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Abstract

In this paper we prove the existence of best multipoint local || - || —approximation
to a function f from an N—dimensional space Sy for a suitable integer N. This
problem is considered in an arbitrary Orlicz space for both the Luxemburg and the
Orlicz norms when some bits of data are more important than others. For this
purpose, we introduce the concept of || - || —balanced integer.
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§1. Introduction

The notion of best local approximation of a function around a point has been introduced
by Chui, Shisha and Smith in [3] although its origin goes as far as the paper of Walsh [9].
The case of more than one point, with same size neighborhoods, were treated in [1] and
in [8] with the L? norms, and in [5] and [4] with the Luxemburg norm in an Orlicz space.
In [2], the authors introduced the balanced neighborhood concept and they studied the
best local approximation in several points with different size neighborhoods, in LP spaces.
In [6] the last problem was considered for ¢—approximation in Orlicz spaces.
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In this article, we begin by studying the best local approximation in Orlicz spaces with Luxemburg
norm on R. Later we observe that our results remain valid for the Orlicz norm and several variables.
We introduce a concept of balanced integer which extends that given in [2]. The results are obtained
with fewer requirements on the function ¢ than those asked in [6] and they provide a generalization
of the balanced part given in [2].

We now introduce some notations. Let X C R be a bounded open set, and i be the Lebesgue
measure on X. Denote by M = M(X) the set of all the equivalence classes of Lebesgue measurable
real valued functions. Let ® be the set of convex functions ¢ : Ry — R, with ¢(x) > 0 for z > 0,
and ¢(0) = 0.

For ¢ € ® define

L¢(X):{f€M: /X¢(a|f(x)|)dx<oo, forsomea>0}.

The function space L? is called an Orlicz space, and it can be endowed with the following norm

I =t {x>0: [ o (K)o <1},

called the Luxemburg norm. Sometimes we write || f[| ¢y instead of || fxw ||, where xw denote the
characteristic function of the set W C X. In the space L? usually the Orlicz norm || - || () (see (4.10))
is also considered. The space L? with both norms is a Banach space; we refer to [7] for a detailed
study of Orlicz spaces.

We recall that a function ¢ € ® satisfies the As-condition if there exists a constant & > 0 such
that ¢(2z) < k¢(x), for = > 0.

We assume in this article that ¢ € ® and it satisfies the As-condition.

Given {z1,...,x,} contained in X, we define for small § > 0 a net of sets V, = Vi(9) := ap +
er(6)Ar(6) € X, 1 < k < n, where g = €;(d) \, 0, as § — 0, and where the sets Ay = Ai(J) are
measurable and uniformly bounded with p(Ay) =1 for all § > 0.

Let W C X. For an arbitrary norm || - || in L?, a function f € L?, and a subspace S C L? we
consider g € S such that

I(f =) Xwll < I(f = h)Xw],

for all h € S. Whenever it exists, such a function g is called a best || - || —approximation of f from S
on W. It is well known that a || - || —approximation always exists if the dimension of S is finite.

Let V = | Vi and denote by gs a best || - ||—approximation of f from S on V. When the net
{gs}s>0 has a limit in S, as § — 0, then this limit is called the best local || - ||—approzimation of
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f from S on {x1,..,2,}. In Section 3 we introduce the concept of balanced integers and give some
properties that we will use later. In Section 4 we prove that the net {gs}s~o is uniformly bounded

when || || =] - || and S is of finite dimension, and if in addition the dimension of S is balanced, the
best local || - ||—approximation can be obtained by Hermite interpolation. Analogous results can be
obtained for the norm || - [|4) and several variables.

Now we make an assumption on the ordered n—tuple (ex) := (£1, ..., £, ) which will guarantee that
the terms of the form

o .
() = || X, s €f = 7’“1, « nonnegative integer, (1.1)
-1
(%)
can be compared with each other as functions of §. Namely, for any nonnegative integers o and [,
and any pair j,k,1 < j, k < n, we assume

either wvg(a) = O(v;(B)), or v;(8) = o(vg(a)). (1.2)

Let (ix) be an ordered n-tuple of nonnegative integers. We say that v;(i;) is mazimal if vi(ix) =
O(v;(i5)) for all 1 < k < n. We denote it by

v;(i;) = max {vg (ix) } -
We observe that

> wnlix) = O(max {vg(ix)})-
k=1

Let Sy € PC™(X) be a linear subspace of dimension N, and f € PC™(X), where PC™(X) is the
class of functions in L#(X) with m — 1 continuous derivatives and with bounded piecewise continuous
mt" derivative on X. The space Sy is assumed to be fully interpolating at the points xj, that is, if
(k) is an ordered n-tuple of nonnegative integers with iy, < m and Y.;_, ix, = N, then there exists a
unique g € Sy such that g\@)(z;) = ajr, 0<j<ip—1,1<k<n, where {a;x} is an arbitrary set
of real numbers.

