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Abstract Various phenomenological theories of ferroelectricity in polycrystalline ceramics have been proposed in
recent years. A particularly attractive class of multiaxial theories with a reduced number of internal variables hinges
upon an additive decomposition of the strain and the dipole density into reversible internal variables associated
with elasticity and dipole perturbations, and irreversible internal variables associated with dipole switching. It
has, however, been recently recognized that these theories can provide unexpected predictions for certain—yet
unexceptional—loading histories. The source of the problem was pinned down to the nonconvex dependence of the
internal energy on the irreversible variables. The purpose of the present study is to evaluate this more thoroughly.
It is found that predictions become unstable above a certain level of mechanical stress, which can be on the order
of a few megapascals or even lower for typical sets of material parameters employed in the literature. It is argued
that this class of theories should be used with caution, even within their presumed range of validity.
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1 Introduction

The increasing need for viable computational tools to assess the performance of electro-deformable devices has
motivated the recent development of various phenomenological theories of ferroelectricity in polycrystalline ceram-
ics. A particularly attractive class of multiaxial theories with a reduced number of internal variables hinges upon an
additive decomposition of the strain and the electric dipole density into reversible internal variables associated with
elasticity and dipole perturbations, and irreversible internal variables associated with dipole alterations or switching
[1,2]. Constitutive relations and evolution laws for these variables then follow from specific forms assumed for
the internal energy and dissipation of the solid in accordance with the thermodynamic framework of Bassiouny
and Maugin [3]. These theories are able to reproduce essential features of ferroelectric material responses such as
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nonlinear stress–strain curves, hysteresis and butterfly loops, and dipole rotation, and are amenable to numerical
implementation into efficient finite-element codes [4–6].

More recently, the above class of phenomenological theorieswas put in incremental formbyMiehe andRosato [4]
following ideas originally advocated in the context of viscoplasticity (e.g., [7]). The resulting incremental theories
allowed for the recast of boundary-value problems in variational form. This variational character was exploited by
Bottero and Idiart [8] to derive homogenization estimates for the piezoelectric properties of composite ferroceramics.
In the course of that study, however, it was recognized that this class of theories can provide unexpected predictions
for certain—yet unexceptional—loading histories such as electric cycling under moderate uniaxial traction. The
source of the problem was pinned down to the nonconvex dependence of the internal energy on the irreversible
dipole density. The purpose of the present study is to evaluate this more thoroughly. A brief overview of the theories
is provided in Sect. 2, and sample predictions for typical ferroelectric solids are reported in Sect. 3. Finally, a
concluding discussion is provided in Sect. 4.

2 Précis of the phenomenological theories

The class of phenomenological theories considered in this work is based on an additive decomposition of the
infinitesimal strain and the electric dipole density into reversible internal variables associated with elasticity and
dipole perturbations, and irreversible internal variables associated with dipole alterations or switching, with no
account of thermal and free-charge effects. These theories are relevant to polycrystalline ferroceramics subjected to
quasi-static electromechanical loadings.We restrict attention to a subclass of simple theories proposed byMcMeek-
ing and Landis [2] and refined by Miehe and Rosato [4]. These theories describe the electromechanical state of
the solid by a strain tensor ε, a polarization vector P, and an irreversible polarization vector � characterizing the
average amount and orientation of the permanent electric dipoles relative to a stress-free configuration with no net
polarization. The fact that permanent dipoles are characterized by a single variable simplifies the mathematical for-
mulation considerably but renders the theory unable to account for dipole switching induced by purely mechanical
loadings. Predictions are therefore expected to be reasonably accurate when electric fields are strong and stresses
are small; notwithstanding this expectation, however, the theory should be robust for the entire range of physically
admissible electric field intensities and stresses.

