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We demonstrated previously that acetylated tubulin inhibits plasma membrane Ca2+-ATPase (PMCA) activ-
ity in plasma membrane vesicles (PMVs) of rat brain through a reversible interaction. Dissociation of the
PMCA/tubulin complex leads to restoration of ATPase activity. We now report that, when the enzyme is
reconstituted in phosphatidylcholine vesicles containing acidic or neutral lipids, tubulin not only loses its in-
hibitory effect but is also capable of activating PMCA. This alteration of the PMCA-inhibitory effect of tubulin
was dependent on concentrations of both lipids and tubulin. Tubulin (300 μg/ml) in combination with acidic
lipids at concentrations >10%, increased PMCA activity up to 27-fold. The neutral lipid diacylglycerol (DAG),
in combination with 50 μg/ml tubulin, increased PMCA activity >12-fold, whereas tubulin alone at high con-
centration (≥300 μg/ml) produced only 80% increase. When DAG was generated in situ by phospholipase C
incubation of PMVs pre-treated with exogenous tubulin, the inhibitory effect of tubulin on PMCA activity
(ATP hydrolysis, and Ca2+ transport within vesicles) was reversed. These findings indicate that PMCA is ac-
tivated independently of surrounding lipid composition at low tubulin concentrations (b50 μg/ml), whereas
PMCA is activated mainly by reconstitution in acidic lipids at high tubulin concentrations. Regulation of PMCA
activity by tubulin is thus dependent on both membrane lipid composition and tubulin concentration.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

PMCA (plasmamembrane Ca2+ ATPase) is a member of the family
of P-type ATPases. It is responsible for active transport of Ca2+ ions,
using energy from ATP hydrolysis, in many cell types. There are four
PMCA isoforms (PMCA 1–4), each encoded by a different gene, and
each isoform has multiple subtypes based on alternative splicing of
its mRNA [1]. Regulation of PMCA activity has been extensively stud-
ied. Calmodulin is the main activator [2]; the enzyme can also be ac-
tivated by phosphorylation of kinase A or C, partial proteolysis, or
acidic lipids. PMCA activity appears to be affected by composition of
phospholipids in the surrounding plasma membrane [3,4]. In human
erythrocyte membranes, PMCA can be activated by a variety of acidic
phospholipids, whereas neutral phospholipids have no effect [5,6].
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Diacylglycerol (DAG) is a potent activator of erythrocyte PMCA,
through direct interaction [7]. Activity of PMCA from the brain was in-
creased by the level of phosphatidylinositol 4,5-bisphosphate [5].

We demonstrated previously that acetylated tubulin inhibits the
ATPase activity of PMCA, as well as the activity of various isolated P-
ATPases. Na+,K+-ATPase is inhibited by acetylated tubulin in brain
plasma membrane in vitro [8], and in neuronal [9] and non-neural
cells [10] in vivo. Tubulin must be acetylated in order to display
such enzyme-inhibitory effect [11]. Tubulin forms a complex with
Na+,K+-ATPase through interaction with the fifth cytoplasmic do-
main [12]. In erythrocytes from hypertensive patients, formation of
a complex with acetylated tubulin decreased the activity of Na+,
K+-ATPase [13]. In Saccharomyces cerevisiae, acetylated tubulin inhib-
ited plasma membrane H+-ATPase in vivo and in vitro. The enzyme
and tubulin were shown to be part of a protein complex which is dis-
sociated during glucose catabolism in cells, leading to activation of
the enzyme [14]. PMCA in brain plasma membrane is inhibited by
acetylated tubulin, and both proteins are part of the same complex
[15]. Calmodulin and ethanol dissociate the acetylated tubulin/
PMCA complex and thereby activating PMCA [16–18]. In order to in-
teract with and inhibit PMCA, tubulin must be acetylated at Lys40 of
the α-chain [15].

The present study addressed the combined effect of lipids and tu-
bulin on PMCA activity. In the presence of neutral or acidic lipids, at
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certain concentrations, tubulin strongly activated PMCA, rather than
inhibiting it.

