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Introduction

Recently, there has been a growing interest in

genetic evaluation models including additive genetic

effects of competition (AMC). Bijma et al. (2007)

and Allen et al. (2008) used the more general

expression ‘social effects’ to refer to these associative

or indirect effects. Although quantitative genetics

theory dealing with interacting effects in plants and

animals dates back to Griffing (1967), it is only in

the recent past that social or competition effects

have been introduced in genetic evaluation using a

mixed model framework (Arango et al. 2005; Muir

2005; Van Vleck & Cassady 2005; Bijma et al. 2007;

Allen et al. 2008; Cappa & Cantet 2008). The appeal

of AMC relates to the increase in either total perfor-

mance, or animal wellbeing, if genetic competition

effects are selected against (Muir 2005; Van Vleck &

Cassady 2005). However, estimation of the disper-

sion parameters was problematic when the AMC

was fitted to animal data. In this respect, Arango

et al. (2005) observed that convergence to a false

local maximum occurred when the analysis was ini-

tiated with different starting values, and there was

no clear indication of convergence for the estimate

of the competition additive variance. Also, error
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Summary

There is an increased interest in estimating the (co)variance components

of additive animal models with direct and competition effects (AMC).

However, some attempts to estimate the dispersion parameters in differ-

ent animal species faced problems of convergence or inaccurate esti-

mates when pen effects entered the model. We argue that the problem

relates to lack of identifiability of the (co)variance components in some

AMC. The check for identifiability of the dispersion parameters in mixed

models with linear (co)variance structure requires that all the eigen-

values of the restricted maximum likelyhood information matrix (I(h))

be positive. We show, by way of simple numerical examples, that the

singularity of I(h) is due to confounding between fixed pen effects and

the additive competition effects (SBVs). It is also observed that setting

pen effects as random does not always remedy the collinearity with

SBVs. An alternative AMC is presented in which the incidence matrix of

the SBVs can be written as a function of the ‘intensity of competition’

(IC) among animals in the same pen. Examples are presented in which

the ICs are related to time. The distribution of families of full and half

sibs across pens also plays a role in the identifiability and asymptotic

variances of the (co)variance components.
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variance seemed to be overestimated when pen

effects were left out from the model. In similar

developments, the estimates obtained by Van Van

Vleck & Cassady (2005) and Van Vleck et al. (2007)

suggest that there was confounding between pen

(i.e. management effect) and additive competition

effects. Moreover, Bijma et al. (2007) found that the

data structure used by Wolf (2003) provided ‘either

very little or no information at all to separate the

direct and the associative heritable variance’ in an

experiment involving flies. On the other hand,

Bijma et al. (2007) and Allen et al. (2008) are exam-

ples of successful estimation of the (co)variance

components using AMC in layer chickens and hens.

Also, no problems were observed when estimating

the (co)variance components in an individual tree

model (Cappa & Cantet 2008). A major difference

between the later report and the previous ones using

animal data is that elements of the incidence matrix

for the random additive competition effects (Zc) set

by Cappa & Cantet (2008) differs from the one used

with animal data. As this incidence matrix is related

to the covariance structure of the AMC, a possible

explanation for the problems observed when

estimating the (co)variance components in the AMC

using animal data is that the dispersion parameters

may not be identifiable. By lack of identifiability of a

set of parameters we mean the situation where mul-

tiple values of the parameters ‘correspond to the

same distribution of observable data’ (Gustafson

2005). As a result, there are no unique estimates of

the (co)variance components in the AMC when

fixed pen effects enter into the model and the Zc

matrix reflects an equal weight for all competitors of

a given individual. A similar conclusion on lack of

identifiability in the AMC with fixed pen effects has

been independently arrived at by Misztal & Rekaya

(2007).

Usually animal breeders fit animal models to field

data based on quantitative genetic theory, assuming

that the model parameters are identifiable. Although

breeders are usually acquainted with estimability of

linear functions for parameters in the mean vector

(Searle 1971; section 5.4), they have little or no indi-

cation of a method to check for identifiability of the

dispersion parameters. Identifiability of the (co)vari-

ance components in mixed models with linear covari-

ance structure, such as in the AMC, has been

discussed by Brown (1984) and formalized by Jiang

(1996). Our objective is to show how to check for

identifiability of the dispersion parameters in animal

models with competition effects using the develop-

ments set by Jiang (1996). Furthermore, by way of

simple numerical examples, we show how the inci-

dence matrices X (including pen effects) and Zc play a

role on the identifiability of the (co)variance compo-

nents in the AMC.

Methods

The animal model with competition effects

A model equation for the AMC is as follows:

y ¼ X b þ Zd ad þ Zc ac þ e ð1Þ

where y is the n · 1 vector of records; X is a full rank

n · p incidence matrix that relates the observations

to the vector of fixed effects b, and e (n · 1) is the

random vector of errors distributed as Nn(0, In r2
e),

being r2
e the error variance. The vector of direct

breeding values is ad and the vector of breeding val-

ues for competition effects (SBVs, as used by Bijma

et al. 2007) is ac. We assume that the same q individ-

uals in ad have SBVs in ac, and that individual breed-

ing values are ordered by date of birth the same way

in both vectors. Direct and competition breeding val-

ues are related to y by the n · q incidence matrices

Zd and Zc, respectively. Each row of Zd has all ele-

ments equal to 0 except for a 1 in the column belong-

ing to adi. Matrix Zc is described in detail below. The

variances for direct and competition breeding values

are r2
Ad and r2

Ac, respectively, whereas the covari-

ance between both types of additive effects is rAdAc.