2.1 Thermodynamics and constitutive relations

In view of the above basic assumptions, the free energy of a system comprising a ferroelectric solid occupying a
domain Ω and an electric field is given by

E =
∫

Ω

e(ε,P, �) dV +
∫
R3

1

2
ε0E2 dV, (1)

where e is the free energy density of the solid,E is the intensity of the electric field, and ε0 is the electric permittivity
of vacuum. The free energy of the solid is assumed to be a convex function of ε and P. In turn, the dissipation of
the system is entirely ascribed to dipole switching within the solid, and is assumed to be of the form

D =
∫

Ω

∂ϕ

∂ �̇
(�̇) · �̇ dV, (2)

where the dissipation potential ϕ is a convex, positive function of the irreversible polarization rate �̇ such that
ϕ(0) = 0. The form (2) guarantees positivity of the dissipation as required by the principles of thermodynamics.
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Thermodynamic arguments then imply that the constitutive relations of the solid are given by (see [3])

E = ∂e

∂P
(ε,P, �), σ = ∂e

∂ε
(ε,P, �) and

∂e

∂�
(ε,P, �) + ∂ϕ

∂ �̇
(�̇) = 0, (3)

where the first two expressions relate the electric field intensity E and stress tensor σ with the polarization and
strain, respectively, and the last expression provides the evolution law for the irreversible polarization. In the case
of nonsmooth potentials, the derivatives in (3) should be understood as subdifferentials.

The polarization can be eliminated from the constitutive description in favor of the electric field intensity by
introducing the free enthalpy density

ψ(σ ,E, �) = sup
P,ε

[σ · ε + E · P − e(ε,P, �)] + 1

2
ε0E2, (4)

where the first term corresponds to a partial Legendre transformation of e with respect to P and ε. The constitutive
relations (3) can then be rewritten as

D = ∂ψ

∂E
(σ ,E, �), ε = ∂ψ

∂σ
(σ ,E, �) and

∂ψ

∂�
(σ ,E, �) − ∂ϕ

∂ �̇
(�̇) = 0, (5)

where D = ε0E + P is the electric displacement within the solid.

2.2 Incremental constitutive relations

Miehe and Rosato [4] recasted the above constitutive relations (5) in incremental form by discretizing them in time
following an implicit Euler scheme and introducing a single incremental potential. More specifically, given the
value �i of the irreversible polarization at the time step i of an electromechanical process, the electric displacement
and strain at the time step i +1 are expressed in terms of the stress and the electric field intensity at that time step as

Di+1 = ∂w

∂E
(σ i+1,Ei+1; �i ) and εi+1 = ∂w

∂σ
(σ i+1,Ei+1; �i ), (6)

where w is an incremental potential defined by

w(σ ,E; �i ) = sup
�

J (σ ,E, �; �i ) with J (σ ,E, �; �i ) = ψ(σ ,E, �) − Δt ϕ

(
� − �i

Δt

)
. (7)

In the above expression, Δt = ti+1 − ti is the time interval and the optimal � corresponds to the irreversible
polarization �i+1 at the time step i + 1 that solves the discretized evolution law (5)3 for the given �i . Given a
particular choice of thermodynamic functions in (7), expressions (6) provide an incremental phenomenological
description of ferroelectricity which allows for the variational formulation of boundary-value problems.

2.3 Specific forms of the thermodynamic functions

The theories considered in this work amount to postulating a free energy of the form

e(ε,P, �) =1

2

(
ε − ε̂(�)

) · C (
ε − ε̂(�)

) + 1

2
(P − �) · κ(P − �) + (

ε − ε̂(�)
) · h(�)(P − �) + epd(�), (8)
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where the elasticity and electric polarizability tensors are given in terms of isotropic constants by

C = λI ⊗ I + 2μI and κ = κI, (9)

and the piezoelectricity tensor is given in terms of three piezoelectric moduli by

h(�) =|�|
ps

(
α0

�

|�| ⊗ �

|�| ⊗ �

|�| + α⊥ I ⊗ �

|�| + α=
�

|�| ⊗s I
)

. (10)

In the above expressions, I and I are the second- and fourth-order identity tensors with major and minor symmetry,
and the symbol ⊗s refers to symmetrization in the first two indices. The first three terms in (8) represent the elastic,
electric polarization, and piezoelectric energies, respectively, and define a quadratic form which must satisfy the
inequalities