2. Materials and methods

2.1. Materials

ATP, anti-mouse IgG conjugated with peroxidase, anti-α-tubulin
mouse mAb (ascites fluid) DM1-A, anti-PMCA mAb 5F10, anti-
acetylated tubulin mouse mAb 6-11B-1, L-α phosphatidylcholine type
XVI-E from egg yolk, brain extract (BE) type Folch fraction 1 from bovine
brain containing ~10% phosphatidylinositol, 50% phosphatidylserine and
other lipids, L-α phosphatidic acid from egg yolk, calmodulin-agarose,
1,2-Dicapryloyl-sn-glycerol (DAG) and polyoxyethylene-10-laurylether
(C12E10) were from Sigma Chemical Co. (St. Louis, MO, USA). Fura 2-AM
was fromMolecular Probes (Eugene, OR, USA).

2.2. PMCA purification

Plasmamembrane vesicles (PMVs) were isolated from rat brain by
the method of Michaelis et al. [19], with slight modification [15].
PMCA was purified from rat brain plasma membrane by the method
of Salvador and Mata [20], with modification. Plasma membrane
(45 mg protein) was suspended in 10 ml of 20 mM HEPES/KOH, pH
7.40, 20% glycerol, 130 mM KCl, 1 mM MgCl2, 2 mM DTT, 1 mM
PMSF, and 0.5 mM CaCl2 (“purification buffer”). Membrane was solu-
bilized for 10 min at 4 °C by slow addition of C12E10 (2 mg detergent
per mg total membrane protein) with 0.1% PC. The detergent-
solubilized membrane was centrifuged at 100,000×g for 30 min at
4 °C. The supernatant fraction was used to purify PMCA by
calmodulin-affinity chromatography, as described by Niggli et al.
[21]. Contaminant proteins were eliminated, and PMCA was eluted
with a buffer similar to “purification buffer” except that 0.5 mM
CaCl2 was replaced by 1 mM EGTA, and C12E10 was included (0.05%
final concentration). Eluted fractions containing high concentrations
of PMCA (as detected by Western blot), were pooled, aliquoted, and
kept frozen in liquid N2. According to immunoblotting with anti-
calmodulin (clone 2D1+6D4+1F11, Sigma) and ECL detection, the
PMCA preparation was free of calmodulin.

All protocols and procedures for animal experiments were
reviewed and approved by the Ethics Committee of the granting insti-
tution (CONICET; Res. # 1806/04).

2.3. Tubulin preparation

Brains from 30 to 60-day-old rats were homogenized at 4 °C in
one volume of MEM buffer (0.1 M Mes/NaOH, pH 6.7, containing
1 mM EGTA and 1 mM MgCl2). The homogenate was centrifuged at
100,000×g for 45 min, and the pellet was discarded. Tubulin was pu-
rified by one assembly/disassembly cycle, followed by phosphocellu-
lose chromatography, as described previously [22]. Concentration
was adjusted to 1 mg/ml with MEM buffer, and tubulin was used im-
mediately. According to immunoblotting with anti-calmodulin (clone
2D1+6D4+1F11, Sigma) and ECL detection, the tubulin preparation
was free of calmodulin.