Also, let A be the q · q relation matrix with diago-

nal elements equal to 1 + Fi, with Fi being the

inbreeding coefficient of i, and off-diagonals elements

equal to the additive relationships Aij. We can write

the total additive covariance matrix in a more com-

pact manner as follows

Var
ad

ac

� �
¼ r2

Ad rAdAc

rAdAc r2
Ac

� �
� A ¼ G0 � A

A point of note is that we have chosen not to

include in (1) environmental competition effects (see

for example expression (1) in Bijma et al. 2007). Had

we done so, it would compound the problems of

identifiability of the (co)variance components. Taking

into account the random effects in model (1), the

(co)variance matrix (V) of y is given by:

V ¼ ZdAZ 0d r2
Ad þ ZdA Z0c þ ZcA Z0d

� �
rAdAc

þ ZcAZ0c r2
Ac þ In r2

e

ð2Þ

Although looking similar to other animal models,

notably those including maternal effects, the

(co)variance components in model (1) within the

covariance matrix (2) may not be identifiable as we

observe below.
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Identifiability of the (co)variance components

To formalize identifiability of the dispersion parame-

ters, let h = [hi] be the parametric vector of the

(co)variance components (i = 1, ..., k) of a mixed

model. Also let V1, …, Vi, …, Vk be the associated

(co)variance structures, so that

VarðyÞ ¼V 1h1 þ V2h2 þ :::þ V khk:

Jiang (1996) stated that a mixed model is identifi-

able of its (co)variance components under translation

invariance (IDI), if: 1) matrices V1, V2, …, Vk are line-

arly independent; 2) there exists a matrix P such that

PX = 0 and rank[P] = n ) rank[X]. Then, P = V )1) V )1

X (X¢ V )1 X) )1 XV )1 (Harville 1977). Jiang (1996,

lemma 4.1) further observed that a mixed model

belong to the IDI class, if and only if, the smallest

eigenvalue of the restricted maximum likelyhood

(REML) information matrix (I(h)) is positive. As the

inverse of the information matrix is the asymptotic

covariance matrix of REML estimates (Harville 1977;

Searle et al. 1992), the previous statement is tanta-

mount to I(h) being positive definite, or equivalently,

admitting an inverse. This property becomes useful to

check whether the (co)variance components in model

(1) are identifiable.

The expression for the i, j element of I(h) (Harville

1977) is

I ijðhÞ ¼ tr P
@V

@hi
P
@V

@hj

� �
¼ tr PV iPV j

� �
ð3Þ

For model (1) I(h) is 4 · 4, and the covariance

structures are V1 = ZdAZd¢, V2 = ZdAZc¢+ ZcAZd¢,
V3 = ZcAZ ¢, and V4 = In. Diagonal elements of I(h)

are

I11 hð Þ ¼ tr PZdA Z0d PZdA Z0d
� �

I22 hð Þ ¼ tr P ZdA Z0c þ ZcA Z0d
� �

P ZdA Z0c þ ZcA Z0d
� �� 	

I33 hð Þ ¼ tr PZcA Z0c PZcA Z0c
� �

I44 hð Þ ¼ tr P Pð Þ:

ð4Þ

Whereas off-diagonal elements of I(h) are equal to

I12 hð Þ ¼ tr P ZdA Z0d P ZdA Z0c þ ZcA Z0d
� �� 	

;

I13 hð Þ ¼ tr P ZdA Z0d PZcA Z0c
� 	

I14 hð Þ ¼ tr PZdA Z0d P
� �

I23 hð Þ ¼ tr P ZdA Z0c þ ZcA Z0d
� �

P ZcA Z0c
� 	

I24 hð Þ ¼ tr P ZdA Z0c þ ZcA Z0d
� �

P
� 	

I34 hð Þ ¼ tr P ZcA Z0c P
� 	

ð5Þ

Harville (1977) showed how to write down the

elements of I(h) in terms of matrices related to the

mixed model equations of Henderson (1984). Boca &

Cantet (2004) used this approach to calculate asymp-

totic variances of REML estimates from an animal

model with additive and dominance effects. To deal

with small numerical examples, we will Calculate

I(h) using expressions (4) and (5) to determine

whether a given experimental design allows estimat-

ing separately the four (co)variance components.