α2=
4μκ

< 1 and
μ

3λ + 2μ

(α0 + α=)2 + (α= + α⊥)2 + 6α0α⊥ − α2=
3μκ − (α0 + α=)2

< 1. (11)

to comply with the convexity requirement on the free energy. In turn, the stored energy epd due to permanent dipoles
is given by

epd(�) = −hs ps2

[
ln

(
1 − |�|

ps

)
+ |�|

ps

]
, (12)

where ps is the saturation polarization and hs is a material parameter characterizing the electric hysteresis slope,
while the straining associated with the permanent dipoles is given by

ε̂(�) =3

2
εs

( |�|
ps

)γ �

|�| ⊗d
�

|�| , (13)

where the symbol ⊗d denotes the deviatoric part of the tensor product, εs is the uniaxial strain at saturated polar-
ization, and the exponent γ is an additional material parameter characterizing the form of the butterfly loop such
that γ ≥ 1. Finally, the theories postulate a dissipation potential of the form

ϕ(�̇) = ec|�̇| + e0 ṗ0
1 + n

( |�̇|
ṗ0

)1+n

, (14)

where ec is the coercive field strength of the solid, i.e., the electric field level above which dipole switching is
triggered; e0 and ṗ0 are, respectively, a reference electric field and a polarization rate characterizing the rate-
dependence of the switching process; and n is a rate-sensitivity exponent such that 0 ≤ n ≤ 1.

Finally, the corresponding free enthalpy density is given by

ψ(σ ,E, �) = 1

2
σ · Ŝ(�)σ + 1

2
E · ε̂(�)E − σ · ĥ(�)E + σ · ε̂(�) + E · � − epd(�), (15)

with

Ŝ(�) =
(
C − hκ−1hT

)−1
, ε̂(�) = κ̂

−1 + ε0I, ĥ(�) = 1

2

(
Ŝhκ−1 + Shκ̂

−1
)

, (16)
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Table 1 Material parameters adopted for the ferroelectric solid

Symbol Parameter Units Value

κ−1 Electric polarizability C/(V m) 1800ε0

ps Saturation polarization C/m2 0.25

hs Hysteresis slope MV m/C 0.1

n Rate-sensitivity exponent – 0.5

ṗ0 Reference polarization rate C/(m2 s) 100

ec Coercive electric field MV/m 0.35

e0 Reference electric field MV/m 0.35

γ Irreversible strain exponent – 1 or 2

μ Lamé modulus GPa 45

λ Lamé modulus GPa 70

εs Saturation strain – 0.001

α0 Axial piezoelectric expansion MN/C 12.6

α⊥ Lateral piezoelectric expansion MN/C 276

α= Piezoelectric shearing MN/C −1460

The values roughly reproduce the rate-dependent behavior of a polycrystalline lead zirconate titanate at low frequencies [4,10]

where S = C−1 is the compliance tensor of the unpoled solid, κ̂ = κ − hTSh, and the superscript T in the case of
third-order tensors denotes transposition between the first pair of indices and the last index.

With the thermodynamic functions completely specified, predictions for any electromechanical loading history
can be readily obtained by successive evaluations of the incremental relations (6). However, it should be emphasized
at this point that, while the dissipation potential (14) is a convex function of the irreversible polarization rate, the
free energy (8) is a nonconvex function of the irreversible polarization, and so the constitutive theory does not
conform to the generalized standard material model [9]. Consequently, stability and uniqueness of the predicted
response are not guaranteed. In fact, it will be seen in the following sections that predictions can indeed be unstable,
as anticipated by Bottero and Idiart [8].

3 Sample predictions

The phenomenological theory of Sect. 2 is used here to generate predictions for ferroelectric solids subjected to
the simultaneous action of electric fields and mechanical loads. Table 1 shows the numerical values adopted for
the various material parameters. These values roughly reproduce the rate-dependent behavior of a polycrystalline
lead zirconate titanate at low frequencies [4,10] and comply with conditions (11). The irreversible strain exponent
is commonly set in the literature to either γ = 1 or γ = 2; we consider both values.