2.4. Reconstitution of PMCA with lipids, and PMCA activity assay

The method of Palacios et al. [23] was used, with slight modifica-
tion. Purified PMCA (150–300 μg) containing 0.05% C12E10, in a vol-
ume of 100 μl, was added to tubes containing dried lipid (PC, or PC
mixed with other lipids as stated) to give a lipid/protein ratio of
5.3:1. Contents of tubes were thoroughly mixed by agitation, pre-
incubated for 10 min on ice, and diluted with PMCA assay medium
(1 ml final volume). Reaction at 340 nm, using a coupled enzyme
assay, was measured spectrophotometrically to assess PMCA activity
[5,24]. The reaction mixture contained PMCA (5–10 μg protein)
reconstituted in lipids, in 0.34 ml assay buffer (50 mM HEPES/KOH,
pH 7.4, 100 mM KCl, 5 mM NaN3, 2 mM MgCl2, 0.22 mM NADH,
0.42 mM phosphoenolpyruvate, 3 I.U. pyruvate kinase, 8 I.U. lactate
dehydrogenase, and CaCl2 sufficient to give free Ca2+ concentration
2.4 μM). Defined concentrations of free Ca2+ were established using
CaCl2/EGTA solutions, and calculated using WEBMAXC Standard soft-
ware. Samples were kept 5 min at 37 °C, and the reaction was started
by addition of 1 mM ATP. PMCA activity was calculated as the differ-
ence in ATP hydrolysis between samples incubated in the presence vs.
absence of Ca2+. For assay of enzyme activity in the presence of tubu-
lin, the tubulin was pre-incubated 20 min with PMCA reconstituted
with lipids, and then added to the reaction mixture. The determina-
tion of PMCA activity in PMVs (0.25 mg protein) was similar to that
described for enzyme reconstituted in lipids. Additionally, we per-
formed two controls to demonstrate that PMVs did not contain signif-
icant enzymatic activities SERCA and SPCA. These controls were the
measurement of ATPase activity in the presence and absence of
1 μM thapsigargin (inhibitor of SERCA) to determine the activity of
SERCA, and the measurement of ATPase activity in the presence and
absence of 1 μM thapsigargin and 2 mM vanadate to inhibit SERCA
and PMCA (remaining activity is due to the SPCA).
2.5. Determination of Ca2+ transport in PMVs

Ca2+ transport was determined by the Fura-2AM method of Jere-
mic et al. [25], with some modification. PMVs obtained as described
above were resuspended in 10 mM HEPES, pH 7.4, incubated with
10 μM Fura-2AM for 30 min at 30 °C with gentle agitation, washed
twice by centrifugation, and resuspended in 10 mM HEPES to elimi-
nate excess Fura-2AM. 0.1 mg sample of PMVs was resuspended in
“transport buffer” (50 mM Tris–HCl, pH 7.3, 100 mM KCl, 75 μM
EGTA, 5 mM NaN3, 400 nM thapsigargin, 2.5 mM MgCl2, and CaCl2
sufficient to give free Ca2+ concentration 4 μM), with final volume
of 1 ml. Samples were kept 5 min at 37 °C, and the reaction was
started by addition of 1.5 mM ATP. Excitation wavelengths were 340
and 380 nm, and emission was measured at 510 nm. Specific Ca2+

transport by PMCA activity was measured in the presence and ab-
sence of vanadate.
2.6. PLC purification, and enzyme activity assay

Hemolytic phospholipase C, obtained from supernatant of Pseudo-
monas aeruginosa (NCTC, fides III) culture medium, was purified by
reversed-phase chromatography on diatomaceous earth (Celite-545,
Mallinckrodt Baker, NJ, USA), and PLC activity was determined using
synthetic substrate p-NPPC as described by Lucchesi et al. [26]. One
PLC unit was defined as the amount of enzyme liberating 1 nmol p-
nitrophenol from p-NPPC per minute at 37 °C.
2.7. Isolation and determination of hydrophobic tubulin

Hydrophobic tubulin was isolated from Triton X-114 phase as de-
scribed previously [27], with slight modification. Reaction mixtures
containing PMCA (10 μg protein) were reconstituted with lipids and
tubulin at the indicated concentrations, and pre-incubated 20 min at
37 °C. Triton X-114 was added (1% final concentration), and the mix-
ture was heated 5 min at 37 °C and centrifuged at 600×g for 5 min for
phase separation. Detergent-rich lower phase, containing hydropho-
bic tubulin, was washed with NaCl/Tris buffer (50 mM Tris/HCl buffer,
pH 7.4, containing 150 mM NaCl). Aliquots were subjected to electro-
phoresis and immunoblotting as below for determination of acetylat-
ed and total tubulin.
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Fig. 1. Effect of lipids on activity of rat brain PMCA reconstituted in PC. PMCA was pu-
rified from rat brain, reconstituted in various lipids, and activity was determined by
ATP hydrolysis as described in the Materials and methods section. (A) Activity of
PMCA (at the indicated amounts) reconstituted in 100% PC (■), or in 80% PC plus
20% DAG (△), BE (○), or PA (□). (B) Activity of PMCA reconstituted in DAG (△), BE
(○), or PA (□) at the indicated concentrations, to complete 100% of the lipids with
PC. (C) PMCA purified from rat brain (5 μg protein) was analyzed by SDS-PAGE stained
with Coomassie Blue and Western blotting with staining of lanes by anti-α-tubulin
mAb DM1A and, anti-PMCA mAb 5F10. Values shown are mean±SD from three inde-
pendent experiments.
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2.8. Electrophoresis and immunoblotting