To get further insight into how I(h) helps to

identify the (co)variance components, consider first

the simple additive animal model with direct effects

only and homogeneous error variance. The I(h) is

now of order 2 · 2 and equal to

I
r2

A

r2
e

� �
¼ tr P Z A Z0 P Z A Z0½ � tr P Z A Z0 P½ �

tr P Z A Z0 P½ � tr P P½ �

� �
ð6Þ

When there are q unrelated individuals each one

having one record, Z = Iq and A = Iq. All assump-

tions considered the covariance matrix of the data is

equal to:

V ¼ ZA Z 0r2
AþIr2

e¼ I r2
Aþr2

e

� �
and the information matrix in (6) is

I
r2

A

r2
e

� �
¼ tr P P½ � tr P P½ �

tr P P½ � tr P P½ �

� �

As all the elements of I(h) are equal, the matrix is

singular. This, in turn, indicates that there is not

enough information in the data structure to estimate

r2
A and r2

e separately. Jiang’s (1996) condition can be

easily check as the covariance structures of r2
A and

r2
e are both equal to I and complete linear depen-

dence occurs.

A numerical example of lack of identifiability in

AMC

In this section we describe some of the difficulties

involved when estimating all four (co)variance com-

ponents from model (1). We will take the data and

family structure of an example by Muir (2005) but

modified for the purpose of making our point clear.

Muir (2005) allocated animals randomly to pens.

However, consider what would have happened had

they use the following scenario: assume there are

eight individuals with data divided equally into two

pens. Moreover, all animal in each pen are full-sibs

and each animal in any pen is a half-sib of any animal

in the other pen. For simplicity, let r2
Ad = r2

Ac = r2
e = 1

and rAdAc = )0.25. Using the specification for (1) as in

R. J. C. Cantet & E. P. Cappa Identifiability with competition effects
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Muir (2005), matrices X, Zd and Zc are respectively

equal to

whereas the additive relationship matrix is

so that I(h) is equal to

0:3092515 �0:514861 0:4128936 0:5962941
�0:514861 1:6515742 0:106991 �1:162976
0:4128936 0:106991 1:3456717 0:6259061
0:5962941 �1:162976 0:6259061 1:1862428

2
664

3
775

The eigenvalues of I(h) are 2.97, 1.52, 0, and 0;

therefore, the matrix is singular and not all dispersion

parameters can be estimated separately. A closer

inspection of the example shows that matrices X and

Zc in (7) are collinear: each column of X is a linear

combination of the columns of Zc. The first column of

X can be obtained by taking a third of the sum of the

first four columns of Zc, whereas the second column

of X results of one third of the sum of the last four

columns of Zc. We attempted several small designs

trying to avoid confounding families with pens, but

found none in which the associated I(h) was non-sin-

gular. The fact that contemporary formed by full-sibs

produces a lack of identifiability of the (co)variance

components was first shown by Bijma et al. (2007)

when discussing the design used by Wolf (2003).

The animal model with competition effects and

random contemporary groups

To avoid the trouble of collinearity between X and

Zc one may consider pen to be a random effect.

However, this may be deceptive as the resulting

model may not cope with the problem. Going back

to the example, we took the pen effects to be

random with a variance component of two, and set

a common mean as the only fixed effect into the

model. The eigenvalues of the ensuing I(h) were

equal to 2.97, 0.59, 0, 0 and 0. A further attempt to

obtain identifiability consisted of arbitrarily setting

the 2 · 2 variance-covariance matrix of pen effects

to be equal to
1:0 0:4
0:4 1:0

� �
. However, this was incon

sequential to identifiability as the eigenvalues of I(h)

were now 2.97, 0.79, 0, 0 and 0. Hence, setting pen

effects as random does not always remedy the collin-

earity between X and Zc. Therefore, for any particu-

lar data structure one will have to check whether

the eigenvalues of I(h) are positive to be sure the

(co)variance components are identifiable.

The genetic data structure in the experiment by Wolf

(2003)

Wolf (2003) performed an experiment to estimate

the (co)variance components for the trait fly length

in Drosophila melanogaster. Bijma et al. (2007) analy-

sed the design of the genetic data structure in detail

and concluded that it ‘provides either very little or

no information at all to separate’ the direct and com-

petition variances. They also produced simulated data

of the genetic structure used by Wolf (2003) and

found that the matrix of second derivatives was sin-

gular. We further exemplify the arguments of Bijma

et al. (2007) with a small example. In the experiment

X ¼

1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1

2
66666666664

3
77777777775

Zd ¼ I8 Zc ¼

0 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 0

2
66666666664

3
77777777775

ð7Þ

A ¼

1 0:5 0:5 0:5 0:25 0:25 0:25 0:25
0:5 1 0:5 0:5 0:25 0:25 0:25 0:25
0:5 0:5 1 0:5 0:25 0:25 0:25 0:25
0:5 0:5 0:5 1 0:25 0:25 0:25 0:25

0:25 0:25 0:25 0:25 1 0:5 0:5 0:5
0:25 0:25 0:25 0:25 0:5 1 0:5 0:5
0:25 0:25 0:25 0:25 0:5 0:5 1 0:5
0:25 0:25 0:25 0:25 0:5 0:5 0:5 1

2
66666666664

3
77777777775
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of Wolf (2003) pairs of flies were kept in tubes,

which act like pens. All flies from the parental gener-

ation, either male or female, were unrelated. Any

single male was mated to two females only, and the

trait was measured in the progenies of these matings.