In all cases, initially unpoled specimens are subjected to a mechanical stress σ along a given direction n, and are
subsequently subjected to a triangular electric signal E(t) with a peak amplitude of 4ec and a frequency of 1 Hz
along the same direction, with the applied stress level held fixed. For each loading step, the incremental potential
(7) is computed by maximizing the function J with a direct search complex algorithm for nonsmooth functions,
and the material response is obtained by evaluating expressions (5)1,2 at the optimal irreversible polarization. The
time step employed in the calculations is Δt = 10−3 s.

Predictions for specimens with γ = 1 and γ = 2 are shown in Figs. 1 and 2, respectively, in the form of plots
for the electric displacement (D‖) and axial strain (ε‖) in the direction of the applied loading as a function of the
electric field intensity. Also shown in these figures are corresponding plots for the peak values of the irreversible
polarization components along the parallel (�‖ = � ·n) and perpendicular (�⊥ = |�⊥| = |�− �‖n|) directions to the
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γ = 1

aPM05aPM0aPM05-

Fig. 1 Predictions for specimens with irreversible strain exponent γ = 1 at various stress levels: electric displacement (D‖) and
longitudinal strain (ε‖) along the compression axis, and parallel (�‖) and perpendicular (�⊥) irreversible polarization components

applied loads versus the number of loading cycles. Three different stress levels corresponding to compressed (− 50
MPa), free-standing (0 MPa), and tensioned (50 MPa) specimens are considered1. Initial transients and stabilized
responses are indicated in dotted and continuous lines, respectively. We begin by noting that the responses of free-
standing and tensioned specimens predicted by both irreversible strain exponents are consistent with experimental
observations. These predictions reproduce the hysteretic electric response and butterfly loops typically observed
in ferroceramics. The exponent γ = 2 is seen to produce somewhat more rounded responses than the exponent
γ = 1, but other than that, the responses are qualitatively similar. The underlying irreversible polarization remains

1 Lead zirconate titanate can withstand stress levels of the order considered in this work [11].
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γ = 2

-50 MPa 0 MPa 50 MPa

Fig. 2 Predictions for specimens with irreversible strain exponent γ = 2 at various stress levels: electric displacement (D‖) and
longitudinal strain (ε‖) along the compression axis, and parallel (�‖) and perpendicular (�⊥) irreversible polarization components

aligned with the direction of applied loads, as it should in view of the initial isotropy of the material, and the reponse
stabilizes right after the first loading ramp.

The predicted responses for the compressed specimens, on the other hand, exhibit unexpected features. Indeed,
these responses exhibit longer transients and stabilized irreversible polarizations misaligned with the direction of
applied loads. This means specimens develop polarization charges on the free surfaces perpendicular to the applied
loads and distort with misaligned principal axes. The source of these features can be pinned down to the convex
dependence of the assumed free energy density (8) on the irreversible polarization. This convexity is introduced via
the first and third terms of the free energy, which represent the elastic and piezoelectric contributions. The relevant
term is the first one. Indeed, neglecting the piezoelectric effect and the contribution of the irreversible polarization
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to the compliance Ŝ and permittivity ε̂ tensors, the objective function (7)2 being maximized with respect to � at
each time step is given by

J ≈ σ 2

2Y
+ εE2

2
+ E�‖ − σεs

2

( |�|
ps

)γ
[
1 − 3

(
�‖
|�|

)2
]

+ hs p
2
s

[
ln

(
1 − |�|

ps

)
+ |�|

ps

]
− Δtec|�̇|

− Δt
e0 ṗ0
1 + n

( |�̇|
ṗ0

)1+n

, (17)

where σ is the applied stress level, Y and ε are the Young’s modulus and electric permittivity, respectively, of the
solid, �̇ = (� − �i )/Δt . The evolution equation (5)3 for the irreversible polarization in the plane perpendicular to
the loading axis, �⊥, is thus

