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Abstract

An individual tree model with additive direct and
competition effects is introduced to account for competi-
tive effects in forest genetics evaluation. The mixed lin-
ear model includes fixed effects as well as direct and
competition breeding values plus permanent environ-
mental effects. Competition effects, either additive or
environmental, are identified in the phenotype of a com-
petitor tree by means of ‘intensity of competition’ ele-
ments (IC), which are non-zero elements of the incidence
matrix of the additive competition effects. The ICs are
inverse function of the distance and the number of com-
peting individuals, either row-column wise or diagonal-
ly. The ICs allow standardization of the variance of com-
petition effects in the phenotypic variance of any indi-
vidual tree, so that the model accounts for unequal num-
ber of neighbors. Expressions are obtained for the bias
in estimating additive variance using the covariance
between half-sibs, when ignoring competition effects for
row-plot designs and for single-tree plot designs. A data
set of loblolly pines on growth at breast height is used to
estimate the additive variances of direct and competi-
tion effects, the covariance between both effects, and the
variance of permanent environmental effects using a
Bayesian method via Gibbs sampling and Restricted
Maximum Likelihood procedures (REML) via the Expec-
tation-Maximization (EM) algorithm. No problem of con-
vergence was detected with the model and ICs used
when compared to what has been reported in the animal
breeding literature for such models. Posterior means
(standard error) of the estimated parameters were σ̂2

Ad =
12.553 (1.447), σ̂2

Ac = 1.259 (0.259), σ̂AdAc = –3.126
(0.492), σ̂2

p = 1.186 (0.289), and σ̂2
e = 5.819 (1.07). Leav-

ing permanent environmental competition effects out of
the model may bias the predictions of direct breeding
values. Results suggest that selection for increasing
direct growth while keeping a low level of competition is
feasible.

Key words: competition effects, individual tree mixed model,
additive and direct competition effects, estimation of additive
(co)variances, Gibbs sampling.

Introduction

The additive genetic variance is a parameter of utter-
most importance in the genetic improvement of forest

trees as it affects the gain and the precision of selection.
In order to avoid bias when estimating additive vari-
ance, the statistical model of analysis should include all
other sources of genetic variation as well as all identifi-
able environmental effects. Tree competition for
resources may bias breeding value estimation from com-
peting individuals (see for example, MAGNUSSEN, 1993;
FOSTER et al., 1998; RADTKE et al., 2003) by inducing a
negative correlation between either individual trees or
neighbor plots. Competition is defined as the stress suf-
fered by a plant due to the genotype and the spatial
arrangement of neighboring trees (HINSON and HANSON,
1962), and is caused by genetic and environmental
sources (MAGNUSSEN, 1989). Usually genetics effects of
competition are not accounted for in the model of evalu-
ation in spite of evidence of their existence (see the
references in the discussion of MAGNUSSEN, 1993 and
FOSTER et al., 1998). CANNELL (1978) suggested selecting
for non-competitive genotypes in order to increase yield
per unit of area in forest trees. This breeding strategy is
most effective if direct effects for growth are negatively
correlated to competition effects. In this scenario, plants
with a large genetic potential for growth tend to induce
less competition, so that tree density may be increased
and, as a result of both increases, the yield per unit area
would be augmented. On the other hand, if the correla-
tion between direct and competition effects is positive,
selection for higher growth will result in more competi-
tive individuals. As a consequence, total yield per unit
area may be affected as the faster growing individuals
would hinder the growth of their neighbors, which in
turn would decrease total production. Inclusion of genet-
ic effects of competition results in an increased number
of additive dispersion parameters in the model of genet-
ic evaluation compared with those models where compe-
tition effects are absent.

In a series of papers, GRIFFING (1967, 1968a, 1968b)
described models that include genetic effects of competi-
tion among individuals or groups of individuals, and
analyzed the consequences of using such models for the
response to selection. In these models, the phenotype of
an individual is a linear combination of its genetic
effects (“direct genetic effects”) plus the genetic contribu-
tions from other genotypes (“indirect genetic effects”).
Whereas direct genetic effects are expressed in the phe-
notype of an individual, indirect genetic effects are
expressed only in the phenotype of another individual. A
common example of indirect effects is the maternal
effect in mammals (WILLHAM, 1963; LYNCH and WALSH,
1998, chapter 23), which is expressed in the offspring
from birth to weaning. When looking at the genetic eval-
uation of trees, competition is an indirect genetic effect.
WRIGHT (1986) obtained expressions for the covariance
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between relatives in the model of GRIFFING (1967),
including additive, dominance and epistasis, for direct
and competition effects. For a single trait individual tree
model, 22 genetic (co)variance components have to be
estimated: 3 for additive effects, 3 for dominance effects,
and 16 for epistatic effects. Attempting to fit a model
with all 22 parameters to data with the usual family
relationships (full and half-sibs) commonly found in
trees seems to be hopeless. Instead, it may be feasible to
fit additive effects, as it requires estimating only three
(co)variance components plus the error term. MUIR and
SCHINCKEL (2002) described an animal model with direct
and competitive effects. VAN VLECK and CASSADY (2005)
used simulation and a fixed number of competitors, to
determine whether Restricted Maximum Likelihood
(REML, PATTERSON and THOMPSON, 1971) with relation-
ships could untangle the covariance structure of direct
and competition genetic variances and the covariance
between them, whereas ARANGO et al. (2005) attempted
to estimate the three (co)variance components to a
swine population during a growth test. The results of
both studies suggest that the additive relationships
among competing individuals present in the data may
be essential in disentangling the information to esti-
mate the (co)variance components. MUIR (2005) wrote
down the mixed model equations with competition
effects to analyze forest tree data, but he ignored the
consequences of a variable number of competitors (due
for example to mortality or thinning) on estimating the
additive genetic variance for competition. All in all,
when fitting a model with competition effects it is essen-
tial to report a measure of the variability of the esti-
mates of the dispersion parameters.