Thus the family structure is composed of unrelated

families, with the progeny of any family being either

full-sibs or half-sibs. As a result, the additive covari-

ances among animals in the progeny generation

involved those of full-sibs, half-sibs or unrelated indi-

viduals, either in the same or in different tubes. The

pairs inside any tube were full-sibs, half-sibs, or

unrelated flies. In the latter case two half-sib families

were combined in a pair of tubes. Bijma et al. (2007)

obtained the expectations of these covariances in

terms of the (co)variance components for direct and

competition effects (see Table A1 therein, p. 298).

Some of these covariances are impossible to occur,

for example the covariance of full-sibs in the same

tube, when the tube composition consists of a pair of

half-sibs. If, instead, one is looking at the full-sib

covariance between flies in different tubes, then Bi-

jma et al. (2007) obtained 1
2 r2

Ad þ r2
Ac þ rAdAc

� �
. For

the purpose of mimicking the experimental setup of

Wolf (2003) the following example including 14 indi-

viduals in four unrelated families was prepared. Flies

1 to 4 are full-sibs from the mating of Sire 1 with

Dam 1. The same sire mated with Dam 2 produces

flies 5 and 6. Therefore, individuals 1 to 4 are half-

sibs of 5 and 6. In the second family, Sire 2 mates

with Dam 3 to produce full-sibs 7 and 8, and with

Dam 4 to sire individuals 9 and 10. Thus, 7 and 8 are

half-sibs of 9 and 10. Finally, fly 11 is a half-sib of 12

and 13 of 14. All other additive relationships were 0.

The resulting A matrix is then equal to

The pairs included in the tubes were: 1 with 2,

3 with 4, 5 with 6, 7 with 9, 8 with 10, 11 with

13, and 12 with 14. The resulting Zc matrix is

equal to

As a consequence of this distribution, seven of

the nine non-zero covariances described by Bijma

et al. (2007) in Table A1 are present in the data

A ¼

1 0:5 0:5 0:5 0:25 0:25 0 0 0 0 0 0 0 0
0:5 1 0:5 0:5 0:25 0:25 0 0 0 0 0 0 0 0
0:5 0:5 1 0:5 0:25 0:25 0 0 0 0 0 0 0 0
0:5 0:5 0:5 1 0:25 0:25 0 0 0 0 0 0 0 0

0:25 0:25 0:25 0:25 1 0:5 0 0 0 0 0 0 0 0
0:25 0:25 0:25 0:25 0:5 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0:5 0:25 0:25 0 0 0 0
0 0 0 0 0 0 0:5 1 0:25 0:25 0 0 0 0
0 0 0 0 0 0 0:25 0:25 1 0:5 0 0 0 0
0 0 0 0 0 0 0:25 0:25 0:5 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0:25 0 0
0 0 0 0 0 0 0 0 0 0 0:25 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0:25
0 0 0 0 0 0 0 0 0 0 0 0 0:25 1

2
66666666666666666666664

3
77777777777777777777775

Zc ¼

0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0

2
66666666666666666666664

3
77777777777777777777775
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structure: (1) covariance between full-sibs in the

same tube when tube composition consist of a pair

of full-sibs (e.g. 1 and 2); (2) covariance of full-sib

in different tubes when tubes are composed of

pairs of full-sibs (e.g. 1 and 3); (3) covariance of

half-sibs in different tubes when tubes are com-

posed of full-sib pairs (e.g. between 1 and 5); (4)

covariance between full-sibs in different tubes

when tube composition consist of a pair of half-

sibs (e.g. 7 and 8); (5) covariance of half-sibs in

the same tube when tubes are composed of half-

sib pairs (e.g. between 7 and 9); (6) covariance of

half-sibs in different tubes when tubes are com-

posed of pairs of half-sib (e.g. between 7 and 10);

(7) covariance between unrelated individuals in

the same tube when two half-sibs are located in

different tubes and their respective competitors are

half-sibs (e.g. between 11 and 13). A slight dis-

crepancy with the covariances in Table A1 of Bi-

jma et al. (2007) was found for the case of

unrelated individuals located in different tubes.

Although for most cases this covariance is equal to

zero (e.g. between 1 and 14), if the unrelated

individual compete with a half-sib of the other fly

in the tube, then it is equal to 1
2 rAdAc instead of 0

(e.g. between 11 and 14). In the resulting analysis,

the eigenvalues of I(h) were equal to 6.67, 3.66,

0.22, and 0, and the information matrix was

singular.

