al. 2002). An example of an
operational problem that results in fewer records is the re-
port of Dungey (2000), in which height measures were taken
only in the first two trees from each plot. The statistical ap-
proach commonly used for analysing multiple-trait models is
the “missing data” theory, as long as the subsampling in-
duces a “missing at random” process (Rubin 1976). The esti-
mation of heritabilities and genetic correlations in multiple-
trait models with missing or subsampled data is a complex
statistical problem, even for Bayesian methods using MCMC
techniques. Thus, the data augmentation algorithm first em-
ployed by Van Tassell and Van Vleck (1996) tends to be
very slow to converge because of the MCMC chain being
strongly autocorrelated. The reason for this correlation is
that the sampling of the “missing data” (error terms for non-
observed data) and of the (co)variance components depend
on each other. To lessen the effect of this correlation, Cantet
et al. (2004) proposed an MCMC method for estimating
covariance matrices of error effects in multiple-trait normal
models: the full conjugate Gibbs (FCG) algorithm. This
method reaches faster convergence than do the data augmen-
tation procedures of Van Tassell and Van Vleck (1996) by
reducing the correlation between sampled missing errors and
their covariance matrix. This is achieved by sampling miss-

ing patterns rather than individual missing errors, as will be
explained in the next section.

Although in individual-tree models the genetic random ef-
fects are well defined, there may be competing classification
effects and covariates (either fixed or random) that can pro-
vide adequate fit. Therefore, a model selection process is
necessary prior to predicting breeding values. For example,
when analysing data from purebred and crossbred progeny,
the model equation may include terms for mean additive
(A), dominance (D), and epistatic (A × A, A × D, D × D)
effects (Hill 1982). These parameters are estimated as
covariates from the data, and each genotype is a linear com-
bination of them. Also, there may be different ways to block
the data or different environmental covariates to include in
the model. Spiegelhalter et al. (2002) proposed a Bayesian
statistic for model selection that is viewed as the counterpart
of the Akaike information criterion: the deviance informa-
tion criterion (DIC). The DIC is composed of a measure of
total fit and a penalization of the complexity of the model.

The goal of this paper is twofold: (1) to apply the FCG
algorithm proposed by Cantet et al. (2004) to estimate
(co)variance components, or functions of them, from
multiple-trait individual-tree models with missing records;
(2) to obtain an expression to calculate DIC for model selec-
tion in multiple-trait individual-tree models. Developments
are illustrated by means of data from different crosses of
Pinus elliottii var. elliottii Engelm. (E) and Pinus caribaea
var. hondurensis (Sénécl) Barrett et Golfari (H).

FCG sampling

Statistical model
Suppose data are collected on q trees scored for r continu-

ous traits and, although desirable, not all individuals have
measures in all traits. Individual trees are arranged in groups
such that each group has a different mean. By group we
mean environmental systematic effects, such as blocks
nested within trials, or trials, or any other blocking effect.
Let the subscript j index the traits (j = 1, 2, …, r), i the trees
(i = 1, 2, …, q), and l the groups (l = 1, 2, …, g). Let yijl and
aijl be the phenotype and the breeding value, respectively, of
individual i for trait j, scored in group l. A mixed model to
analyze the data is

[1] yijl = X ij′ �j + aijl + eijl

where �j is a p × 1 vector of parameters related to trait j and
involving the means of the groups, Xij is a column vector
that relates yijl to the elements of � j , and eijl is the error
term. The data are ordered such that traits are nested within
trees. Thus, by letting y = [y11l, y12l, …, yqrl], we can write
the following multiple-trait individual-tree model:
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or more compactly as

[3] y a e= + +X Z�
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Regardless of whether an individual has measures on all r
traits, the breeding values of all individuals for all traits are
included in [a1′|…| ar′] = a. This vector has zero expectation
and a covariance matrix equal to
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where gjj ′ is the additive genetic covariance between traits j
and j′ if j ≠ j′ and the additive variance of trait j otherwise.
The square matrix A is of order q × q and contains the addi-
tive relationships (Henderson 1984) among all trees: parents
without records plus offspring with data in y.