A shortcoming of REML is that the variability of esti-
mation has to be measured approximately using large
sample theory by means of the inverse of the informa-
tion matrix from the marginal or restricted likelihood,
as there is no analytic solution for the variance of the
estimating equations: there is no exact sampling distrib-
ution for the REML estimators. From a Bayesian per-
spective REML can be seen as the mode of the joint pos-
terior distribution of all (co)variance components after
integrating out the fixed effects using a flat prior for the
dispersion parameters (HARVILLE, 1974). Alternatively, a
full Bayesian approach by means of the Gibbs sampler
can be attempted for estimating the (co)variance compo-
nents for additive direct and indirect effects, by exploit-
ing the similarity with the model of maternal effects
(SORENSEN and GIANOLA, 2002, section 13.3). The basics
of the Gibbs sampling is discussed by CASELLA and
GEORGE (1992), whereas SORIA et al. (1998), GWAZE and
WOOLLIAMS (2001), ZENG et al. (2004) and CAPPA and
CANTET (2006) developed some applications of the sam-
pler to the genetic improvement of forest trees. The
goals of this research are: 1) to introduce an additive
genetic individual tree model that includes direct and
competition effects, accounting for the number and posi-
tion of competitor trees; 2) to estimates the dispersion
parameters of the model (additive variances for direct
and competition effects, and the covariance between
both effects) using a Bayesian approach by means of the
Gibbs sampler. Developments are illustrated with data

on the diameter at breast height in Pinus taeda L. at 13
years of age.

The model

Breeding values for direct and competition effects

Consider a trait mostly affected by additive genetic
effects, with a direct and a competition component
(WRIGHT, 1986). The dynamics of the joint genetic vari-
ability for additive effects with an indirect component
has been developed by WILLHAM (1963) for maternal
effects, and more generally discussed by WOLF (2003)
within an evolutionary framework. Let the direct com-
ponent of the breeding value for individual i be adi, and
let the competition breeding value be aci. The greater
the magnitude of aci the higher the competition effects
exerted by tree i. The phenotypic record of tree i (yij1..jm)
is affected by the acj’s of neighbor trees j ( j = j1, j2,..., jm),
in a similar fashion to maternal effects which are
expressed in the progeny’s phenotype. Thus, yij1..jmi
depends on the acj of its neighbors but not on its own aci.
As an individual tree suffers competition from more
than a neighbor, let mi be the number of competitors of
the ith tree. For plantations in a regular grid, the maxi-
mum value mi can take is 8. The assumption is that any
tree does not compete with other trees than its nearest
neighbors (see Figure 1). The notation R-C indicates
that the competitor lies, either in the same row or in the
same column, and is represented with the symbol ‘↔’ in
Figure 1. In the same way, the letter D refers to com-
petitors that lie diagonal, and these are represented
with the diagonal arrows in Figure 1. To exemplify, in
Figure 1 the R-C competitors of tree 5 are plants 2, 4, 6
and 8, whereas individuals 1, 3, 7 and 9 are D competi-
tors of 5.