§2. Preliminary Results
We set the next auxiliary lemmas, which will be used to obtain the main results following the pattern

used in [2] for the L case and in [6] for the ¢—approximation case. The next lemma provides an order
of the error || f — gllps(v) for g € Sy which satisfies g (z)) = fU) (1), 0<j <ip —1, 1 <k <n.
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In the sequel, given a polynomial P, we set

Iy(\, P) = /Ak Exd (W)\y)'> dy.

Lemma 2.1. Let (ix) be an ordered n-tuple of nonnegative integers. Suppose h € PC™(X), where
m = max{ix}, and h(j)(xk) =0,0<7<i,—1, 1<k <n. Then

1Al Loy = O (max{vg(ix)}) -
Proof. Approximating h by the Taylor polynomial at zj, we have
h(z) = O((z — 21)™), x € Vj.
Thus, there exists a constant M > 0 such that
1Al Loy < Minf{A>0: LA epfy™) <1}

Since the sets Ay are uniformly bounded in §, for A\, = Myvg(ix), with My, = max{’yi’“‘ Dy € Agt,
we have Ik()\k,szkyi’“) <1. So

Il Lo vy = O (vr(ik)) -
Then [[h|[ 16y = O (max {vg(ix)}) - [ |

In this work we also need the following auxiliary lemma.

Lemma 2.2. Given a constant M > 0, there exist two positive constants M’ and M" such that

-1
M'<ul/g)§M”7 for all > 0. (2.1)

o (M/e)
Proof. Substituting 1 by ¢(z) in (2.1), we have to prove that M’ < —=2_—— < M", for all > 0.
g ¢ ¢~ (M(x))

Since ¢ is a convex function there exists a constant K > 0 such that ¢(Kxz) < M¢(x) for z > 0. As
¢! is an increasing function we find the upper bound in (2.1), with M” = 1/K. On the other hand,
for M > 1 we also use the convexity of ¢ to find the lower bound, as required. |

Let II™ be the space of polynomials of degree at most n. We now present the Lemma 3 stated in
[2], which will be used in the sequel.
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Lemma 2.3. Let 1 < p < 0o and let A be a family of uniformly bounded measurable subsets of the
real line with measure 1. Then there exists a constant M (depending on n and p) such that for all the
polynomials P € TI™, and all A € A,

x| <M [Pl 4y, O0<k<m,

where P(x) = >_p_, ezt

The way employed in this paper to obtain the main result makes us to state the following lemma,
which it was not used in [2] nor in [6].

Lemma 2.4. Let A be a family of uniformly bounded measurable subsets of the real line with measure
1. Gwenr, 0 <r <1, there exists a constant s > 0 such that

w (e ([t p ) na) = 2.2

for all A € A, and for all P € TI"™.

Proof. The statement is obvious for constant polynomials. Suppose that A C [a,b], for all A € A.

For 0 # P(r) = 32k cpx®, we denote Q(x) = m:(ix‘)ck‘. By the continuity of the measure, there is
B =p0(A,Q) > 0 such that
Q
r=u({reasiawi> L=ty (2)

From the equivalence of the norms on II", there exist two constants M and M’ such that

0< M < Qo oy < M (2.4)

a

for all P € II", so from (2.3) we obtain

r2u<{xeA 1Q ()|>Agl}>. (2.5)

Suppose that {8} is not bounded. Then there are subsequences {A4;} C A and {Q;} C II" such that
B = B(A;,Q;) — o0, as j — oo. From (2.4), there is a subsequence of {Q,}, that we denote in the
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same way, uniformly convergent to a polynomial Qg € II" on [a,b]. From (2.4), Qg # 0. Therefore, if
0 < a < 1—r,there exists 0 < s < ||Qol|oc,[a,5] that verifies

uw{z€la,b]: |Qo(x)|>s})>b—a—a>0. (2.6)

Denote C = {z € [a,b] : |Qo(x)| > s}. Clearly, there exists a nonnegative integer n; such that

and [|Qo(@)] ~ |Q;(@)l| < 5. =i, € fab)

Then we get
M’
CﬂAjC{xeAj:|Qj(x)|>‘}, j=>mni. (2.7)

J

Since p(A;) =1, from (2.5), (2.6), and (2.7) it follows that
r > u(C N A) = p(4y) - p(A\C) 2 1—a >,

which is a contradiction. Therefore, the set {5} is bounded. So, from (2.3) we obtain (2.2) with
s = sup{f}. [ |

§3. Balanced Neighborhood in L?

