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SUMMARY

An analytical solution is computed for the thermal field induced in a semi-infinite body by a moving heat
source whose shape was proposed by Goldak et al. for the simulation of welding processes. Owing to
its ability to accommodate a wide variety of welding techniques, this model is widely used. Throughout
two semi-ellipsoidal volumes, corresponding to the front and the rear parts of the moving source, the heat
power density is distributed using a Gaussian function.

In the literature, Nguyen et al. have proposed an analytical solution to this problem that is, however,
only correct when both semi-ellipsoids are equal (i.e. for a single-ellipsoidal model). The current work
presents an extension of the analytical solution of Nguyen et al. to the double-ellipsoidal case. As a
special case, the solution for the temperature field induced by a double-elliptical surface heat source is
also developed.

In order to validate the analytical solutions, the problem is solved using both two- and three-
dimensional finite element models in several test-cases. Solutions for double-ellipsoidal and double-
elliptical sources are numerically computed and compared with the analytical solutions, while clearly
demonstrating the differences with respect to the solution of Nguyen et al. At the same time, the
two-dimensional numerical approximation is evaluated in terms of accuracy and computational cost.
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1. INTRODUCTION

The thermal analysis of a welding process commonly implies the solution of a heat-transfer
problem with a highly-concentrated heat source, which is often in motion. In welding numerical
analyses, the moving double-ellipsoidal model, proposed by Goldak et al. [1], is one of the most
widely used heat source models. The model is unique due to its ability to accommodate different
fusion welding techniques, which include gas metal arc welding (GMAW) [2–6], gas tungsten arc
welding [5, 7–16], shielded metal arc welding [7], submerged arc welding [1], laser spot welding
[17], electron beam welding [1, 18], and laser-GMA hybrid welding [19].

Analytical solutions are based on a number of simplifying assumptions (e.g. constant material
properties, semi-infinite domain, adiabatic surface, etc.). Therefore, their accuracy is low, espe-
cially near the welding pool. Numerical simulation does not need to introduce these simplifying
assumptions and for this reason it has been employed more and more.

Although limited to particular situations, analytical solutions are fundamental to the validation
of numerical models. In fact, the availability of experimental results is usually required as reference
for comparison [1]. However, the double-ellipsoidal heat source model has several parameters for
calibration that allow adequately fitting numerical results to experimental data (even for simplified
numerical models, e.g. when using a coarse mesh or a large time step). Therefore, in order to assess
the accuracy of a finite element model in terms of mesh and time-step size and at the same time
find the correct values for the parameters of the Goldak’s model, it is more accurate to compare
the results of the numerical model with an analytical solution of a representative problem, which
will be inherently free of measurement errors.

Nguyen et al. [2] developed a closed-form solution of the three-dimensional thermal conduction
problem under Goldak’s double-ellipsoidal heat source. This solution has been used by several
authors to assess the accuracy of a numerical solution and as a basis for the development of other
heat source descriptions:

• Nguyen et al. [6] developed an analytical solution for the case of welding of a finite-thick
plate.

• Recently, for applications to laser material processing, Van Elsen et al. [20] proposed a heat
source with an analytical solution in a semi-infinite medium.

• Goyal et al. [21] proposed a heat source with an analytical solution for pulsed current GMAW.

In all cases, Nguyen’s solution was incorporated without correctly accounting for the different
sizes of the front and the rear ellipsoids.

In this work, the analytical solution is presented for the problem of heat conduction, induced by
Goldak’s double-ellipsoidal heat source, in a semi-infinite domain. In contrast to Nguyen’s original
solution [2], this analytical solution correctly accounts for differences between the front and rear
contributions of the double-ellipsoidal heat source.

In addition, the analytical solution is developed for the case of a double-elliptical heat source.
This heat source model is well-suited for shallow penetration welds and was previously applied
by Lei et al. [12] to simulate TIG welding. Other welding models, such as the classical ‘disc’
model developed by Pavelic et al. [22] or the elliptical surface with a Gaussian-distributed heat
flux developed by Bang et al. [7], can be seen as particular cases of the double-elliptical heat flux
model.