The total additive genetic competition that is exerted
over plant i from trees j1, j2, ...,, jmi is equal to

[1]

The element fij is interpreted as the intensity of compe-
tition (IC) that acj ( j = j1, j2,..., jm) exerts over the pheno-
type of the ith neighbor tree (yij1..jm). To obtain the IC val-
ues, consideration should be given to the fact that, in
the absence of inbreeding and of genetic relationships
among competitors and regardless of the number of com-
petitors,

[2]

Figure 1. – A diagram of competition effects in a regular grid.
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where σ2
Ac is the additive variance for competition

breeding values. This implies that the potential genetic
strength for competing with the neighbors, i.e. ac, is
split proportionally to mi. Let fijR-C be the IC in [1] for R-
C and fijD for D competitors to i. Also, let nR-C and nD be
the respective numbers of R-C and D competitors, and
nR-C + nD = mi. Under all these premises, and on using
the variance operator in [2], we obtain 

[3]

where k = R-C or D. By equating [2] to [3], the ICs are
such that

[4]

Now, it seems reasonable to assume that in trees IC is
related to the inverse of the distance between i and j (i.e.
RADTKE et al., 2003). If d is the regular spacing of the
planting design, for R-C competitors the IC is propor-
tional to 1/d. However, the distance of a tree located
diagonal to i is 21/2 d by the Pythagorean theorem, so
that competition is proportional to 1/(21/2 d) for D com-
petitors. Now, fijR-C = 1/d and fijD = 1/(21/2 d). On solving
for d in both equalities we get d = 1/ fijR-C and
d = 1/fijD21/2. Next is to equate the resulting expressions
so as to obtain 

[5]

Finally, by replacing with [5] in [4] and solving for fijD
and fijR-C produces

Thus

[6]

A similar argument is used to obtain

[7]

Notice that fij is not necessarily equal to fji as i and j
may have different number of competitors. An interest-
ing feature of expressions [6] and [7] is that the intensi-
ty factors end up being independent on the distance d.
The reason is that in row-column arrays there is a
relation between the RC-distance and the D-distance
based on the theorem of Pythagoras, and the value of d
cancels out when obtaining [5]. This approach can be
simply extended to planting designs when the distance
between rows and columns is not the same, i.e. when
dRow ≠ dColumn.

GRIFFING (1967) and WRIGHT (1986) observed that the
covariance between adi and aci from the i-th tree is
equal to:

where Aij is the additive genetic relationship between
tree i and its j neighbor, and σAdAc is the covariance
between direct and competition breeding values. More-
over, as the genetic model is exclusively an additive one,
we have that

(KEMPTHORNE, 1969; page 349). In this expression, Fi
and Fj are the inbreeding coefficients of i and j, respec-
tively; σ2

Ad is the additive variance for direct effect. In
terms of the covariance matrix of breeding values we
have

Additive individual tree mixed model with direct and
competition breeding values

On inserting [1] into an additive individual tree model
(BORRALHO, 1995) for the record of tree i competing with
neighbors j1, j2, ...,, jm produces

[8]

In [8], yij1..jm is the phenotype of i (i = 1, ...., n; n is the
total number of trees with data recorded). The p x 1 vec-
tor ββ contains fixed effects such as site or block, and is
associated to the data by the ith row of the incidence
matrix X (n x p). The breeding values adi and acj and the
fij are as defined above. Model [8] includes permanent
environmental effects through the random variable pcj,
so that acj + pcj is the phenotypic effect of competitor j
over the phenotype of i (MUIR, 2005). Finally, eij1..jm is
the random error term.

The variance of yij1..jm. in [8] is equal to

where the first variance is for the additive effects, the
second one for the permanent environmental effects,
and the remaining one for the error. It is shown in the
Appendix A that total additive variance in model [8] is
equal to

When: 1) all individuals are not inbred (Fi = Fj = 0), 2)
tree i is unrelated to its competitors (Aij = 0, for all j),
and 3) the competitors are unrelated among themselves
(Ajj’ = 0), expression [9] reduces to σ2

Ad + σ2
Ac.

In matrix notation, the individual tree model [8] is

[10]

[9]
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where y = [yij1..jm] (n x 1) contains the data; X is the n x p
incidence matrix relating records to the vector of fixed
effects ββ, pc is a vector such that pc = [pcj] j = 1, ..., n,
such that pc ~ Nn (0, In σ2

p), and e (n x 1) is the random
vector of i.i.d. errors distributed as Nn (0, In σ2

e), being
σ2

e the error variance. Direct breeding values are includ-
ed in the random vector ad = [adi] and competition
breeding values are in ac = [aci]. The same q individuals
having direct breeding values in ad are also in ac, and in
the same order. Direct and competition breeding values
are related to y by the n x q incidence matrices Zd and
Zc, respectively. Every row of Zd has all elements equal
to 0 except for a 1 in the column belonging to adi. Simi-
larly, matrix Zc has rows with 0 elements but the fij ‘s in
the columns for the acj of the mi competitors of tree i. To
exemplify, suppose that in Figure 1 there is a missing
plant in position 3. The row of Zc relating the record of 5
(i = 5) to its competitors is

were the columns are related to the competition breed-
ing values of trees 1, 2, 4, 5, 6, 7, 8, and 9. As plant 3 is
missing, its competition breeding value is not included
in ac. Also the direct breeding values will not be in ad.
Using [7] results in f5jR-C = [2/(2*4 + 3)]1/2 = ��2/���11 for 
R-C trees 2, 4, 6 and 8, whereas using [6] produces f5jD =
1/ [2*4 + 3]1/2 = 1/���11 for D trees 1, 7 and 9. The 0 in the
fourth column reflects that the competition breeding
value of 5 is not related to its own record. Matrix Zp is
composed of the non-zero columns of Zc and has order
equal to n x n.