Proteins were separated by SDS-PAGE on 8–10% polyacrylamide
slab gels [28], transferred to nitrocellulose, and reacted with anti-α-
tubulin mouse mAb DM1A (dilution 1:1000), anti-acetylated tubulin
mouse mAb 6-11B-1 (dilution 1:1000) [29], and anti-PMCA mouse
mAb 5F10 (dilution 1:300) [30]. The nitrocellulose sheet was reacted
with anti-mouse IgG conjugated with peroxidase.

3. Results

3.1. Effect of lipids on PMCA activity of rat brain plasma membrane

We showed previously that PMCA interacts with tubulin in mem-
branes of brain cells, resulting in reduced enzyme activity [15]. Stud-
ies on effect of lipids on PMCA activity by other groups have mainly
used PMCA purified from erythrocytes, in which isoform 4 is predom-
inant. In the present study, we used PMCA purified from rat brain, in
which all isoforms (1 to 4) are present [31]. The purified PMCA was
reconstituted in PC with addition of various concentrations of DAG,
BE, or PA, and enzyme activity was determined based on hydrolysis
of ATP. PMCA activity increased in proportion to the amount of en-
zyme reconstituted in PC, and in the presence of each of the three
lipids at 20% concentration (Fig. 1A). PA was the most efficient of
the three lipids, reaching an activation factor of 7 (Fig. 1A, Table 1).
Similar promoting effects of PA and other acidic phospholipids were
previously observed for PMCA in brain cells and erythrocytes [5,6].
We found that DAG, a neutral phospholipid, increases activity of
PMCA from brain >4-fold (Fig. 1A, Table 1), consistent with previous
studies. PMCA activity was dependent on the concentration of acidic
or neutral lipid involved in reconstitution of the enzyme (Fig. 1B).
The PMCA preparation used in these experiments was depleted of tu-
bulin, as shown by the control (Fig. 1C). These findings, taken togeth-
er, indicate that PMCA purified from rat brain membranes and
reconstituted into PC is activated by acidic or neutral lipids in the ab-
sence of tubulin. In subsequent experiments, we examined the com-
bined effect of lipids and purified tubulin on PMCA activity.

3.2. Effect of tubulin on PMCA activity in the presence of lipids

Various amounts of tubulin were pre-incubated for 20 min with
PMCA previously reconstituted with various types of lipids and then
diluted in the assay medium. PMCA reconstituted in 100% PC showed
low activity (2 nmol Pi/min/mg protein), which doubled at low tubu-
lin concentrations (b25 μg/ml) and returned to initial value at higher
concentrations (≥50 μg/ml) (Fig. 2A, Table 1). Similarly, reconstitu-
tion of the enzyme in PC mixed with various amounts of DAG resulted
in increased PMCA activity at low tubulin concentrations, and reduc-
tion of activity at tubulin concentrations >25 μg/ml (Fig. 2A). The ef-
fect of tubulin varied depending on the proportions of BE and PA
mixed with PC during reconstitution. PMCA activity gradually in-
creased at low tubulin concentrations (b25 μg/ml) and low percent-
age of BE or PA (up to 3% during reconstitution), and then
decreased at higher tubulin concentrations (Fig. 2B, C). When higher
BE or PA proportions (≥10%) were used during reconstitution, PMCA
activity increased continuously along with tubulin concentration,
even up to 300 μg/ml (Fig. 2B, C). At low (b50 μg/ml) tubulin concen-
tration, in PMCA reconstituted in 80% PC and 20% other lipids, enzyme
activity was increased maximally by PA (21-fold), and to lesser de-
grees by DAG (12-fold) and BE (10-fold) (Table 1). At high concentra-
tion of tubulin (300 μg/ml), PMCA activity was increased 27-fold by
20% PA, and 21-fold by BE (Table 1). For PMCA reconstituted in
DAG, increased tubulin concentration caused reduced enzyme activi-
ty (Fig. 2A), which eventually reached a level corresponding to 0%
DAG (i.e., 100% PC) (Table 1). Absence of PMCA in purified tubulin
preparations used in these experiments was represented by the