For any given tree, missing records on one or more traits
induce a pattern of missing data that affects the distribution
of the error terms. To define this distribution, order the data
by trait within tree. This allows missing data patterns to be
accommodated by an indicator matrix Mk (Dominici et al.
2000; Cantet et al. 2004) having rk rows and r columns, with
k = 1, 2, …, K, where K is the number of patterns of missing
data in the data set. For example, suppose r = 3. Then, the
data from trees with all traits recorded is represented as
Mk = Ir , but if the recorded traits are just 1 and 3, we have

Mk =
1 0 0

0 0 1

⎡

⎣
⎢

⎤

⎦
⎥. It will be assumed that the complete pattern

is observed in at least r trees, and nk denotes the number of
trees with records in pattern k. To obtain a matrix formula-
tion of the distribution of e, the error terms are ordered
within the pattern, so that the final order is traits within tree
within pattern of missing data. Then, the expected value of e
is zero and its covariance matrix is equal to
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In [5], R0 = [rjj ′], where rjj ′ is the environmental (co)variance
between traits j and j′. Vectors a and e are independent and
normally distributed.

The parameters of the covariance matrix of y are the
elements of the covariance matrices G0 and R0 of additive
genetic and error effects, respectively. These dispersion pa-
rameters are estimated by a Bayesian approach using the
FCG algorithm proposed by Dominici et al. (2000), which
was adapted to a multiple-trait setting by Cantet et al.
(2004). The algorithm can handle different patterns of ob-
served and “missing” traits more efficiently than can “data
augmentation” (Van Tassell and Van Vleck 1996). We now
describe the priors for all parameters and the likelihood of
the data, and then explain the FCG algorithm for multiple
traits. In doing so, we follow closely Cantet et al. (2004).

Specification of prior distributions and likelihood
In a conjugate approach the prior densities for all parame-

ters are chosen to be closed under sampling (Robert and
Casella 1999, p. 31), which means that both the prior and
posterior densities belong to the same family of distribu-
tions. To reflect a prior state of uncertainty for the fixed ef-
fects in a mixed linear model, while keeping the posterior
distribution proper (Hobert and Casella 1996), β is taken to
be � ~ Np (0, K), where p is the number of fixed effects. The
matrix K is diagonal, with large elements (kii > 108; Cantet
et al. 2004), and the prior density of � is then proportional to
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The vector of breeding values is distributed a priori as a ~
Nrq (0, G0 ⊗ A) (see [13.38] in Sorensen and Gianola 2002,
p. 578), so that
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A priori the additive (co)variance matrix G0 follows an in-
verted Wishart density G0 ~ IW (G 0*, nA), where G 0* is the
hypercovariance and nA is the degrees of belief (Sorensen
and Gianola 2002, page 57) so that

[8] p n A( *, )G G0 0
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The covariance matrix for the error terms also follows an
inverted Wishart prior: R0 ~ IW (R 0*, vk). The hyperpara-
meters are the hypercovariance matrix R 0

* and the degrees of
belief for the kth pattern vk. To account for the patterns of
missing data, the prior density depends on M1, M2, …, MK
such that it is written as
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In the Bayesian view of the mixed linear model (Sorensen
and Gianola 2002) the likelihood of the data is proportional
to

[10] p ( | , , |y a� R R) |∝
−1

2

× − − − ′ − −⎡
⎣⎢

⎤
⎦⎥

−exp ( ) ( )
1
2

1y a y aX Z R X Z� �

Joint and conditional posterior densities
The joint posterior density, that is, the density of the pa-

rameters given the data and the prior information, is written
as the product of the likelihood function [10] and the prior
distributions [6], [7], [8], and [9], which results in:
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To take advantage of all information in the data about any
parameter, inferences about �, a, G0, and R0 are based on
their respective marginal posterior densities. A useful prop-
erty of these marginal distributions is their lack of depend-
ence upon any particular value of the other parameters.
Thus, each marginal density is obtained by integrating out
the joint distribution [11] with respect to the parameters
other than the one of interest. This is accomplished by using
the MCMC procedure known as Gibbs sampling while tak-
ing advantage of the marginal conditional densities resulting
from [10] that are feasible for sampling. For the multiple-
trait model with individual additive effects, these conditional
densities were obtained by Van Tassell and Van Vleck
(1996), Sorensen and Gianola (2002), and Cantet et al.
(2004). Thus, for the linear parameters in � and a the poste-
rior conditional density is equal to
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The vectors �� and �a in [12] are the solutions to the follow-
ing system of equations:
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The coefficient matrix in [13] is symmetric, so that the
L–D–L′ decomposition (Golub and Van Loan 1983; p. 82)
for sparse systems with the aid of special interface subrou-
tines (Kincaid et al. 1982) was used to obtain solutions.