Finally, in order to validate the proposed analytical solutions, a welding thermal problem is
numerically solved using finite elements. Solutions for double-ellipsoidal and double-elliptical
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sources are numerically computed and compared with the analytical solutions, while clearly demon-
strating the differences with respect to the solution of Nguyen et al. Two-dimensional and three-
dimensional numerical models are concurrently used to evaluate the two-dimensional numerical
approximation in terms of accuracy and computational cost.

2. MOVING DOUBLE-ELLIPSOIDAL HEAT SOURCE

Consider a fixed Cartesian reference frame (x, y, z), in which a heat source located initially at
z=0 and at time t=0, moves with constant velocity, v, along the z-axis. In the case of welding
applications, Goldak et al. [1] defined the heat source at a position (x, y, z) and time, t , by means
of the following double-ellipsoidal distribution:

q(x, y, z, t)= 6
√
3Q
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×
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where Q is the energy-input rate; a, b, cr, and cf are the respective radii of the sides, rear and
front of the ellipsoid (see Figure 1); fr and ff are the portion of the heat deposited, respectively,
in the front and rear ellipsoid (with fr+ ff=2).

Let us note that ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
q(x, y, z, t)dx dy dz=2Q (2)

For arc welding, the energy input rate, Q, can be expressed as

Q=�V I (3)

where � is the arc efficiency, V the voltage and I the current intensity.
In order to fit the results to experimental data, calibration, of the double-ellipsoidal heat source

model of Goldak et al., requires adjustment of six parameters: �, a, b, cf, cr, and ff. In the
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Figure 1. Double-ellipsoidal heat source model.
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literature, some authors [2, 6, 13] have reduced the number of free parameters by imposing an
additional constraint: ff/cf= fr/cr. This constraint forces continuity of the function q across the
z=vt plane at any time, t , to yield

ff=�cf/(cr+cf) (4)

with �=2. The literature on modeling of welds has usually ignored this condition; indeed, �=2
was found to lie between 1.8 [1] and 3 [1, 5, 19, 23]. An �=3 correlates with the choice of cr=4cf
and ff=0.6; which, as suggested by Goldak et al. [1], should be used as a default value when
not enough experimental data are available. Please note that the temperature field induced by the
double-ellipsoidal heat source, q, is always continuous (independent of the value of �).

3. TEMPERATURE FIELD

Heat conduction in a homogeneous solid is governed by the linear partial differential equation

�c
�T
�t

−k∇2T =q (5)

where T =T (x, y, z, t) is the temperature at position (x, y, z) and time t, q is the heat source, �
is the density, c is the heat capacity, and k is the thermal conductivity.

The fundamental solution of Equation (5) is given by the Green function [24]

G(x−x ′, y− y′, z−z′, t− t ′)= 1

�c [4��(t− t ′)]3/2
exp

[
− (x−x ′)2+(y− y′)2+(z−z′)2

4�(t− t ′)

]
(6)

where �=k/(�c) is the thermal diffusivity.
Assuming an infinite body with an initial homogeneous temperature, Equation (6) gives the

temperature increment at position (x, y, z) and time t due to an instantaneous unit heat source
applied at position (x ′, y′, z′) and time t ′. Then, due to the linearity of Equation (5), the temperature
variation induced at position (x, y, z) at time t by an instantaneous heat source of magnitude
q(x ′, y′, z′, t ′), which is applied at position (x ′, y′, z′) at time t ′, is

q(x ′, y′, z′, t ′)G(x−x ′, y− y′, z−z′, t− t ′) (7)

By assuming that the heat has been continuously input at position (x ′, y′, z′), starting from
t ′=0, the temperature increment at position (x, y, z) at time t is∫ t

0
q(x ′, y′, z′, t ′)G(x−x ′, y− y′, z−z′, t− t ′)dt ′ (8)

By adding up all of the heat input contributions, starting from t ′ =0, that have been made to the
entire infinite medium, the temperature increment at any position (x, y, z) and at any time t takes
the form

�T (x, y, z, t)=
∫ t

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
q(x ′, y′, z′, t ′)G(x−x ′, y− y′, z−z′, t− t ′)dx ′dy′ dz′ dt ′ (9)
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Therefore, the temperature induced by the double-ellipsoidal heat source defined by Equation (1) is