We begin with the following definition.

Definition 3.1. An n—tuple (i) of nonnegative integers is said to be || - ||s—balanced if for each
i; >0,
1
vj(ij = 1)

If (iy) is || - ||s—balanced, we say that >, _, ix is a || - ||s—balanced integer.

max {vg(ix)} = o(1).

As we have mentioned in the Introduction, this definition generalizes the concept of balanced
integer given in [2]. The following lemma allow us to state, for the Luxemburg norm, an algorithm to
compute all the || - ||—balanced n-tuples.

Lemma 3.2. Let (i) and (i}) be two || - ||o—balanced n-tuples with Y ,_, ix < > p_ i Set A :=
{7+ v;j(i;) = max{ug(ix)}} and B:={j: j ¢ A}. Then
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a) If j € A, theni; >i;+1.

b) If j € B, then z; > ;.

Proof. From the definiton of maximal, there is a constant 7 > 0 such that
0 max{u(if)} 2 v(i}), 1<) <n.

a) Suppose to the contrary that z; < i, for some j € A. If there is | € B such that i; > ¢; + 1 then

max{ue(ip)}y o () vG) e
vy =1) ol —1) — wli) ’
and (i},) cannot be || - ||,—Dbalanced.

If either B = () or for any [ € B, i) < i;, then there exists s € A such that i, > i, + 1. In this case,
max{or (i)} o 0i() o vili) o v)
vs(if — 1) vs(iy — 1) — ws(il — 1) T vs(is)

and again (i}) cannot be || - ||4—balanced.
b) It is obvious when i; = 0 for all j € B. Now suppose that z; < i, for some j € B. Then, for I € A,

Y

-0 as §—0,

max{op (i)} o () vl =) v — 1)
v(ip—1) ~ ol —1) — ul;—1) —  wli)

where the last inequality holds because, by a), i;—1 > 4;. Therefore, (i},) cannot be ||-||4—balanced. W

— o0 as d—0,

Given a || - [|s—balanced n—tuple (i), it easy to see that the n-tuple (i} ) defined by i} =d; + 1,
j €A and i} =ij, j€ B,is || - |[|—balanced.

Algorithm. Begin with the || - |[|[4—balanced n—tuple <Z.](€0)> = (0) which corresponds to the
|| - [|¢—balanced integer 0. Then, given (i,(cm)> for m >0, set A ={l: vl(il(m)) = max{vk(i,(cm))}}.
To build the next || - ||—balanced n—tuple (i,(CmH)) we take i,imH) = iim) + 1, for k € A, and

iémﬂ) = iém), for k ¢ A.

Remark 3.3. We observe that to each || - ||s—balanced integer there corresponds exactly one
|| - ||s—balanced n—tuple. We also note that an integer N is || - ||,—balanced if only if N = >"/'_, iy
for some (i) generated by this algorithm.
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Denote N and N the smallest || - [|,—balanced integer greater than or equal to N and the largest
|| - [[p—balanced integer less than or equal to N, respectively. We write > iy = N and i, = N,
where (i) and (i;,) are n—tuples || - || —balanced.

Lemma 3.4. The following statements are satisfied:

a) If i; +1 =15, then max{vg(i),)} = O(v;(i; — 1));

b) Ifi; =ij, then max{vy (i)} = o(v;(i; — 1));
Next we give an example of balanced integers.

Example 3.5. Define ¢(z) = %, x > 0. It can be seen that ¢ satisfies the Ay—condition ([7],

pp. 30). We will prove that (g,) = (§,02) satisfies the conditions (1.2) and that every integer is
|| - ||¢—balanced.
To this purpose we first prove the following functional equation for the function ¢~

¢~ (@) = o' ln(e + ¢~ (2))] /2. 3.1

2172 . _ - . .
Set g(.T) = m Since z = ¢ 1(¢($)) = W, we obtain g(l‘) = W7 1.e.,
(3.1).
Clearly, from (3.1) we get

From (3.2) there exists a constant M > e such that
2 <o Hz) <z and e+a® <2, z>M.
Thus
1 ln(xl/Q) < In(e + ¢~ 1(z))
6  In(z3) ~ In(e+ ¢~ 1(a?))
Now, we are ready to show that (g,) satisfies (1.2). From (3.1), we have