The posterior conditional density of the covariance matrix G0
is an inverted Wishart distribution, with scaling matrix G 0* +
S and degrees of belief equal to nA + q + r + 1:

[14] p
n q rA

( | , , , | |
( )

G R G0 0 0

1

2y a� ∝
− + + +

× − +⎧
⎨
⎩

⎫
⎬
⎭

−exp * ) ]
1
2

0 0
1tr [(G S G

where S is defined as

[15] S

A A A

A A A
=

′ ′ ⋅ ⋅ ′
′ ′ ⋅ ⋅ ′

− − −

− −
a a a a a a

a a a a a
1

1
1

1
1

1

2
1

2
1

2

1 2

1 2

r
−

−

− − −

⋅ ′ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

′ ′ ⋅ ⋅ ′

⎡

⎣

⎢
⎢
⎢

1

1

1 1 1

a

a a

a a a a a a

r

i j

r r r

A

A A A1 2 r

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Finally, the marginal posterior conditional density of R0
was obtained by Cantet et al. (2004), and it is also an in-
verted Wishart distribution:
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Matrix Ek for pattern k is r × r, and its elements are equal
to e( )k i′ e(k)j, that is, inner products between the error vectors
for traits i and j in pattern k. As an example, suppose three
traits are studied. Let pattern k = 1 be the complete one,
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whereas in pattern k = 2 only traits 1 and 3 are recorded.
Then, matrices E1 and E2 are, respectively,
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The missing elements within each pattern (for example
the zeros in E2) are sampled using properties of the inverted
Wishart distribution (Cantet et al. 2004).

Sampling scheme from the FCG algorithm
Cantet at al. (2004) implemented the sampling scheme for

the FCG algorithm in a multiple-trait model as follows:
(1) Build and solve [13];
(2) Sample � and a from [12];
(3) Calculate the residuals: e = y – X� – Za;
(4) Sample the unconditional variance matrices among the

missing traits in each pattern (zero elements of the Ek
matrices) and add them up to calculate the hyper-
covariance matrix for R0, as described by Cantet et al.
(2004) in detail;

(5) Sample R0 from [16];
(6) Calculate S in [15];
(7) Sample G0 from [14], and go back to step 1.

Model comparison using the DIC

In the previous section, Bayesian estimation in a multiple-
trait individual-tree model via the FCG algorithm is pre-
sented conditional on a particular model M. However, there
may be several competitive mixed models to be used in the
analysis. The issue is especially relevant when analyzing
data from different genotypes and crosses and the researcher
is interested in testing the inclusion of mean dominance, or
mean additive × additive effects, or both. In this section, we
adapt the Bayesian method of DIC comparison (Spiegel-
halter et al. 2002), to multiple-trait genetic-tree models with

missing data. All calculations are obtained with little
numerical effort beyond that required to implement the FCG
algorithm. The DIC combines a measure of model fit (the
posterior mean deviance, D M( )� ) with a measure of model
complexity (the “effective number of parameters”, pD).
Models with more parameters display better fit, but at the
expense of adding complexity to the model. Similar to the
Akaike information criterion, the DIC penalizes the addi-
tional parameters that improve the fit while searching for a
more parsimonious model. Therefore, models having a
smaller DIC should be favored, as this indicates a better fit
and a lower degree of model complexity. On adding both
terms, DIC results in

[18] DIC D= +D pM( )�

To gain insight on the term related to model fit, let D(�M)
or the Bayesian deviance for model M be indexed by the
parametric vector �M

[19] D p fM M( ) log ( | ) log ( )� �= − +2 2y y

The expression –2log p ( | )y �M is the residual information
in the data vector y conditional on � and is interpreted as a
measure of uncertainty. The standardizing term f( )y does not
depend on �, so it does not affect model comparison. There-
fore, D M( )� , or the posterior expectation of the deviance, is
equal to