An alternative animal model with competition effects

A closer look at the problem suggests that the key to

avoid the collinearity between X and Zc in model (1)

are the non-zero elements of matrix Zc. We now

present a model with individual breeding values that

has been used in tree breeding to fit SBVs. In doing

so we write acj for the SBV of animal j that is

expressed in the record of animal i. Let j = 1, 2, …,

mi be the competitors of i and i = 1, 2, …, mj be the

individuals with records that animal j competes

with. Cappa & Cantet (2008) observed that the total

additive genetic competition that is exerted over the

phenotype of individual i from its competitors can

be written as

fi1 ac1
þ fi2 ac2

þ � � � þ fim acm
¼
Xmi

j¼1

fij acj
ð8Þ

The fijs in (8) are interpreted as the intensities

of competition (IC) that the SBVs of 1, 2,…, mi

exert over the phenotype of i yic1:::cm
ð Þ, and are the

non-zero elements in row i of Zc. Thus, yic1���cm
is

written as

yic1���cmi
¼ xi

0 b þ adi
þ fi1 ac1

þ fi2 ac2
þ � � � þ fi mi

acmi
þ eic1���cmi

ð9Þ

Muir (2005) produced an expression akin to (9)

(his equation (6) on p. 1250), although the values of

his coefficients are unconstrained. Whereas Cappa &

Cantet (2008) imposed two restriction, which we

will denote as (I), in order to achieve identifiability

of the (co)variance components. To introduce this

restriction consider the following expression that is

obtained in the Appendix [(A3)] for the additive

genetic variance of the SBVs in model (9)

Var
Xmi

j¼1

fij acj

 !
¼

Xmi

j¼1

f 2
ij 1 þ Fj

� �
þ 2

Xmi

j 6¼j0

fijfij0 Ajj0

" #
r2

Ac

ð10Þ

Observe that in the absence of inbreeding (Fj = 0,

for all j) and genetic relationships among competi-

tors (Ajj¢ = 0 for all j „ j¢), and regardless of the

number of competing individuals, expression (10) is

equal to

Var
Xmi

j¼1

fij acj

 !
¼

Xmi

j¼1

f 2
ij

 !
r2

Ac ð11Þ

To standardize the variance of the SBVs within

the phenotypic variance of animal i, we impose the

restriction

Xmi

j¼1

f 2
ij ¼ 1 ðIÞ

This is to say that the sum of squares of the ICs of

the competitors adds up to 1 within the phenotype

of i. Thus, under no inbreeding of competitors,

no relationship among competitors, and after restric-

tion (I), expression (11) results to be equal to

Var
Xmi

j¼1

fij acj

 !
¼ r2

Ac ð12Þ

Expression (12) is not a definition of the additive

variance for the SBVs but a consequence of impos-

ing restriction (I) to the ICs, in the absence of
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inbreeding and relationships among competitors. If

Fj > 0 for any j and ⁄ or Ajj¢ > 0 for any j „ j¢, then

expression (10) should be employed instead of (12),

however the ICs still have to comply with the

restriction (I).

We now show how the fijs can be calculated

when the breeder has the opportunity to supervise

the collection of data for estimating the (co)vari-

ance components. In doing so we follow the

approach of Cappa & Cantet (2008) who showed

how to obtain the IC for competing trees planted in

a regular grid. The ICs are functions of some exter-

nal variable. By external we mean independent of

any intrinsic characteristic of the animal, especially

of its breeding value. Just for the purpose of exem-

plifying suppose the intensity of competition is

related to the time the animals spend together in

the pen. Thus, some individuals may spend the

entire post weaning period in the same pen, while

others may be rotated among pens during m peri-

ods. As in crossover designs, animals are assigned

to sequences of occupancy times of the pens.

For example, for m = 3, the sequence 1-2-1 means

that the animals spent the first period in pen 1, the

second in pen 2, and finally the individual goes

back to pen 1 at the start of the third period. Two

individuals in the sequence 1-1-1 compete all the

time. However, competition of an animal in 1-1-1

with another individual assigned to sequence 1-2-1

is one-third less intense than the competition with

an animal in the same sequence. The amount of

time spent in any period does not have to be equal

to the previous periods, but each change of pen

should be counted as a new period. The idea is to

calculate the IC as a function of the total propor-

tion of shared time. By letting nk to be the number

of competitors of animal i during sequence k, we

have

Var
Xmi

j¼1

fij acj

 !
¼ n1 f 2

i 1 þ � � �þ nk f 2
ik þ� � � þ nmi

f 2
i mi


 �
r2

Ac

ð13Þ

By equating (12) to (13), the ICs are such that

1¼
Xmi

j¼1

f 2
ijk ¼ n1 f 2

i 1 þ � � � þ nk f 2
ik þ � � � þ nmi

f 2
i mi

ð14Þ

To solve (14) we have to use the relationships

among ICs based on the fraction of time animals were

competing. In the example above with two sequences,

f12 = (2 ⁄ 3) f11, as an animal in the 1-1-1 pattern com-

pete one third of the time more with another individ-

ual in the same sequence, as compared with an

animal in the 1-2-1 pattern. Suppose there are two

animals in sequence 1-1-1 and four in sequence 1-2-

1, then expression (14) for an animal in sequence

1-1-1 is equal to f 2
11 + 4 f 2

12 = 1. On replacing in the

last expression with f12 = (2 ⁄ 3) f11, we have f 2
11 + 4

[(2 ⁄ 3) f11]2 = 1, with solutions equal to f11 = 3 ⁄ 5 and

f12 = 2 ⁄ 5. For an individual in sequence 1-2-1, (14) is

now equal to 2 f 2
21 + 3 f 2

22 = 1 with the restriction

that f21 = (2 ⁄ 3) f22, and the solution is f22 = 3=
ffiffiffiffiffi
35
p

and f21 = 2=
ffiffiffiffiffi
35
p

. By letting the records of animals in

the 1-1-1 sequence to come first than those from

animals of the sequence 1-2-1, matrix Zc is then equal

to

This type of structure for Zc allows estimating the

variance components, as we discuss below. The ICs

can be interpreted as weighting factors expressing

how intense pairs of animals compete in relation to

all other animals, and can be chosen to represent

extreme patterns in which only particular individu-

als display competition behaviour whereas the rest

do not. Non-linear relationship between time and

ICs may also be considered.