The covariance matrix of ad is Aσ2
Ad. The q x q matrix

A = [Aij] has diagonal elements equal to 1 + Fi, and off-
diagonals equal to the additive relationships Aij. Also, ac
~ (0, Aσ2

Ac) and cov (ad, ac) = AσAdAc. Now, we are able to
write the total additive covariance matrix in a more
compact manner as follows

Taking into account the random effects in model [10],
the (co)variance matrix (V) of y is given by:

[11]

Bayesian estimation of (co)variance components 

As in SORIA et al. (1998), GWAZE and WOOLLIAMS

(2001), ZENG et al. (2004) and CAPPA and CANTET (2006),
we will estimate the dispersion parameters σ2

Ad, σAdAc,
σ2

Ac, σ
2
p and σ2

e using a Bayesian approach by means of
Gibbs sampling (SORENSEN and GIANOLA, 2002). Under
normality of breeding values and errors, the conditional
likelihood of the observed data can be written as being
proportional to:

[12]

where e = y – Xββ – Zdad – Zcac – Zp pc. Conjugate prior
densities are chosen for all parameters. In order to
reflect a prior state of uncertainty for the fixed effects

and to obtain a proper posterior distribution (HOBERT

and CASELLA, 1996), we take ββ ~ Np (0, K). Matrix K is
diagonal with large elements (kii >108). Also, the joint
prior distribution of the direct and competition breeding
values (ad, ac) is

On defining a = [ad´, ac´]´, the corresponding density
can be written as

[13]

Let

Then

Therefore, [13] can be expressed as

[14]

A priori the permanent environmental effects are dis-
tributed as pc ~ Nn (0, σ2

p In):

[15]

The matrix of the additive (co)variance components G0
follows a priori an Inverted Wishart (IW) density: G0 ~
IW (G*

0, υg) where G*
0 is the prior covariance matrix and

υg are the degrees of freedom. Thus: 

[16]

A priori the permanent environmental variance has as
a scaled inverted χ2 density so that:

[17]

with ‘hyperparameters’ υp, the ‘degree of belief ’ and S2
p

the hypervariance. Finally, and following the approach
of JENSEN et al. (1994), the residual variance is assumed
to follow a priori a scaled inverted χ2 with density pro-
portional to:

[18]

where υe and S2
e are the ‘hyperparameters’.

Multiplying [12] with [14], [15], [16], [17], and [18],
produces the joint posterior density for all parameters,
and this is proportional to
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[19]

SORENSEN and GIANOLA (2002, page 575) gave the pos-
terior distribution for all parameters of maternal mod-
els. On expanding their model to include permanent
competition effects, the posterior conditional density for
the Gibbs sampling of ββ, ad, ac and pc is equal to

where

are the solutions of the following system of equations

Expression [20] may suggest that sampling of ββ, ad, ac
and pc is in block. However, it is simpler to sample the
elements of those vectors individually, as discussed by
SORENSEN and GIANOLA (2002, page 566, expressions
(13.11) and (13.12)), which was the way it was done in
the current research. 

Collecting the second and third terms in the right of
[19], the full conditional posterior distribution of G0 is
equal to

[21]

Expression [21] is the kernel of a 2 x 2 scaled inverted
Wishart distribution, with degrees of freedom equal to
(υg + q + 3) and scale matrix Sg + G*

0.

For the permanent error variance, the full conditional
posterior distribution is

[22]

which is a scaled inverted χ2 density with υ̃p = n + υp
degrees of freedom and scale parameter

Finally, the full conditional posterior density of the
residual variance is proportional to

[23]

which is a scaled inverted χ2 density with υ̃e = n + υe
degrees of freedom and scale parameter

At each iteration, the Gibbs algorithm proceeds by
first sampling ββ, ad, ac and pc from [20], then σ2

e from
[23], σ2

p from [22], and finally σ2
Ad, σAdAc and σ2

Ac from
[21]. A program was written in FORTRAN to perform all
these calculations with the data and model described
below.

An application to Loblolly pines

Data

An additive individual tree mixed model with direct
and competition breeding values was applied to a proge-
ny data set derived from 20 open-pollinated families of
Loblolly pine (Pinus taeda L.), originated from Marion
(Florida, USA) and belonging to CIEF (Forestry
Research and Experimentation Centre). Five lots of
commercial seeds were used as control populations. The
trait analyzed was diameter at breast height (1.3 m,
DBH) measured at age 13 from 932 trees. The trial site
was located in Villa Olivari (lat. 27º 36’ S long. 56º 55’
W), northern Corrientes province Argentina, where soils
are deep, sandy, yellowish and quartzous. Families were
arranged in randomized complete blocks, with eight
replicates of 5 trees in line per plot, and the spacing was
3.5 m x 3.5 m. The data available are summarized in
Table 1. 