[20] D p pM M M M( ) log ( | ) ( |� � � �= − ∫2 y y, )dM

The effective number of parameters is defined as

[21] p D DM MD = −( ) ( )� �

where �M is an estimate of �M that depends on y, so that
D M( )� is the deviance evaluated at the posterior mean of �M.
It can also be viewed as the “degrees of freedom” of model
M (Spiegelhalter et al. 2002, p. 592). Using [21], the DIC in
[18] can be rewritten as

[22] DIC = + −D D DM M M( ) ( ) ( )� � �

so that

[23] DIC = −2D DM M( ) ( )� �

Expression [23] is used to calculate DIC in practice from
the chains of an MCMC algorithm such as FCG. First com-
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DBH Height

No. of observations No. of observations

Genotypea Trial 1 Trial 2 Total Mean SD Trial 1 Trial 2 Total Mean SD

E 15 48 63 18.51 3.45 15 47 62 11.04 2.30
F1: E × H 667 631 1298 22.88 4.60 666 615 1281 12.55 2.12
F1: H × E 15 0 15 22.65 4.15 14 0 14 11.08 3.30
BC(E) 13 46 59 21.70 3.44 13 42 55 11.24 3.23

BC(H) 37 43 80 22.01 4.33 37 38 75 11.70 3.67

F2 39 44 83 20.39 4.38 39 44 83 12.37 1.59
Total 786 812 1598 22.49 4.60 784 786 1570 12.57 2.31

aE, Pinus elliottii var. elliottii; H, Pinus caribaea var. hondurensis.

Table 1. Distribution of observations on each trial, total number of trees with records, and means and standard deviations (SD) for
each genotype and for both traits (DBH and height).



pute D(�M) at each FCG iteration, and then calculate both
D M( )� and D M( )� at the end of the chain. Let

� �′ = ′ ′⎡
⎣⎢

⎤
⎦⎥M M� a

then the deviance is

D p( log ( | , )� �) = −2 y R

= + + −N log( ) log | | (2π R Xy �

− ′ − −−Z R X Za y a) ( )1 �

where N is the total number of trees with at least one trait re-
corded. The quantity (y – X� – Za)′R–1(y – X� – Za) is a
weighted sum of squares for error terms, usually taken as a
measure of fit. Observe that the deviance decreases as the er-
ror sum of squares decreases. Equation A3 in the appendix
of Cantet et al. (2004) shows that

[24] ( ) (y a y a− − ′ − −−X Z R X Z� �1 ) =

tr
k

K

k k k
=

−∑ ′
1

0
1[( ) ]( )M R M E �

with matrix E(�)k as defined in [17]. The notation stresses the
dependence of the Ek’s on �. To obtain a workable expres-
sion for | |R in the deviance, take determinants in [5] to ob-
tain

[25] | | | | | |R I M R M M R M= ⊗ ′ = ′
= =
∏ ∏mk
k

K

k k
k

K

k k
nk

1
0

1
0

Now take the logarithm in [25]

[26] log | | log | |R M R M= ′
=
∑nk
k

K

k k
1

0

All in all, the deviance is

[27] D N nk
k

K

k k( ) log( ) log |� = + ′
=
∑2

1
0π | M R M

+ ′
=

−∑ tr
k

K

k k k
1

0
1[( ) ]( )M R M E �

D(�) is calculated and accumulated at each iteration and
averaged at the end of the MCMC chain to obtain D( )� . Also
at the end, D( )� is calculated as follows

[28] D N nk
k

K

k k( ) log( ) log |� = + ′
=
∑2

1
0π | M R M

+ ′
=

−∑ tr
k

K

k k k
1

0
1[( ) ]( )M R M E �

with the bars on top of R0 and E(�)k indicating the means.