�T (x, y, z, t)= 3
√
3
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Q
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Finally, by assuming that the body was initially at the homogeneous temperature, T0, the
temperature field is defined by

T (x, y, z, t) = T0+ 3
√
3

�
√

�

Q

�c
×

∫ t

0

exp
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]
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×[ fr Ar(1−Br)+ f f Af(1+Bf)]dt ′ (15)
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with

Ai = A(z, t, t ′;ci)=
exp

[
−3

(z−vt ′)2

12�(t− t ′)+c2i

]
√
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(16)

Bi = B(z, t, t ′;ci )=erf

⎡
⎣ci
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√
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√
12�(t− t ′)+c2i

⎤
⎦ (17)

The index, i , denotes front, f , or rear, r .
The time integral in Equation (15) does not have a closed analytical expression; thus, it must

be solved by numerical integration. To this end, recursive-adaptive Simpson quadrature was used
and the integral was approximated to within an absolute-error tolerance of 10−6.

Remark I
In the solution proposed by Nguyen et al. [2], to the same problem, the terms involving Bi are
absent. Thus, their solution is only valid when cr=cf and fr= ff=1.

Remark II
By assuming that the surface y=0 is adiabatic and by considering the symmetry of the solution
with respect to the plane y=0, Equation (15) can also be interpreted as the temperature increment
induced by q in the semi-infinite body (y�0).

4. EXAMPLE OF APPLICATION

With the material and process data listed in Table I, consider the heat conduction problem in a
semi-infinite domain (y�0). Assume that welding starts at position O(0,0,0) and at time t=0,
and that the welding torch moves with a constant velocity, v=5mm/s, along the z-axis.

Three different cases are studied which correspond to different choices of the parameters defining
the size and the portion of heat input to the front and rear semi-ellipsoids. In all cases, the fractions
of the total heat corresponding to the front and the rear semi-ellipsoids are defined as

ff=2
cf

cf+cr
=2− fr (18)

This definition forces the heat power density function, q, given by Equation (1), to be continuous
at the z=vt plane at any time, t .

In Figure 2, the temperature evolution is displayed for a point located 5cm from the starting
point along the welding axis. The torch is directly over the observed point at t=10s. Figure 3
shows the temperature along the welding axis 10s after the start of welding (i.e. when the welding
torch is located 5cm away from the starting point).

As the error-function terms in Equation (15) are omitted in the solution proposed by Nguyen
et al. [2], it is correct only for the cases when cf=cr and ff= fr (when the error-function terms in
Equation (15) cancel themselves). For instance, note that for cases 2 and 3, cf2=cr3 and cr2=cf3
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Table I. Material and process data for a moving double-ellipsoidal heat source in a semi-infinite body.

Case

1 2 3

cf 15mm 6mm 24mm
cr 15mm 24mm 6mm
ff 1 0.4 1.6

� 7820kg/m3

c 600 J/(kg◦C)
k 29W/(m◦C)
T0 20◦C
v 5mm/s
Q 5083W
a 10mm
b 2mm
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Figure 2. Analytical solutions for the temperature variation with time at position (0,0,5cm) for the
moving double-ellipsoidal heat source.

(i.e. cf and cr are interchanged), and also ff2= fr3 and fr2= ff3 in virtue of Equation (18); then,
we get

ff2A(z, t, t ′;cf2)+ fr2A(z, t, t ′;cr2)= fr3A(z, t, t ′;cr3)+ ff3A(z, t, t ′;cf3)
Therefore, the solution of Nguyen et al. gets the same answer in both cases, which is clearly not
physical.

As it can be observed in Figures 2 and 3, the solutions proposed, in the current study, for the
double-ellipsoidal heat source reproduce the expected results when front and rear semi-ellipsoids
of different dimensions receive different fractions of the total heat input. As shown in Figure 2,
the current solution shows that the temperature increase, induced by the heat source at a given
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Figure 3. Analytical solutions for the temperature profile along the welding path, 10s after the start of
welding, for the moving double-ellipsoidal heat source.