UZ(O‘):(SM—lHé In(e+ ¢~ (571)) 3
01(5) (e to1(62) )

<1, z>M. (3.3)
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So, (3.3) implies v2(a) = o(v1(B)) if 2a — 8> —3, or v1(B8) = o(v2(a)) if 20 — 3 < —3.
Similarly, we can prove that vi(a) = o(v2(8)) if 28 — o < —3, or v2(B) = o(vy(a)) if 28 — v > —3.
On the other hand, by (3.1),
vk () — skla=p)
vk () ’

and consequently v, () = O(vg(B)) if @ > 8, or vi(8) = o(vi()) otherwise. Therefore (ej) satisfies
(1.2).

Finally, using the above analysis, we observe that the set A := {j: v;(i;) = max{vg(ix)}} is unitary
for all (i) generated by the algorithm. Therefore Remark 3.3 implies that all nonnegative integers
are || - ||—balanced.

1<k<2,

84. Best Local Approximation in Orlicz Spaces

We now present the first important result concerning the behavior of a net {gs}s>o of best
| - ||s—approximations from Sy, as § — 0.

Theorem 4.1. Let N be a positive integer and m = max{iy}. If f € PC™(X), Sy € PC™(X), and
{gs}s>0 is a net of best || - ||p—approzimations of f from Sy on 'V, then {gs}s>0 is uniformly bounded
on X.

Proof. If gs is not uniformly bounded in §, there is a sequence {4, } such that

195,11y — 00, as 7 — oc. (4.1)

Let g be a fixed function in Sy such that fU)(zy) = ¢ (2y), 0 < j < i — 1, 1 < k < n. Without
loss of generality we assume g5, # g for all r. We define

hér — g - 967‘ .
lg — gs.1l4
Since gs is a best || - ||4-approximation, from Lemma 2.1 and (4.1) we get
2Hf—9||L¢>(v) .
1o, Loy < ————— = o (max{u(i)}) . (4.2)

lg = g5, Il
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Expanding hs, by the Taylor polynomial at xj up to the order iy — 1, we obtain

ix—=1 1 (5)
hs, (z) = Z hs,,j('xk)
7=0
where Rs, (2) = O((x — 1)), 1 < k < n.
Consider the norm on Sy defined by [|h|| := esssup,cx (|h(z)| + ..... + |h0) (2)]). Since [he, Il =1,
the equivalence of the norms in Sy implies that Rs, (z) = O((x —x3)™) uniformly in §,. Let M > 0 be
such that Ay C [-M, M], 1 <k < n. A straightforward computation shows that ||(z —xk)g'“HM(vk) <

(z — 2x)’ + Rs, (2),

Mk, (iz), and consequently .
1Rs, o vsy = O (vk(ir)) ,
uniformly in ¢,.. Therefore, from (4.2) we have

Z h) (i)
4!

Jj=0

(x — x1) < o (max {vi(i;)}) + O (v (ix)) - (4.3)
L*(Vi)

Now, we consider the polynomials net

ip—1 h((si)(xk)

Ps, x(y) = Z 7 6iy-j, 1< k<n.
=0

The change of variable x — xy, = ey, y € Ay, yields

s hf;]) (7)
g

=0

(x — ap)’ =inf{\ > 0: Ix(\ Ps, 1) < 1}. (4.4)
Lé (Vi)
Using Lemma 2.4 we can find a number s, independent on J, and k, such that the sets Bs, 5 =
P
|Ps, |7t M, ||P5Tvk|oo,Ak:|> N Ay, satisfy p(Bs, k) > 3, for all §, and k. Denote A5, :=
1Psy eIl oo .
#ﬁ;k Since ‘fBér,k Exd (%) dy > 1, we have I (As,, Ps, x) > 1. Thus, by (4.4) we get

S

M < Z Sy <mk)($ —xp)’

—1(2) |4 ! '
5¢ <fk) =7 L% (Vi)
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According to Lemma 2.2 and Lemma 2.3 there exists a constant M* > 0 such that

|h(j)(xk)6j| . ip—1 h(j)(xk) '
Aﬁ:—Ting > &f (z — zp)’ 7 (4.5)
¢ (5) 3=0 Lo (Vi)
for 0 <j<ip—1,1<k<mn. So, (4.3) and (4.5) imply
] 1 . -
05 @0)] < o5 (o max{u(@)}) + O (w(@)))

and consequently by Lemma 3.4 we get
h§ ()| = o(1), as &, — 0, (4.6)

for0<j<ip—1, 1<k<n. )