Table 1
Effect of amounts of tubulin and lipids on PMCA activity.

PMCA activity

PCa PC+DAGa PC+BEa PC+PAa

Aeb % of PCc Aeb % of PCc Aeb % of PCc Aeb % of PCc

−Tub 2.3±0.5 100 9.7±0.7 430±65 12±0.7 525±49 16.5±1.3 732±105
+Tub (50 μg/ml) 5.1±0.2 227±41 28±3.0 1237±141 22±2.0 974±127 50±3.0 2226±361
+Tub (300 μg/ml) 2.5±0.4 109±6.5 4.2±0.3 186±28 33±3.0 1461±192 62±5.0 2751±389

a PMCA (7 μg protein) was reconstituted in 100% PC, or in 80% PC plus 20% of the indicated phospholipids.
b Ae: PMCA activity in nmol Pi min−1 mg protein−1.
c PMCA activity expressed as percentage of sample reconstituted in 100% PC.
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control (Fig. 2D). Coomassie Blue staining showed a nearly-
homogenous 55-kDa protein band, coinciding with the tubulin band
revealed by anti-tubulin. Note that the tubulin preparation lacked
PMCA.
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Fig. 2. Effect of tubulin on activity of rat brain PMCA reconstituted in phospholipids. PMCA (
(□), 10% (△), or 20% (○) DAG (A), BE (B), or PA (C). PMCA activity was determined by ATP h
Values shown are mean±SD from three independent experiments. (D) Tubulin (5 μg protei
blotting with staining by anti-PMCA mAb 5F10.
Acetylated tubulin inhibits PMCA activity by interacting with the
enzyme. We previously demonstrated the formation of acetylated tu-
bulin/PMCA complex by immunoprecipitation experiments, and by
passage of acetylated tubulin from aqueous to detergent phase upon
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5 μg) was purified from rat brain, and reconstituted in 100% PC (■, A), or in PC with 3%
ydrolysis at the indicated tubulin concentration as described in materials and methods.
n) from rat brain was analyzed by SDS-PAGE stained with Coomassie Blue and Western
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binding to PMCA [15]. To test whether the effects of tubulin on PMCA
reconstituted in lipids in the present study were due to changes in tu-
bulin/PMCA interaction, we measured amounts of acetylated tubulin/
PMCA complex in experiments corresponding to those shown in
Fig. 2. For this, we determined amounts of “hydrophobic acetylated
tubulin” (HAT) (acetylated tubulin found in detergent phase), since
the complex behaves as a hydrophobic entity during partition with
Triton X-114 [27], while non-interacting acetylated tubulin remains
in aqueous phase. Increased content of acetylated tubulin in the hy-
drophobic fraction indicates higher level of acetylated tubulin/PMCA
complex [15]. Levels of total and acetylated hydrophobic tubulin in
mixtures of PMCA (reconstituted with various phospholipids) and
various amounts of tubulin are shown in Fig. 3. PMCA reconstituted
in 100% PC did not bind acetylated tubulin at either low or high tubu-
lin concentrations. Consistent with this finding, PMCA activity was
minimally affected by tubulin at low or high concentrations under
these conditions (Fig. 2A). In contrast, when PMCA was reconstituted
in PC plus 20% DAG, it bound to tubulin at high concentrations but not
at low concentrations, consistent with effects of high and low tubulin
concentrations in Fig. 2. Results for PMCA reconstituted in PC plus 20%
BE were similar to those with DAG. Results for PMCA reconstituted
with PC plus 20% PAwere unclear. A reduced amount of acetylated tu-
bulin seemed to interact with PMCA (Fig. 3). Under these conditions,
the increased PMCA activity shown in Fig. 2 cannot be explained by
interaction of the enzyme with tubulin; if such interaction existed,
it should be inhibitory rather than promoting.