−
{

hs
1 − |�|/ps + 1

2

σεs

ps|�|

[
1 + 3

(
�‖
|�|

)2
]}

�⊥ =
[
ec + e0

∣∣∣∣ �̇

ṗ0

∣∣∣∣
n] �̇⊥

|�̇| , �⊥(0) = 0. (18)

for the exponent γ = 1, and

−
{

hs
1 − |�|/ps + σεs

ps2

}
�⊥ =

[
ec + e0

∣∣∣∣ �̇

ṗ0

∣∣∣∣
n] �̇⊥

|�̇| , �⊥(0) = 0. (19)

for the exponent γ = 2. The primal solution �⊥(t) = 0 to these equations is stable, provided the bracketed factors
multiplying �⊥ on the left-hand sides are positive. While this is the case for any tensile stress level (σ > 0), it is
not the case for sufficiently large compressive stresses (σ < 0). In the latter case, an exponential build-up of small
perturbances in �⊥(t) should be expected. This expectation conforms with the results reported in figures 1 and 2 .
Note that �⊥(t) becomes finite right after the first loading cycle in specimens with γ = 1, whereas it does so only
after several cycles in specimens with γ = 2. Of course, the number of loading cycles it takes �⊥(t) to become
finite increases with the decreasing stress level.

This instability is by no means restricted to uniaxial loadings. Consider, for instance, specimens subject to the
same loading programconsidered above except that themechanical stress is nowequibiaxial on a plane perpendicular
to the applied electric field. In view of the isochoric character of ε̂(�), the evolution equations for the irreversible
polarization perpendicular to the direction of the applied electric field are given by the same expressions (18) and
(19) but with the opposite sign in front of σ . Thus, the primal solution �⊥(t) = 0 is now stable for any compressive
stress level (σ < 0), but it is unstable for sufficiently large tensile stresses (σ > 0).

Stability limits for arbitrary loading conditions follow fromknowledge of theHessian of the free energy (8), which
is quite involved. In any event, the above analysis suggests instabilities should be expected whenever specimens
are cycled under electric field intensities exceeding ec along with stress levels exceeding ∼ hs ps2/εs. Such stress
levels are in the order of 5 MPa for the specimens considered here. While it is conceivable that features of this sort
may arise in small anisotropic monocrystalline samples (see, for instance, [12]), they have never been reported in
highly disordered polycrystalline samples, to the best of our knowledge. In fact, recent micromechanical theories for
ferroceramics intended to generate physically-based models [13,14] make use of energy densities that are convex
with respect to the volume fractions of variants and are therefore unlikely to predict unstable responses of this sort.
Thus, even though these phenomenological theories are intended for low stress levels only, for example,McMeeking
and Landis [2], they should be used with caution even within their presumed range of validity.

4 Concluding discussion

The study indicates that the above class of phenomenological theories generate unexpected predictions above
certain stress levels, which were found to be in the order of a few megapascals or even lower for the sets of material
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parameters considered. At such stress levels, the predicted response can become unstable. This is a consequence
of the assumed convex dependence of the elastic energy on the permanent dipole density. Even though alternative
functional dependences have not been considered in this study, the convexity seems inevitable if the set of internal
variables describing the permanent dipole distribution is to be restricted to a single vectorial variable as in this
class of theories. This is because the physics of ferroelectricity then require that the strain tensor associated with
permanent dipoles be an even function of such vectorial variable, and the elastic energy be a quadratic form of such
strain tensor. Thus, the issue is expected to persist in more sophisticated versions of the theories making use of an
irreversible strain tensor as an additional internal variable in order to capture ferroelasticity, as in Kamlah [1] and
Landis [15], since stress levels typically required to trigger ferroelasticity are significantly higher than those alluded
to above. These versions have also been found to suffer from additional problems arising from the assumed form
for the dissipation potential [16].

We note in passing that Miehe et al. [17,18] proposed a phenomenological theory of ferromagnetism in poly-
crystalline ceramics that is completely analogous to the above theory of ferroelectricity, where the electric field
intensity, electric polarization, and electric displacement vectors are identified with the magnetic field strength,
magnetization, and magnetic induction vectors, respectively. This correspondence is of course valid, provided free
charges and internal currents are neglected. The above observations are also valid for this theory in view of the
analogous mathematical structure.

It is thus concluded that robust phenomenological theories require the use of enriched sets of internal variables
to describe the distribution of permanent dipoles within the solid. Efforts along these lines have been pursued by
Kamlah [1], Mehling et al. [19] and, more recently, by Stark et al. [13] and Tan and Kochmann [14], but the resulting
theories are yet to be thoroughly evaluated.
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