As a follow-up of our little example, suppose that

pens are divided in halves with a central feeder

shared by all animals in the pen. Now, it is reason-

able to assume that the IC for animals in the same

half-pen is greater than the one among individuals

from different halves. For any animal in a half-pen

expression (14) is equal to f 2
11 + 2 f 2

12 = 1. Assum-

ing than competition between the two animals in

the same half-pen is twice as intense as with the

Zc ¼

0 3=5 2=5 2=5 2=5 2=5
3=5 0 2=5 2=5 2=5 2=5

2=
ffiffiffiffiffi
35
p

2=
ffiffiffiffiffi
35
p

0 3=
ffiffiffiffiffi
35
p

3=
ffiffiffiffiffi
35
p

3=
ffiffiffiffiffi
35
p

2=
ffiffiffiffiffi
35
p

2=
ffiffiffiffiffi
35
p

3=
ffiffiffiffiffi
35
p

0 3=
ffiffiffiffiffi
35
p

3=
ffiffiffiffiffi
35
p

2=
ffiffiffiffiffi
35
p

2=
ffiffiffiffiffi
35
p

3=
ffiffiffiffiffi
35
p

3=
ffiffiffiffiffi
35
p

0 3=
ffiffiffiffiffi
35
p

2=
ffiffiffiffiffi
35
p

2=
ffiffiffiffiffi
35
p

3=
ffiffiffiffiffi
35
p

3=
ffiffiffiffiffi
35
p

3=
ffiffiffiffiffi
35
p

0

2
6666664

3
7777775
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two individuals in the other half-pen, we can impose

the restriction f11 = 2 f12. After solving we obtain

f11 =

ffiffiffiffiffiffi
2=3

q
and f12 =

ffiffiffiffiffiffi
1=6

q
. For the other pen with

animals 5 to 8, individuals 5 and 8 remains in the

same half-pen during the entire feeding period

(sequence 1-1), whereas 6 and 7 switch half-pens at

the middle of the trial (sequence 1-2). The ICs for

animal 5 are such that f 2
56 + f 2

57 + f 2
58 = 1 with

the restriction that f56 = f57 = 2 f58, as 5 (sequence

1-1) compete with 8 (in sequence 2-2) less than

with 6 or 7 that are in sequences 1-2 or 2-1. Solu-

tions are f56 = 2=3 and f58 = 1=3, so that matrix Zc is

then equal to

Zc¼

0
ffiffiffiffiffiffi
2=3

q ffiffiffiffiffiffi
1=6

q ffiffiffiffiffiffi
1=6

q
0 0 0 0ffiffiffiffiffiffi

2=3

q
0

ffiffiffiffiffiffi
1=6

q ffiffiffiffiffiffi
2=3

q
0 0 0 0ffiffiffiffiffiffi

1=6

q ffiffiffiffiffiffi
1=6

q
0

ffiffiffiffiffiffi
2=3

q
0 0 0 0ffiffiffiffiffiffi

1=6

q ffiffiffiffiffiffi
1=6

q ffiffiffiffiffiffi
2=3

q
0 0 0 0 0

0 0 0 0 0 2=3
2=3

1=3
0 0 0 0 2=3 0 1=3

2=3
0 0 0 0 2=3

1=3 0 2=3
0 0 0 0 1=3

2=3
2=3 0

2
66666666666666664

3
77777777777777775
ð15Þ

Now I(h) is non-singular with eigenvalues 2.70,

1.65, 0.25, and 5 · 10)5. Notice that the last eigen-

value is very small, which in turn indicates the pres-

ence of large asymptotic variances of the REML

estimates when analyzing data with this design.

How can the asymptotic variances be improved

upon? One possibility is to use another ‘genetic

design’, thus modifying the A matrix. Suppose that

four families with two full-sibs each are available so

that and matrices X, Zd and Zc are the same as

before.

A ¼

1 0 0 0 0:5 0 0 0
0 1 0 0 0 0:5 0 0
0 0 1 0 0 0 0:5 0
0 0 0 1 0 0 0 0:5

0:5 0 0 0 1 0 0 0
0 0:5 0 0 0 1 0 0
0 0 0:5 0 0 0 1 0
0 0 0 0:5 0 0 0 1

2
66666666664

3
77777777775

Then, the eigenvalues of the resulting I(h) are

2.64, 1.72, 0.28, and 0.12. A possible criterion to

compare the efficiency of different experimental

designs is D-optimality (Wald 1943), and amounts to

maximizing the determinant of I(h) (|I(h)|). If Muir

(2005) had used a design where animals were not

randomly allocated to pens, then the value of |I(h)|

would be equal to 3.86 · 10)5, whereas for the

design with four families of two full-sibs each and

animals distributed across sub-pens |I(h)| = 0.159.