3.3. Effect of in situ generation of DAG in plasma membrane vesicles
(PMVs) on PMCA activity and Ca2+ transport

Increased concentrations of DAG, BE, or PA resulted in increased
PMCA activity, as shown in Figs. 1 and 2 and Table 1. We therefore in-
vestigated effects of altered lipid concentrations on activity of PMCA
in a more natural environment, i.e., intact membrane system. Rat
brain PMVs were incubated in the presence vs. absence of purified tu-
bulin, and then in the presence vs. absence of phospholipase C (PLC),
to increase the in situ level of DAG. PLC hydrolyzes phospholipids
such as PC, and thereby generates DAG and phosphorylcholine [32].
PMCA activity was measured immediately after addition of PLC, or
after incubation with PLC for 30 min at 37 °C. Aliquots of incubation
mixtures were centrifuged to isolate PMVs, and total tubulin was
Hydrophobic tubulin

Ac. tubulin

Total tubulin

Arbitrary unit

Arbitrary unit

R
(Ac./ total tubulin)

Lt Ht Lt Ht Lt Ht Lt Ht

100 ± 11 61 ± 8 102 ± 9  3.2 ± 1 36 ± 8 62 ± 7 90 ± 8 38 ± 5 60 ± 7

12 ± 3 5.4 ± 1 8.7 ± 3  8.2 ± 4 136 ± 11   30 ± 6 98 ± 7 60 ± 9 62 ± 5

Input PC  DAG BE PA

0.12 0.09 0.08 2.5 3.8 0.48 1.09 1.58 1.03

Fig. 3. Quantification of acetylated tubulin/PMCA complex as hydrophobic acetylated
tubulin (HAT) in PMCA reconstituted in lipids after incubation with tubulin. PMCA
was purified from rat brain, reconstituted in 100% PC, or in 80% PC plus 20% of the in-
dicated lipids, and incubated for 20 min at 37 °C with low (25 μg/ml, Lt) or high
(250 μg/ml, Ht) tubulin concentration. The incubation systems were partitioned as de-
scribed in the Materials and methods section. Detergent fractions were immunoblotted
and revealed with mAb DM1A for total tubulin, and mAb 6-11B-1 for acetylated (Ac.)
tubulin. Tubulin (5 μg protein) used in the experiment was immunoblotted and
revealed with the same antibodies (Input). Tubulin bands were scanned, and values
are shown as arbitrary units. Values are mean±SD from three independent experi-
ments. R=ratio between acetylated and total tubulin in the detergent fraction.
determined by Western blot. In the absence of tubulin, increased
DAG did not affect PMCA activity. In the absence of PLC pre-
incubation, exogenous addition of tubulin inhibited PMCA activity
by >80% (Fig. 4A), and increased tubulin concentration in PMVs by
4-fold (Fig. 4B). When DAG content in PMVs was increased by PLC in-
cubation, PMCA activity was clearly stimulated by the presence of tu-
bulin (Fig. 4A), even when tubulin remained associated with vesicles
(Fig. 4B).

To determine whether PMCA-dependent Ca2+ transport was af-
fected by DAG generation in PMVs incubated with PLC, PMVs were
treated with or without exogenous tubulin, and Ca2+-transport was
measured as described in the Materials and methods section, in the
presence vs. absence of PLC. PMVs were treated with Fura-2AM, a
Ca2+ chelator, and Ca2+ incorporation following addition of ATP in
the presence vs. absence of tubulin and PLC was determined by fluo-
rescence intensity (Fig. 5A). Increased rate of Ca2+ transport is indi-
cated by a change of slope in the curve of intensity vs. incubation
time. Addition of tubulin caused 80% decrease in Ca2+ transport in
PMVs, and ~4-fold increase in amount of tubulin bound to vesicles.
PLC incubation of tubulin-treated PMVs caused a 97% increase in
Ca2+ transport (Fig. 5), without a significant change in amount of tu-
bulin bound to vesicles. Similar experiments using vanadate, a potent
inhibitor of P-ATPases, did not result in significant changes in Ca2+

transport of (data not shown). These findings indicate that Ca2+

transport within PMVs, which affects both tubulin and PLC levels, is
PMCA-dependent.