Table 1. – Means and number of records in the Loblolly pine data set.

SD = Standard deviation.

[20]
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Model and posterior inference

Besides ad, ac and pc, the individual tree model
included a vector ββ with 8 block effects. The order of Zd
and Zc was 932 x 957, and of Zp was 932 x 932. When-
ever a tree had all 8 neighbor competitors, nR-C = nD = 4.
On replacing with these values into [7] and [6] produces
the non-zero elements of Zc: fijR-C = [2/(2*4 + 4)]1/2 = 1/���6

and fijD = 1/ [2*4 + 4]1/2 = 1/���12 . 

As there no other estimates of σAdAc and σ2
Ac, several

Markov chains with different prior values of σAdAc (+, 0,
and –) and of σ2

Ac (high and low relative to σ2
Ad) were

run. Results were quite similar so the chain with the
best convergence properties was used to estimate the
(co)variance components. The prior variance for σ2

p (δ2
p)

was chosen to be equal to the prior value for σ2
Ac. A sin-

gle Gibbs chain of 1010 000 samples each were drawn as
discussed above, and the first 10000 iterates were dis-
carded due to burn-in. The autocorrelations were calcu-
lated with “Bayesian Output Análisis” (BOA version
1.0.1, Smith 2003) for all lags from 1 to 100. To account
for the impact of autocorrelations in the chain on mea-
sures of variability, posterior standard errors of each
parameter were corrected for an ‘effective sample size’
(ESS, Neal in KASS et al., 1998), which was calculated
as:

where ρ(i) is the autocorrelation measured at lag i. The
marginal posterior densities for all parameters were
estimated using the Gaussian kernel method (SILVER-
MAN, 1986; chapter 2):

[24]

where f (θ) is the estimated posterior density, θi (i =1,...,
10000) is a sampled value and h is the window width
estimated by cross-validation. The basic idea of this pro-
cedure is to withdraw one observation at a time and
estimate the density. After repeating the procedure n
times the average of the logs of the estimated densities
is maximized with respect to h. Further details can be
consulted in SILVERMAN (1986, section 3.4.4). The proce-
dure is implemented in the function density within the
free-software R (http://www.r-project.org/). Mean, mode,

median, standard deviation (SD), and 95% high posteri-
or density interval (95% HPD), were obtained with BOA
for all parameters from the individual marginal posteri-
ors, under R.

Results

Posterior statistics for σ2
Ad, σ2

Ac, rAdAc, σ
2
p and σ2

e are
shown in Table 2. For all parameters posterior means
and medians were quite similar, whereas the modes
were somewhat smaller. Therefore, the marginal poste-
rior distributions were slightly right skewed (Figure 2).
The marginal posterior means and SDs of σ2

Ad and σ2
Ac

were respectively equal to 12.553 and 1.259, and 1.447
and 0.259. The marginal posterior mean of rAdAc was
moderate to large and negative –0.788 and the SD was
0.056. The posterior means of σ2

p and σ2
e were equal to

1.186 and 5.819, respectively, and their SDs were 0.289
and 1.070. None of the 95% HPD for σ2

Ad, σ2
Ac, rAdAc, σ

2
p

or σ2
e included 0, which suggests that these parameters

are different from zero. 

Discussion

It has been observed that competition among trees
may bias the estimated breeding value of a plant from
those of its competitors (MAGNUSSEN, 1993; FOSTER et al.,
1998; RADTKE et al., 2003, among others). In the current
research, we presented an individual tree mixed model
that allows disentangling breeding values for direct and
competition effects and estimating their variances plus
the covariance between both effects, as well as the vari-
ance of permanent environmental competition effects.
Estimation of the dispersion parameters was accom-
plished using a Bayesian method with the Gibbs sam-
pler originally proposed by JENSEN et al. (1994) for
maternal effects in animals. For direct and competition
effects, VAN VLECK and CASSADY (2005), ARANGO et al.
(2005) and MUIR (2005) estimated the (co)variance com-
ponents by REML. We did not find problems of conver-
gence and sensitivity to starting values, as reported by
VAN VLECK and CASSADY (2005) and ARANGO et al. (2005)
when estimating the competitive (co)variance compo-
nents. It is unlikely that the difference in performance
is due to the use of a different method of estimation, but
to different amount of information on competitive effects
for forest trees compared with animals. In trees, each
individual may be competing with 8 others at different

Table 2. – Posterior statistics for direct additive variance σ2
Ad, competition additive variance σ2

Ac,
direct and competition additive correlation rAdAc, permanent environmental variance σ2

p and error
variance σ2

e.