Finally, considering the norm [|Af = 377, >2%% 5 19 (2)| on Sy, and the equivalence of the norms
in Sy, we obtain [|hs, ||, — 0, as 6, — 0, which is a contradiction. Thus gs must be uniformly bounded
in § and the proof of the theorem is complete. |

Lemma 4.2. Let (ix) be a || - ||s—balanced n—tuple, 0 < N = >0 _ i, and m = max{iy}. If
fe PC™(X), Sy C PC™(X), and {gs}s>0 is a net of best || - ||o—approzimations of f from Sy on
V, then 4
|(f = 95)9) (z1)e3

1)

= O (max {vg(ix)}) , (4.7)

0<j<ip—1,1<k<n.

Proof. For each k with i, > 0, consider the Taylor polynomial of f — g5 at xj of degree ¢y, — 1. Thus

wloe oG (o _
(F-g)o) = S L@ (it gy, (45)

|
7=0 I

where Rs(z) = O((z — x)%*). From Theorem 4.1 and the equivalence of the norms in Sy we can
show that Rs(z) = O((z — xx)%) uniformly in 6. Thus, since the sets Ay are bounded uniformly in §
we obtain for each k

1851 Lo v,y = O (max {vi(i1)}) -
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Let g be a fixed function in Sy such that f@)(z) = ¢¥)(2p), 0 < j <ip—1, 1 <k < n. Then
If = gslleevy < If — gllLe(vy- From (4.8) and Lemma 2.1 follows that

i1 e NG (g |
Z W(m — 2p)? = O (max {v;(i)}) - (4.9)
=0 ' L4 (Vi)

Now, we can use a similar analysis to that in the proof of Theorem 4.1 with f — gs instead of hs_, to
obtain as in (4.5)

() Y@( .
|<f 95) (J?k Z f g5 mk) (I*.Ik)j ,
s¢~ (;) e
Lé (Vi)
0<j<ir—1,1<k <n, for aconstant M > 0. Using the statement (4.9) we obtain (4.7) as
required. |

Now we present the second main result.

Theorem 4.3. Let (i) be an n—tuple || - ||g—balanced and let 0 < N = > ip. If m = max{ix},
fePC™(X) and Sy C PC™(X), then the best local ||-||4— approzimation of f from Sy is the unique
g € Sy defined by the N interpolation conditions

f(j)(xk) — g(j)(mk),
0<j<ir—1,1<Ek<n.

Proof. From the || - ||4—balanced definition and Lemma 4.2, it follows that

9 (x1) = (@) + o(1),

0<j<ix—1,1<k<n. As gsis uniquely determined via a fixed linear transformation with rank
N from the N values g(j)( k), 0 <j<i,—1, 1<k <n,then gs must converge to the generalized
Hermite interpolator g, i.e., g € Sy such that

9 (i) = f9 (),

0<j<i,—1,1<k<n. This g is by definition the best local approximation of f from Sy. |
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Under the assumption @ — 0, as z — 0, and @ — 00, as & — 00, we can consider the Orlicz
norm .
il = jut, 5 (1+ ] otwlstaas). (4.10)
This norm is equivalent to the Luxemburg norm in L4 (X), furthermore
1715 < 1fllgy < 21flly. for all J € L(A) and A € X. (411)

As a consequence of (4.11) it is easy to see that Lemmas 2.1, 4.2, and Theorems 4.1, 4.3 remain valid
for Orlicz norm.

We can also generalize the results of one variable to several variables. In R? we say that

. i;—1

Ly . oo . . ek e/ .
(i) is balanced if i; > 0 implies that maX{M} = o0 (M), and in that case
> card{a: |a| < ik — 1} will be called a balanced integer, where o« = {(«, ..., aq) is a d-dimensio-
k

nal multi-index and |a| = a1 + ... + aq4.
Now, we state without proof the theorem for several variables. The necessary changes can be seen
in [2].

Theorem 4.4. Let || - || be the Luzemburg or Orlicz norm on a bounded open set X C R and let
{z1,...,xn} contained in X. If N is a balanced integer with balanced (iy) and Sy C PC™(X) with
m = max{ix}, then the best local || - || —approzimation of f € PC™(X) from Sy on {x1,...,x,} is the
unique g € Sy which satisfies
el g(xy) 7 ool f(xp)
oy ..oyst  Oytt..oyg

ol <ip—1,1<k<n.
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