The difference in efficiency is important: 4111 times

(0.1591 ⁄ 3.86 · 10)5). Though the example may

seem artificial, it serves to illustrate two facts: (1) if

pen is a fixed effect in the model, animals in the

same pen should have different ICs in order for the

covariance components to be identifiable; (2) the

distribution of families of full and half sibs across

pens plays a role in the efficiency of the design.

Further examples are two alternatives to the design

with Zc as in (15), keeping X, Zd and A as before.

Notice that Zc has diagonal blocks with different

structure. In the first design, animals are not rotated

across half-pens but stay in the same half-pen during

the entire feeding period (1-1 ⁄ 2-2). Then, matrix Zc

is block-diagonal with the same structure as in the

upper block of (15). In the other design animals in

both pens are rotated across half-pens at the middle

of the period (1-2 ⁄ 2-1), so that Zc is block-diagonal

with the same structure as in the lower block of

(15). Then, |I(h)| = 0.178 for the 1-1 ⁄ 2-2 design, and

|I(h)| = 0.119 for the 1-2 ⁄ 2-1 design. Therefore, the

1-1 ⁄ 2-2 design is 12% more efficient than 1-1 ⁄ 1-2

and almost 50% more efficient than 1-2 ⁄ 2-1.

Discussion

The two major issues that were brought up in the

current research are the check of identifiability of the

dispersion parameters in animal models with linear

covariance structures using I(h), and the problems of

identifiability in the AMC due to potential collinear-

ity between X and Zc. With regard to identifiability,

Rothenberg (1971) showed that identifiability of an

unknown parameter vector h is equivalent to non-

singularity of the information matrix I(h). Brown

(1984) observed that the variance components are

identifiable in a mixed model if the covariance struc-

tures are linearly independent. However, Jiang

(1996) put both ideas together by formalizing identi-

fiability of the dispersion parameters in a mixed

model with linearly independent covariance struc-

tures and by checking that the eigenvalues of I(h) are

positive. We have used this result in the current

research to check for identifiability of the (co)vari-

ance components in the AMC. The expressions

employed to calculate I(h) were (4) and (5). For most
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data sets used by animal breeders to estimate disper-

sion parameters with the AMC, the calculus of I(h)

by (4) and (5) is a sizeable computational task, if not

an impossible one. We have obtained expressions for

the elements of I(h) from the AMC in terms of matri-

ces that arise from solving the mixed model equa-

tions. These formulae still look formidable and

difficult to compute, and they are available on

request. Further research is needed to find computing

formulae for the eigenvalues of I(h) in models such

as the AMC for large data sets. A point of note is that

the covariance structures involved in the lemma 4.1

of Jiang (1996) are linear in the dispersion parame-

ters. Therefore, the check of the eigenvalues of I(h)

can not be used with an animal model if the error

structure follows, for example, an AR(1) process or

the structured antedependence model. An alternative

to an AR(1) model is the covariance structure (P)

presented by Cantet et al. (2005) which can be seen

as a linear approximation to an AR(1) process, with

the added advantages that the variable may be

measured at unequal time lags and that the

inverse matrix is readily available without ever

computing P.

The other issue the paper focused on is the identifi-

ability of (co)variance components in the AMC for

animal data, and the confounding between pen

effects with SBVs. While data structures used here

are small and somewhat complex, they serve to illus-

trate the problem of estimating (co)variance compo-

nents in models with competition effects. Any data

set used for estimating the dispersion parameters will

suffer from lack of identifiability when all animals in

the same pen share the same IC factor and fixed pen

effects are in the model. Notice that treating pen as

random might result in identifiable dispersion param-

eters but large asymptotic variance of REML esti-

mates, and this will deliver inaccurate estimates of

the parameters. For example, Van Vleck et al. (2007)

fitted different AMC to data on average daily gains

from Hereford bulls and found an estimate of the pen

variance of 34.74. When additive competition effects

were left out from the model estimated pen variance

was equal to 108.08. Inclusion of environmental

competition effects reduced estimated pen variance

to 0.01. The confounding is more evident as environ-

mental competition effects have an incident matrix

with the same non-zero columns as Zc, and there is

an extra parameter to estimate. Also, Allen et al.

(2008) obtained some approximate asymptotic stan-

dard errors of the REML estimates of r2
Ac and rAdAc

that were larger than the estimates themselves (see

Table 5, therein). Finally, treating CGs as random

may result in: (1) biased prediction of breeding

values in the presence of selection, (2) erratic

changes in accuracy if there is a non-random associa-

tion of sires to CGs (Visscher & Goddard 1993).