0

1
2 3 4 5 6

0

1

x 
[c

m
]

y 
[c

m
]

t

z [cm]

7

cf

cf

cr

cf

cr

mm

cr mm

mm
mm

Figure 4. Analytic computation of top and side views of the isotherm of 1560◦C, 10s after the start of
welding, for the moving double-ellipsoidal heat source.

point along the welding path, arrives earlier for case 3 than for cases 1 and 2. The earlier arrival
of the temperature increase in case 3 is explained by the fact that, in the welding direction, the
front semi-ellipsoid of case 3 is longer than those of cases 1 and 2. These solutions are compared
in next section with finite element solutions, and an excellent agreement is observed.

Figure 4 displays a top view and a side view of the isotherm of 1560◦C, which corresponds to
the melting temperature. We can see the effect of changing Goldak’s parameters on the position
of the welding pool with respect to the torch position.

4.1. Comparison with finite elements solutions

With an analytical solution at hand, the accuracy of two different finite element (FEM) approx-
imations to the problem of heat conduction induced by a moving double-ellipsoidal heat source
will be evaluated. In both cases, the fully implicit Euler-backward technique is used for time
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Figure 5. Geometry adopted for the finite element analysis of the temperature induced by a moving
double-ellipsoidal heat source in a semi-infinite body.

Figure 6. 3D and 2D finite element meshes adopted for the analysis of the temperature induced by a
moving double-ellipsoidal heat source in a semi-infinite body.

discretization. Both finite element models are implemented in the OOFELIE code [25], and also
include solidification and melting [26, 27].

As shown in Figure 5, the semi-infinite medium is approximated with a hexahedral volume:
0�x�10cm, 0�y�10cm, −5cm�z�15cm. Welding begins at position O(0,0,0) and at time
t=0, and follows the path OF (symmetry with respect to plane x=0 is assumed).

An unstructured mesh of 65 557 linear tetrahedral elements (13 547 nodes) is used to discretize
the domain (see Figure 6 at the left). The mesh is gradually refined towards the welding axis,
where the average element size is h=0.84mm. The time step is set to 0.05s and kept constant
during the analysis.
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By assuming a dimensional reduction of the problem to two dimensions, a second finite element
solution is computed. In this type of problem, a dimensional reduction is a common method used
to reduce the computing time [28, 29]. Usually, two-dimensional models are built by considering
either a thin plate, represented by a plane shell where welding is performed, or by making a
plane section normal to the welding direction. The latter model is well suited for the case being
currently addressed. By assuming that the temperature distribution is stationary (with respect to
a coordinate system attached to the torch, which moves at a constant speed, v, along the z-axis),
the 3-D temperature field can be determined from the 2-D temperature field using the relationship

T (x, y, z, t)=T(x, y, z2D, t+(z2D−z)/v) (19)

The accuracy of this model increases with the Peclet number, Pe [30]; which is directly
proportional to the welding velocity, v, and to the characteristic dimension in the welding direction,
L; and inversely proportional to the diffusivity of the material. Thus, the Peclet number can be
represented as

Pe= vL

�
(20)

By adopting L=10 cm, a Peclet number of Pe=80.9 is obtained, which validates the use of the
2-D cross-sectional model.

The cross section located at z≡ z2D=5cm is chosen for this analysis. The unstructured mesh
of 486 linear-triangular finite elements (280 nodes), as shown at the right of Figure 6, is used.
The mesh size is equivalent to that of the 3-D mesh (in fact, the 2-D mesh is the cross section at
z=5cm of the current 3-D mesh). The time step used is 0.05s.

Next, the results obtained from the numerical models and the analytical solution will be
compared. As shown in Figures 7 and 8, for both the temperature evolution at point P and the
temperature profile along OF at t=10s (see Figure 5), the 3-D FEM model fits the analytical
curves with high accuracy.
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Figure 7. Analytical and FEM solutions for the temperature variation with time, at position (0,0,5cm),
for a moving double-ellipsoidal heat source.
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Figure 8. Analytical and FEM solutions for the temperature profile, along the welding path, 10s after the
start of welding, for a moving double-ellipsoidal heat source.

On the other hand, for the entire time interval of interest, the 2-D FEM model gives satisfactory
results for the temperature evolution at position P (which is located at the considered cross section).
At t=10s, the temperature predicted along OF agrees with the analytical solution, except at the
proximity of the starting point of welding. These results coincide with the observation of Goldak
et al. [28, 29] that the 2-D cross-sectional model is unable to account for run-on effects.