SD = standard deviation, HPD = high posterior density interval, ESS = effective sample size.
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intensities (see [6] and [7]), as compared with animal
breeding data for individuals managed in common pens
where all ICs are equal. This informativeness of the IC
through matrix Zc allowed estimating additive effects of
competition and permanent environmental competitive
effects.

Posterior means of the (co)variance components for a
model without permanent environmental competitive
effects were σ̂2

Ad = 13.527, σ̂2
Ac = 1.488, r̂AdAc = –0.659,

and σ̂2
e = 5.417. Notice that the estimate of σ2

Ad was
larger (13.527 vs. 12.553) and the estimate of σ2

e was
smaller (5.417 vs. 5.819) than when permanent environ-
mental competitive effects were fitted. This may suggest
that leaving those environmental effects out of the
model may bias the predictions of direct breeding val-

ues. A possible evidence of this bias is that the predic-
tions of permanent environmental competition effects of
trees having less than 8 competitors (for example, those
plants nearby a site without a tree) were almost a quar-
ter of a standard deviation larger than the same effects
but for trees having all 8 competitors. Thus, the pres-
ence of dead trees promotes a less stressful environment
for the surrounding plants that may bias the prediction
of direct breeding values, if permanent environmental
effects are not accounted for in the model.  

As expression [9] shows, ignoring the number of com-
petitors, the additive relationships between the individ-
ual with the competitors, and the relationships among
the competitors themselves results in biased estimates
of the dispersion parameters. ARANGO et al. (2005)

Figure 2. – Marginal posterior distributions of direct additive variance σ2
Ad, competition additive vari-

ance σ2
Ac, direct and competition additive correlation rAdAc, permanent environmental variance σ2

p and
error variance σ2

e.
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accounted for different number of competitors by includ-
ing the covariable 1/n or 1/���n , whereas VAN VLECK and
CASSADY (2005) did not account for a variable number of
competitors. As progeny tests in forest trees last several
years, mortality or tree stand failure are quite common,
and this results in variable number of competitors. We
accounted for unequal number of neighbors (mi < 8) for
either mortality or border location by adjusting fijk so
that always

We also accounted for the additive relationships
between any tree and its competitors and among the
competitors themselves. VAN VLECK and CASSADY (2005)
did not account for additive relationships between indi-
viduals in the management unit, which bias the estima-
tion of σ2

Ac.

An individual tree model that includes directs and
competition breeding values, taking into account a vari-
able number of competitors and the relationships among
all trees, allows different selection goals and schemes
which capitalizes on (or attenuates) the impact of com-
petition effects. Compared to a model with direct breed-
ing values, the application of the model discussed here
to forest breeding data requires only the positions (row
and column) of all the trees in the trial. The estimated
value of σ2

Ad was almost ten times higher than the mag-
nitude of σ2

Ac, whereas the magnitude of the genetic cor-
relation between direct and competitive effects was siz-
able (–0.788). Therefore, selecting for high direct effects
and low competitive effects to increase the yield per unit
area is facilitated for a relatively high negative correla-
tion between both types of effects. 

Of further note is the fact that ignoring competitive
effects would result in biased estimates of the additive
variance (σ2

Ad). To specify the covariance between rela-
tives in the additive model two individuals (x and y) are
required. If indirect effects are involved more individu-
als are needed. For example, the covariance between rel-
atives with maternal effects requires four animals (x, y,
and respective dams w and z), and up to 18 individuals
have to be considered in the additive model with compe-
tition effects in [8]: x and its competitors w1, ..., w8, and
y and its competitors z1, ..., z8. On applying the covari-
ance operator on the additive effects of model [8] results
in the following expression for the genetic covariance
between the records of x and y

Expression [25] is of general form and parameters are
associated to additive relationships between individuals
in the following way: σ2

Ad with x and y; the covariance
σAdAc with the relationships between the individual x (y)
and competitors wi (zj), and σ2

Ac is associated with the
relationships among the members of both groups of com-
petitors. To get further insight into the model with com-
petition consider the situation where x and y are direct
competitors. Schematically

Trees x and y are in the center, surrounded by their
respective competitors w1, ..., w8, z1, ..., z7, and z8. Notice
that 6 individuals are common competitors, implying
that w2 = z1, x = z4, and so on. Expression [25] is now
equal to

Alternatively, if x and y are distant from each other
the scheme is as follows

The dots (...) in the scheme stress the fact that trees
are separated by at least a column, or they may be even
positioned in totally different rows, or in any other posi-
tion within the trial. The covariance in [25] reduces to