A working example

Data
Data used in the study belong to the Forestry Research

and Experimentation Centre (Centro de Investigaciones y

Experiencias Forestales, CIEF), Buenos Aires, Argentina,
and were collected in the northeastern province of Corrientes.
The 1992 plantations reported here are part of a series of
collaborative trials between the Queensland Forest Service
and private firms in Argentina. Traits evaluated were diame-
ter at breast height (1.3 m, DBH, in cm) and total height
(Height, in m). The genotypes included in the study were
Pinus elliottii var. elliottii (E) and Pinus caribaea var.
hondurensis (H): (1) open-pollinated bulk of Pinus elliottii
var. elliottii (E), (2) F1 reciprocal crosses: E × H and H × E;
(3) the backcrosses E × F1 (BC(E)) and H × F1 (BC(H));
(4) F2 hybrid bulk (E × H) × (E × H). The design was a ran-
domized complete block. Table 1 displays the distribution of
records per trial, total number of trees with records, and the
means and the standard deviations for each genotype and for
both traits. The remaining families had unknown relation-
ships with other genotypes. The number of E, F2, BC(E), and
BC(H) families, taxa, and the relationships between the F1
and those genotypes were unknown. After including all
known genetic relationships, 1636 individual trees were used
in the analysis.

A previous analysis found no significant differences
among blocks in both trials and for the two traits. Therefore,
no effects of blocks were used in any analysis.

We had two patterns of observed and missing data: the
complete pattern (M1 = I2) and observations on DBH alone,

that is, M2
1 0

0 0
=
⎡

⎣
⎢

⎤

⎦
⎥ .

Candidate genetic model with different mean genetic
effects

As different genotypes and crosses were involved in the
analysis, it was necessary to test which genetic effects af-
fected DBH and Height, and the parameters defined by Hill
(1982) were used for that purpose. This parameterization
does not require that the materials be homozygous (Lynch
and Walsh 1998; page 208) and remains valid whatever the
values of the gene frequencies in the parental populations.
Moreover, the parameters defined by Hill (1982) are defined
even when the data structure is unbalanced (Cardoso and
Tempelman 2004). The parameters explain the performance
of different crosses as linear combinations of additive, domi-
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Genotype Mean ak dk akak akdk dkdk

Parental
H 1 1 –1 1 –1 1
E 1 –1 –1 1 1 1

F1
E × H 1 0 1 0 0 1
H × E 1 0 1 0 0 1

Backcross
H × (E × H) 1 0.5 0 0.25 0 0
E × (E × H) 1 –0.5 0 0.25 0 0

F2
(E × H) × (E × H) 1 0 0 0 0 0

Table 2. Coefficients of the parameters of Hill (1982) for the
genotypes present in the Pinus data set.
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nance, and all two-way epistatic interactions, weighted by
appropriate coefficients that depend on the cross. Parameters
are expressed as deviations from the F2, which is taken to be
the reference population. More formally, let pfk be the frac-
tion of the genes that descend from H in the father of geno-
type k, and let pmk be the fraction of H genes in the mother.
Using pfk and pmk Lynch (1991) calculated the coefficient
(ak) for the additive effect A of Hill (1982) as ak = pfk +
pmk – 1. Similarly, the coefficient for the dominance effect D
was obtained as dk = 2[pfk(1 – pmk) + pmk (1 – pfk)] – 1. To
exemplify, for the backcross that results from crossing H
(father) to an F1 (mother), the fractions are pfB = 1 and
pmB = 0.5. Then, aB = 0.5 and dB = 2[1(1 – 0.5) + 0.5(1 – 1)] –
1 = 0. The coefficients for the different parameters of the
Pinus genotypes are shown in Table 2.

Data were analyzed using a two-trait model (Henderson
and Quaas 1976) with the same model equation for both
traits:

[29] y a eijbl jl jl jb jb ijbl ijbl= ′ + ′ + +X X� �

where yijbl is a record on tree i (i = 1, 2, …, 1598) for trait j
(where j is DBH or Height), with genotype b (where b is E,
F1: E × H, F1: H × E, BC(E), BC(H), or F2), from trial l. The
vector �jl contains the systematic environmental effects
(means of the groups) of a tree in trial l with respect to trait
j; Xjl is a column vector that relates yijbl to the elements of
�jl. Also, �jb is a parametric vector including different com-
binations of the following genetic effects: additive (A), dom-
inance (D), and epistatic (A × A, A × D, D × D). These are
represented by �jAb, �jDbb ′, �jAAbb ′, �jADbb ′, �jDDbb, with b
and b′ denoting the parental genotypes. Each row vector Xjb
contains the coefficients of genotype b displayed in Table 2.
Eight models involving different mean genetic parameters
were compared: (1) A, (2) A + D, (3) A + A × A, (4) A +
D × D, (5) A + D + A × A, (6) A + D + D × D, (7) A + D +
A × D, and (8) A + A × A + A × D.