The possibility that the effect of PLC treatment on PMCA activity in
PMVs (Figs. 4 and 5) was due to the released acidic moieties instead
of DAG was discarded since 100 μM of phosphorylcholine or phos-
phoryl ethanol amine had no effect PMCA reconstituted in 100% PC
(result not shown).

4. Discussion

Intracellular Ca2+ is a second messenger involved in important
physiological cell processes including proliferation, differentiation,
and apoptosis [33–35]. The Ca2+ pump of plasma membranes is the
main protein that regulates intracellular Ca2+ concentration, through
intracellular signaling. PMCA activity is regulated by various factors,
including lipids, proteolysis, calmodulin, and ethanol [3,4,36,37]. We
showed previously that PMCA of rat brain membranes and CAD cells
is inhibited by acetylated tubulin in vitro. When acetylated tubulin
and PMCA become associated to form a protein complex, enzyme ac-
tivity is inhibited, and activity is restored when such complex is dis-
sociated by calmodulin or ethanol [15].

We show clearly here that the lipid environment influences the
interaction between acetylated tubulin and PMCA and consequently
its enzyme activity, however, we are at present unable to explain
the intimate mechanism of this interaction and how this regulates
the enzymatic activity. Several facts point out the complexity of this
regulatory mechanism. In general, we found activation of PMCA by
tubulin under certain conditions (nature and concentration of the
lipids surrounding PMCA and tubulin concentration) even when,
according to previous published results [15], inhibition rather than
activation was expected to occur. If surrounding lipids are mainly
acidic, the presence of tubulin favor enzymatic activity, while if they
are neutral lipids, the effect on enzymatic activity is activatory pro-
vided that tubulin is present at low concentration, and it is inhibitory
if tubulin is at higher concentration. Key observations supporting this
concept are: (a) Tubulin at concentrations b50 μg/ml activated PMCA
of PMVs reconstituted in PC, or in PC with DAG, BE, or PA (Fig. 2,
Table 1); (b) At high tubulin concentrations, PMCA purified from
PMVs was activated when reconstituted in PC with acidic lipids (BE,
PA), but was inhibited when reconstituted in PC, or in PC with neutral
lipid DAG (Fig. 2, Table 1); (c) PMCA was inhibited by increased con-
centration of tubulin [15] when embedded in PMVs; (d) In vitro
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generation of DAG in PMVs by action of PLC eliminated the inhibitory
effect of tubulin on ATP hydrolysis capacity of PMCA, and on PMCA-
dependent Ca2+ transport; (e) Tubulin interacts with other P-
ATPases in plasma membrane, inhibiting their enzyme activity [38].
When PMVs were incubated in the presence of 300 μg/ml tubulin,
the ATP-hydrolyzing activity of PMCA was reduced by about 80%
(Fig. 4). When Ca2+-transport activity into PMVs was measured
under similar conditions (Fig. 5), same degree of inhibition (80%)
was obtained. This suggests that Ca2+-transport inhibition is caused
by inhibition of ATP-hydrolyzing activity of PMCA. When PMVs
were pre-treated with PLC to increase DAG concentration, subsequent
treatment with high tubulin concentration did not inhibit ATP-
hydrolyzing activity of PMCA (Fig. 4A) or Ca2+-transport activity
(Fig. 5).