Formula [26] may be applied to row-plot designs
where related individuals are planted nearby, an exam-
ple of which is the structure in the data set analyzed in
the current research. On the other hand, expression [27]
is associated with single-tree plot designs where individ-
uals of the same family are positioned distant to each
other. Consider the estimation of heritability in a single-
tree plot design using half-sib families. The additive
variance will be estimated as 4 times the covariance
between half-sibs, i.e. the variance between mothers.
Trees x and y have a relationship equal to Axy = 1/4 and
are distant to each other, and this defines the first term
in [27]. In order for the covariance between half-sibs to
be an unbiased estimator of the additive variance, all
terms related with σAdAc and σ2

Ac should be equal to



53

zero. The second term will be null as long as competitors
of any individual (x, say) are unrelated with a distant
half-sib (y). However, it is unlikely that all competitors
of any plant x are unrelated to the competitors of all
possible y, and this will introduce bias in the estimation
of additive variance. All sources of variation and covari-
ation that are not accounted for the covariance between
half-sibs will fall into the error term. Of particular inter-
est is the covariance between any two unrelated and dis-
tant individuals x and y. It is most likely that the sec-
ond and third terms in [27] are not zero as some x’s are
related to any of the z-competitors, or some y’s are relat-
ed to any of the w-competitors, or some w-competitors
are related to any of the z-competitors. Any of these
covariances will go into the error and will bias the error
variance upwards. Therefore, even if the bias on the
additive variance is small, the estimate of heritability
will be affected as the error variance is most likely
biased. However, the direction and magnitude of the
bias will depend on the sign and the magnitude of σAdAc
as compared with the magnitude of σ2

Ac. In comparison,
in data structures where related individuals are next to
each other and competing such as in the row-plot field
design, the covariance between half-sibs will be more
affected than in the case of the single-tree plot. This is
due to the fact that the third term in [26] will not be
null as the competitors of x are related to the competi-
tors of y, being many times the same individuals (x = z4,
y = w5). Also the second term in [26] will not be zero as
when looking at the covariance between x and the com-
petitors of y (or y and the competitors of x), x is also a
competitor of y and y a competitor of x. Hence, fxy and fyx
are not zero. For the error variance we will look at the
covariance between unrelated individuals (Axy = 0) that
are either competing or distant. As in the case of single-
tree plot, in the row-plot design the error variance will
also be affected, as the second and third terms in [26]
will not be zero: any pair of unrelated x and y will have
relatives competing to the other individual in the pair,
i.e. there will be z-competitors related to x, w-competi-
tors related to y, and z-competitors related to w-competi-
tors. The size of the bias when estimating the additive
and error variances will depend on the sign and the
magnitude of σAdAc as compared with the magnitude of
σ2

Ac. When looking into the data analysis, estimates of
the dispersion parameters in the model with competi-
tion effects were σ̂2

Ad = 12.553, σ̂AdAc = –3.126, σ̂2
Ac =

1.259, σ̂2
p = 1.186, and σ̂2

e = 5.819. On the other hand,
the estimated variances in the model with direct effects
only (no competition) were σ̂2

Ad = 10.644, and σ̂2
e =

9.257. The difference between the estimates of σ2
Ad can

be explained by the negative sign and the absolute value
(3.126) of σAdAc relative to the small value of σ̂2

Ac, which
gives more weight to the 2nd than the 3rd term in [26]. As
a consequence, σ̂2

Ad in the model with competition was
higher than in the model excluding competitive effects.
The value of σ̂2

e in the model were competition effects
were absent was larger than in the model with competi-
tion. This is probably due to the larger number of covari-
ances related to 3rd as compared to 2nd term in [26]. A
quick look at this formula shows that, whereas a maxi-
mum of 16 elements are related to σAdAc, up to 64 ele-
ments are associated with σ2

Ac. Therefore, even tough

σ̂AdAc was negative and larger in absolute value than
σ̂2

Ac, the higher number of elements in the third term
gave more weight to σ2

Ac than to σAdAc. 
In the current research, a Bayesian procedure coupled

with a Markov Chain Monte Carlo technique (Gibbs
sampling), has been used to estimate the (co)variance
components. An alternative approach for estimating dis-
persion parameters is the use of REML. Comparison of
frequentist and Bayesian estimators is difficult due to
the fact that central issues related to the comparison of
frequentist estimators (such as repeated sampling or
bias) do not have the same meaning in the Bayesian
school (GELMAN et al., 1995, page 108). When comparing
REML vs Bayes Gibbs sampling for estimating (co)vari-
ance components in mixed models by stochastic simula-
tion, both methods were seemingly unbiased (VAN TAS-
SELL et al., 1995; DUANGJINDA et al., 2001). Models com-
pared included different genetic or environmental
effects, and different data based selection policies were
performed. For the sake of completeness, we obtained
REML estimates of the dispersion parameters using the
EM algorithm (DEMPSTER et al., 1977), using formulae
described in Appendix B. The estimated (co)variance
components were σ̂2