Further improvement in identifiability or in the

size of the asymptotic variances of the dispersion

parameters can be attained by distributing full or

half sib to different pens. However, one has to calcu-

late the eigenvalues of I(h) to be sure all (co)vari-

ance components are identifiable. Interestingly

enough Bijma et al. (2007) produced a successful

estimate of the (co)variance components for survival

days in a population of laying hens using an AMC.

In this case, cage (i.e. the pen effect) was not

directly included in the model but the row position

of the cage (a classification variable with 8 levels)

and the level of the cage (top, middle and bottom).

Cleverly enough, this parameterization of the fixed

effects avoids confounding cage effects with

matrix Zc. However, a correlation was fitted for the

residuals of animals housed in the same cage. When

this correlation is positive the model is tantamount

to fitting random cage effects, as discussed by Bijma

et al. (2007) and Allen et al. (2008). Both papers

show that there are situations in which random cage

(or pen) effects allow identifying the (co)variance

components. This parameterization permits estimat-

ing the environmental direct variance, and a linear

combination of the competition environmental vari-

ance and the environmental covariance between

both set of effects. In addition, Bijma et al. (2007)

performed a Monte-Carlo computing experiment

and obtained seemingly unbiased estimates of the

(co)variance components without simulating any

fixed effect. The use of different values for the ICs,

as presented by Cappa & Cantet (2008), avoids the

confounding between the pen effects and Zc. How-

ever, if ICs are defined as a function of time, an

experimental design that allow disentangling pen

and competition effects should be defined before

data collection. This may be difficult to achieve with

field data. Any variable used to define the ICs should

be independent of the SBVs, as the inference is con-

ditional on the values of the ICs. Hadfield & Wilson

(2007) have proposed modelling the additive compe-

tition effect as a regression on the inverse of the

number of animals in the pen minus one. While this

measure resembles the ICs, it falls short of a solution

for identifiability as all individuals in the same pen

will have the same IC. Then, any column associated

with a pen effect in X is equal to the sum of all

columns of Zc related to the animals from that

particular pen.
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It is worth mentioning that identifiability may be

an issue for the estimation of (co)variance compo-

nents but not for the prediction of breeding values

through BLUP via the mixed model equations

(Henderson 1984), which is conditional on the ‘true’

dispersion parameters.
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Appendix A

Derivation of the total additive genetic variance with

additive competition effects in model (9)

The additive genetic variance for direct and competi-

tion breeding values in model (9) is:

Var adi
þ
Xmi

j¼1

fij acj

 !
¼ Var adi

ð Þ þ Var
Xmi

j¼1

fij acj

 !

þ 2 Cov adi
;
Xmi

j¼1

fij acj

 !

ðA1Þ

Following Kempthorne (1969, p. 349), the vari-

ance in the first term in (A1) is

Var adi
ð Þ ¼ 1þ Fið Þr2

Ad ðA2Þ

For the second term in (A1) we have

where Ajj¢ indicates the relationship between com-

petitors j and j¢. Therefore

Var
Xmi

j¼1

fij acj

 !
¼
Xmi

j¼1

f 2
ij 1 þ Fj

� �
þ 2

Xmi

j 6¼j0

fijfij0 Ajj0

" #
r2

Ac

ðA3Þ

For the third term in (A1) we use the covariance

operator so that

Cov adi
;
Xmi

j¼1

fij acj

 !
¼ Cov adi

; fi1 ac1
þ � � � þ fi m acm

ð Þ

¼ Covðadi
; fi1 ac1

Þþ� � �þCovðadi
; fi m acm

Þ
¼ fi1Covðadi

; ac1
Þþ� � �þfi mCovðadi

; acm
Þ

¼
Xmi

j¼1

fij Aij rAdAc

ðA4Þ
Replacing in (A1) with (A2), (A3) and (A4) gives

the expression for the total additive variance within

the variance of yij1::jm: as follows

Var adi
þ
Xmi

j¼1

fijacj

 !
¼ ð1þ FiÞr2

Ad

þ
Xmi

j¼1

ð1þ FjÞ þ 2
Xmi

j 6¼j

fijfij0Ajj0

" #
r2

Ac

þ 2
Xmi

j¼1

fijAijrAdAc

ðA5Þ

Var
Xmi

j¼1

fijacj

 !
¼ Var fi1 ac1

þ � � � þ fim acm
ð Þ

¼ Var fi1 ac1
ð Þ þ � � � þ Var fim acmð Þ þ 2 Cov fi1 ac1

; fi2 ac2
ð Þ þ � � � þ Cov fi m�1 acm�1

; fimacm
ð Þ½ �

¼ f 2
i1

Var ac1
ð Þ þ � � � þ f 2

im Var acmð Þ þ 2 fi1 fi2 Cov ac1
; ac2

ð Þ þ � � � þ fi m�1fimCov acm�10 ; acm

� �� 	
¼
Xmi

j¼1

f 2
ij Var acj

� �
þ 2

Xmi

j 6¼j0

fij fij0 Cov acj
; acj0


 �

¼
Xmi

j¼1

f 2
ij ð1þ FjÞr2

Ac þ 2
Xmi

j 6¼j

fijfij0Ajj0r
2
Ac
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