Posterior inference
The DIC was computed for each model using the MCMC

output from [23]. At each iteration of the FCG sampler, g11,
g12, g22, r11, r12, and r22 were reparameterized to heritabilities
(h DBH

2 and h Height
2 ), the additive correlation (rA), and the en-

vironmental correlation (rE) as follows:

[30] h
g

g r
h

g
g r

DBH
2

Height
2=

+
=

+
11

11 11

22

22 22

r
g

g g
r

r

r r
A E= =12

11 22

12

11 22

The values of the hypervariances (in G 0
* and R 0

* ) for g11,
g22, r11, and r22 were obtained using a single-trait Gibbs
sampler from the same data set, whereas prior covariances
for g12 and r12 were chosen to be small (but not zero) and
positive, so that both G 0

* and R 0
* were positive definitive.

The degrees of belief were then set to 10 (i.e., nA = vk = 10)
to reflect a relatively high degree of uncertainty.

Using the FCG algorithm, 1 010 000 samples were drawn
in a single chain, and the first 10 000 iterates were discarded
because of burn-in. Autocorrelations were calculated with
Bayesian Output Analysis (BOA version 1.0.1, Smith 2003)
for all lags from 1 to 200. Posterior standard errors of each
parameter were corrected for an “effective sample size”
(ESS; Neal in Kass et al. 1998), to account for the impact of
autocorrelations in the chain on measures of variability. The
ESS of each parameter was calculated as

ESS
1000 000

200
=

+
=
∑1 2

1

ρ ( )i
i

where ρ(i) is the autocorrelation measured at lag i. The pos-
terior effective standard error (effective SE) for parameter i
(si) was calculated as s i

2/ESS. Marginal posterior densities

for all parameters were estimated by the Gaussian kernel
method (Silverman 1986; chapter 2):

Model

1 2 3 4 5 6 7 8

D( )� 3943.355 3944.455 3945.583 3946.168 3944.593 3944.913 3944.908 3946.408
D( )� 3940.733 3941.806 3942.928 3943.502 3941.956 3942.256 3942.262 3943.767
pD 2.622 2.649 2.655 2.666 2.637 2.657 2.646 2.641
DIC 3945.977 3947.104 3948.238 3948.834 3947.230 3947.570 3947.554 3949.049

Table 3. Expectation of the Bayesian deviance D( )� , Bayesian deviance evaluated at the posterior mean of model parameters D( )� , ef-
fective number of parameters (pD), and deviance information criterion (DIC) for the eight models analyzed.

Mean Median Mode Effective SE 95% HPD ESS

h DBH
2 0.116 0.115 0.114 0.019 0.080–0.156 5207

h Height
2 0.139 0.138 0.121 0.022 0.098–0.184 5631

rA 0.524 0.524 0.515 0.057 0.411–0.636 5306

rE 0.394 0.394 0.387 0.042 0.323–0.465 56744

Note: HPD, high posterior density interval; ESS, effective sample size.

Table 4. Posterior statistics for heritability of diameter (h DBH
2 ), heritability of height (h Height

2 ), additive
correlation (rA), and environmental correlation (rE).
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In [31], f(θ) is the estimated posterior density, θi (i = 1, 2,
…, 1 000 000) is a sampled value, and h is the window
width estimated by unbiased cross validation. Mean, mode,
median, standard deviation, and 95% high posterior density
interval (95% HPD), were then calculated with BOA for all
parameters from the individual marginal posteriors, under
the free software R (http://www.r-project.org/).

Results

The values of DIC, and its two constituent elements, for
all models are displayed in Table 3. The additive model 1
gave the smallest values of DIC, D( )� , and pD followed by
model 2 (A + D). The deviance term was responsible for
99% of the DIC in all eight models analyzed.