Ad = 13.889, σ̂AdAc = –3.335, σ̂2
Ac =

1.521, σ̂2
p = 1.150, and σ̂2

e = 3.997. On the other hand,
the estimated REML-EM variances in the model with
direct effects only (no competition effects) were  σ̂2

Ad =
7.572, and  σ̂2

e = 12.496. Although there were some dif-
ferences, both sets of estimates of the (co)variance com-
ponents for the model with competition effects obtained
were similar. For the model without competition effects,
the REML-EM estimate of the additive variance was
smaller and the estimated error variance was larger
than corresponding Bayesian estimates. An analytical
comparison can be established for the prediction of
breeding values using either REML + BLUP or Bayesian
posterior means. ARORA and LAHIRI (1997, theorem 1,
page 1056) showed that BLUP prediction of random
effects from a general mixed model with estimated vari-
ance components (for example, those resulting from the
use of REML) have the same expected value as the
Bayesian posterior means from the same model. Howev-
er, the mean square error of the Bayesian posterior
mean is always smaller than the one obtained from the
REML + BLUP predictions. Thus, one may expect the
predictions to be similar on average, but the mean
square of the Bayes posterior means will be smaller
than their BLUP counterparts. The exclusion of compe-
tition effects introduces bias in the prediction of breed-
ing values for direct effects, either in an individual tree
model or in a parental or family model. If the individual
tree model with competition effects is difficult to fit, the
same predictions of breeding values can be calculated by
means of an equivalent model (HENDERSON, 1977) that
has a reduced number of equations: the number of fixed
effects plus the number of parent trees. This is the topic
of a future publication. 

Another subject for research in the future is the
search for optimal experimental designs to estimate
direct and competition (co)variance components, as for
example the use of single-tree plot vs lineal or squared
plots. In all cases the additive relationships between
competing individuals should be of major concern.
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Appendix A

Derivation of the additive genetic variance with additive
competition effects

The additive genetic variance for direct and competi-
tion breeding values in (6) is:

[A.1]

Using the variance operator in the first term produces 

[A.2]

For the second term in [A.1] we have

where Ajj ’ indicates the relationship between competi-
tors j and j ’. Therefore

[A.3]

For the third term in [A.1] we use the covariance opera-
tor so that 

Now, by replacing in [A.1] with [A.2], [A.3] and [A.4]
gives the additive variance terms for the variance of
yij1.. jm. in [9] as

[A.4]

Appendix B

REML-EM equations for the (co)variance components in
a model with additive direct, additive competition breed-
ing values and permanent environmental competition
effects.

In order to obtain REML-EM of dispersion parameters
in model [10], we take a similar approach to CANTET et
al. (1993). Let the mixed model equations for the mixed
model [10] be:

[B.1]
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The inverse of the coefficient matrix in [B.1] is

Then, the REML-EM estimating equations of the disper-
sion parameters in the kth iteration are

Abstract

Wood stiffness, measured in terms of its modulus of
elasticity (MoE) is an important characteristic of radiata
pine for structural products. To select high stiffness
radiata pine for breeding purpose, rapid, inexpensive
methods for measuring wood stiffness are desirable. In
this study, we explored acoustic instruments to measure
stiffness of young standing trees in radiata pine and
examined inheritance and genetic gain for stiffness in
an Australian national breeding program. Time of flight
of sound waves was recorded in standing trees in two
progeny trials, one in eastern Victoria (Flynn) aged 8
years and the other in South Australia (Kromelite) aged
7 years. Average time of flight at Kromelite was higher
than at Flynn, (519 µs/metre compared to 463 µs/metre)
which corresponds to 3.7 GPa and 4.7 GPa for MoE,
respectively. Heritability for time of flight was higher at
Flynn (h2 = 0.67 ± 0.10) than at Kromelite (h2 = 0.30 ±
0.14). Selection of the best 10% for time of flight based

on pooled data would result in 21% genetic gain in wood
stiffness.

Key words: wood stiffness, acoustics, heritability, genetic gain,
radiata pine.

Introduction

Australia has an advanced breeding program for
Pinus radiata D. Don (POWELL et al., 2005), which has
over the last 50 years significantly improved many char-
acteristics of this widely planted fast growing conifer
(MATHESON et al., 1986; COTTERILL and DEAN, 1990; WU

et al., 2004). Traditionally trees have been selected
based on visual qualities including diameter, height,
branching, straightness, observable defects, age and site
characteristics (WU and MATHESON, 2002). However,
neither site nor these visual characteristics are good
predictors of the mechanical properties of the wood
products. In addition, as the main uses of the products
are structural applications either as solid wood or as
engineered wood products, there is a demand to plant
trees with high stiffness. In the framework of a genetic
improvement program, visually unobservable character-
istics such as wood stiffness could be considered as
selection criteria in the same way as growth or form, if
they can be measured inexpensively, to maintain or
improve the mechanical properties of wood produced. 
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