Calmodulin, ethanol, and acidic lipids are activators of PMCA
[16,18]. In the present study, PA increased PMCA activity by 7-fold
(Table 1). Tubulin works together with lipid to regulate PMCA activi-
ty. Tubulin in combination with acidic lipids is the most potent activa-
tor of PMCA even when compared with calmodulin which activates
PMCA by a factor of 2 [4], whereas high-concentration tubulin in
combination with neutral lipid is the most potent inhibitor of the en-
zyme. This conclusion is supported by studies of PMCA reconstituted
in lipids, and in PMVs. When the enzyme was reconstituted in PC,
PMCA activity was increased 7-fold by PA. Tubulin without PA had
no effect on enzyme activity. A combination of PA plus tubulin in-
creased enzyme activity almost 27-fold, illustrating their synergistic
effect. DAG produced 4-fold increase of PMCA activity, whereas the
combination of DAG plus tubulin, eliminated >50% of this increase.
ATP hydrolysis and PMCA-dependent Ca2+ transport in PMVs were
reduced ~80% by tubulin, and were restored by generation of DAG
by PLC incubation (Figs. 4, 5).

Tubulin forms a complex with PMCA, since the two proteins were
immunoprecipitated together by an anti-tubulin antibody [15]. In the
present study, both purified proteins were used for experiments on
the effect of tubulin on PMCA reconstituted in lipids (Figs. 1, 2, 3).
However, it is not yet clear whether there is a direct interaction be-
tween these proteins. One possibility is that they interact directly,
with some cytoplasmic domain of PMCA as the site of interaction
with tubulin, as we previously found for the interaction between tu-
bulin and Na+,K+-ATPase [12]. Another possibility is that interaction
between tubulin and PMCA is not direct but mediated by lipids; if this
were the case, it would be reasonable to think that PMCA activity
could be influenced by lipid composition. We found that tubulin is as-
sociated with PMCA in the presence of the several lipids tested in the
present work including PA (Fig. 3). However, to obtain an inhibitory
effect, PMCA should associate with tubulin of the acetylated isotype.
Observe in Fig. 3 that the formation of the acetylated tubulin/PMCA
complex is more specific with PMCA reconstituted in DAG since in
the detergent (hydrophobic) phase there is total tubulin that is main-
ly acetylated (ratio 3.8). This indicates that when PMCA was reconsti-
tuted in DAG and subsequently added with tubulin, the acetylated
isotype was preferentially associated suggesting that a complex
with similar characteristics found in PMVs was formed [15]. Instead,
PMCA reconstituted in 20% PA, even when it did not inhibit the inser-
tion of tubulin in the detergent phase, seems to form a lower amount
of acetylated/PMCA complex (ratio 1.03) as compared with DAG
(ratio 3.8). This difference could be due to a negative electric environ-
ment by PA diminishing the specific association of the acetylated tu-
bulin with PMCA.

The joint effect of lipids and tubulin may have a key role in cell
physiology. In this sense, it is know that lipids are not homogeneously
distributed in cell membranes. The nature of the lipids constituent of
membranes depends on cell type, particular regions of the cell, phys-
iological state of the cell, etc. Furthermore, PMCA is also asymmetri-
cally distributed. So, it is not unreasonable to speculate that the
resulting PMCA activity in different regions of the cell depends on
the nature of the lipids and the concentration of tubulin (or microtu-
bules) in each region. Furthermore, cell signaling mechanisms could
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eventually use either a change in nature or concentration of lipids
and/or tubulin concentration, provoking in this way inhibiting or ac-
tivating responses on PMCA. This leads us to consider that not only
the nature or concentration of lipids could be important to modulate
PMCA activity but also changes in the dynamics of membrane struc-
ture [39,40]. One example could be the activation of PLC which cata-
lyzes the production of DAG with the consequent activation or
inhibition of PMCA depending on tubulin concentration (Fig. 2A). In-
stead, if PLD is activated, PA would be produced with the consequent
activation of PMCA regardless of tubulin concentration (Fig. 2C).

The study of this PMCA regulatory mechanism is in preliminary
stages. The important several functions in which PMCA is involved
in different cell types indicate that significant efforts from the bio-
chemical, biophysical, cellular and physiological fields should be
done. In order to validate this PMCA regulatory mechanism, we are
currently trying to verify whether some signaling pathway induces
changes in lipidic composition or tubulin concentration that resulted
in alteration of local PMCA activity.
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