Posterior statistics for h DBH
2 , h Height

2 , rA, and rE are shown
in Table 4. For all parameters, posterior means, medians, and
modes were quite similar, indicating that the marginal poste-
rior distributions are symmetrical. The marginal posterior
means of h DBH

2 and h Height
2 were, respectively, 0.116 and

0.139, whereas the effective SE was 0.019 for h DBH
2 and

0.022 for h Height
2 . The marginal posterior mean of rA was

0.524 and the effective SE was 0.057. Corresponding values

for rE were 0.394 and 0.042. The effective SE as calculated
here takes into account ESS. None of the 95% HPD for
h DBH

2 , h Height
2 , rA, or rE included zero, which suggests that

none of the parameters is zero. Looking at the SE indicates
that all estimates were quite precise, though a large number
of samples was drawn to attain reasonable ESS. Figure 1
shows that the graphs of the posterior densities for h DBH

2 ,
h Height

2 , rA, and rE tended to be symmetrical.

Discussion

The Bayesian multiple-trait analysis with the FCG algo-
rithm used in the present study is a precise tool for estimat-
ing heritabilities and genetic and environmental correlations
in forestry data. It is expected that the advantage of using the
FCG will be greater for data sets with more traits and with
more patterns of unbalance than in the one used here. The
algorithm would also be advantageous when estimating
covariance matrices between traits that are easy to measure
and traits that are either expensive or difficult to score and
only a small number of observations are available. The FCG
algorithm is also useful in models with repeated measures,
especially when there are missing data due to tree mortality
with time. In this case, it is customary to analyze data from
trees that have measures at all times only while discarding
records from dead trees (for example, Balocchi et al. 1993).
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Fig. 1. Marginal posterior distributions of heritabilities of diameter (h DBH
2 ) and height (h Height

2 ) and genetic (rA) and environmental (rE)
correlation.



Mechanisms that induce missing data will affect the form
of the distribution of REML estimates of genetic parameters
and of statistics that are functions of those estimates. For ex-
ample, Apiolaza et al. (1999) simulated random subsamples
of a trait and found a skewed distribution of the REML esti-
mates of heritability. The symmetry of the posterior distribu-
tions of heritabilities and correlations estimated here
suggests that similar results would have been obtained had
REML been the method of estimation. There is no small
sample distribution for REML, but asymptotic normality un-
der certain conditions on the eigenvalues of the information
matrix (see Cressie and Lahiri 1993). Even for two-trait
models such as [29], the calculation of the information ma-
trix may be unfeasible with large data sets. Moreover,
whereas REML provides only point estimates of the parame-
ters and the asymptotic approximation of their variances, the
Bayesian approach allows more general inferences, as the
exact posterior distribution is available. Therefore, variance,
standard errors, posterior HPD intervals, or the probability
of a parameter being less than a given value can be reported.

Although the use of DIC outside of data originating from
exponential families is a topic of ongoing discussion, its per-
formance in normal linear models, as in the one described in
this research, is sound and well defined (see Spiegelhalter et
al. 2002, and subsequent discussion on the same paper). The
argument that DIC may be sensitive to the choice of prior
distribution of the parameters to estimate becomes inconse-
quential if the researcher has a strong belief in its prior. Not-
withstanding this, the noninformative prior density for the
linear genetic parameters in [29] induces DIC to behave in a
similar way to the Akaike information criterion.

In the current research, the genetic model used for all
analyses included linear combinations of generation means
for the different crosses plus random additive effects fitted at
the individual (tree) level. Different genetic models responsi-
ble for the variation in mean DBH and Height were tested
using the DIC. All of these employ the parameterization
defined by Hill (1982), which is equivalent to a regression
version of generation-mean analysis. For the different geno-
types that result from crossing two species, the chosen para-
meterization would take into account mean general effects of
A, D, A × A, D × D, and A × D. As such, it cannot detect
genetic effects at the individual genetic locus level, as dis-
cussed by Wu and Li (1999). More formally, the absence of
linear components attributable to A × A, D × D, and A × D
effects does not imply that epistasis effects are null, since
linear functions of the means may be zero even though indi-
vidual effects are not. Thus, the model used here is not use-
ful to search for epistatic values at the level of two or more
specific loci. However, mean generation analysis plus ran-
dom additive effects may not be restrictive for a tree breeder
in search of a workable genetic model that fits the data in or-
der to perform selection.
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