Finally, it should be mentioned that the CPU consumptions of both models are impressively
different: 5288s for the 3-D FEM and 13.7s for the 2-D FEM (times are reported using a PC with
an Intel Core 2 Duo 6300 processor).

5. MOVING DOUBLE-ELLIPTICAL HEAT FLUX

Consider the double-elliptical heat flux model as the limiting case of the double-ellipsoidal one,
when the depth of the heat source approaches zero (i.e. b→0). In this case, the heat power per
unit area at the surface y=0 is given by

f (x, z, t) = lim
b→0

6
√
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The temperature increment produced by the surface heat flux, defined by Equation (21), is
obtained as the limit of the function T =T (x, y, z, t) (given in Equation (15) and evaluated at
y=0) when b approaches zero:

T (x, z, t) = T0+ 3
√
3

�
√

�
Q/(�c)×

∫ t

0

exp

[
−3

x2

12�(t− t ′)+a2

]
√
12�(t− t ′)+a2

√
12�(t− t ′)

×[
fr Ar (1−Br)+ f f Af (1+Bf)

]
dt ′ (22)

with Af, Bf, Ar, and Br defined by Equations (16) and (17).
Note: The classical ‘disc’ model, developed by Pavelic et al. [22], can be recovered by setting

ff= fr=1 and cf=cr=a, and by defining the concentration coefficient as C=3/a2. The surface
term of the welding heat input, used by Bang et al. [7] (where heat flux is defined using a Gaussian
function over an elliptical surface) can be obtained by taking ff+ fr=1 and cf=cr.

5.1. Example of application

Consider the problem of determining the temperature induced by a welding source, modeled as a
double-elliptical heat flux, moving with constant speed, v, along the z-axis. The geometry, material,
and welding parameters are the same as those of Section 4, except for the depth of the ellipsoids,
b, which is zero.

Fully 3-D and 2-D cross-sectional finite element analyses are performed using the same space
and time discretization as in the double-ellipsoidal heat source case.

Numerical and analytical results are shown in Figures 9 and 10. Concerning the accuracy of
3-D and 2-D cross-sectional finite element approximations, current results confirm those found
in Section 4.1. The 3-D FEM model fits the analytical curves with high accuracy, while the 2-D
cross-sectional model is accurate to predict the temperature evolution at points located over the
analyzed section but the accuracy deteriorates for points located far from this section.

We remark that in the double-elliptical surface model, the heat power is more concentrated than
in the double-ellipsoidal volume heat model. Thus, for a given total heat input, Q, the temperatures
induced by the former are considerably higher than those induced by the latter.

6. CONCLUSIONS

In this work, an analytical solution was proposed for the problem of unsteady thermal conduction
in a semi-infinite medium (induced either by a double-ellipsoidal moving heat source or a double-
elliptical heat flux). This problem is of great industrial interest since it is representative of a wide
variety of welding processes on thick plates.

For the first time, an exact analytical solution is given for the case of double-ellipsoidal (or
double-elliptical) heat sources, with different values of size or heat input for the front and rear
subregions. The proposed solution corrects a previous solution proposed in the literature, which
was used by several authors as a basis in the following applications: finite-thick plate welding
analysis [6], pulsed current GMAW [21], and laser material processing [20]. The solution that this
current work presents can be easily extended to these applications by following the work made by
these authors.
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Figure 9. Analytical and FEM solutions for the temperature variation with time, at the position (0,0,5cm),
for a moving double-elliptical heat flux.
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Figure 10. Analytical and FEM solutions for the temperature profile along the welding path, 10s after the
start of welding, for a moving double-elliptical heat flux.

The availability of an analytical solution permits the evaluation of a numerical solution free
of experimental uncertainties. As validation examples, the finite element numerical solutions in
both the 3-D and the simplified 2-D cases were computed and compared with the exact analytical
solutions. The examples also demonstrated that 2-D computations give very accurate solutions
(when the analysis position is located far from the welding zone extremes) with a minimum
consumption of CPU time.
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