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Abstract

In this paper we prove the existence of best multipoint local ||·||−approximation
to a function f from an N−dimensional space SN for a suitable integer N . This
problem is considered in an arbitrary Orlicz space for both the Luxemburg and the
Orlicz norms when some bits of data are more important than others. For this
purpose, we introduce the concept of || · ||−balanced integer.
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§1. Introduction

The notion of best local approximation of a function around a point has been introduced
by Chui, Shisha and Smith in [3] although its origin goes as far as the paper of Walsh [9].
The case of more than one point, with same size neighborhoods, were treated in [1] and
in [8] with the Lp norms, and in [5] and [4] with the Luxemburg norm in an Orlicz space.
In [2], the authors introduced the balanced neighborhood concept and they studied the
best local approximation in several points with different size neighborhoods, in Lp spaces.
In [6] the last problem was considered for φ−approximation in Orlicz spaces.

†This work was supported by CONICET, ANPCyT, Universidad Nacional de San Luis and Univer-
sidad Nacional de Rio Cuarto.
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In this article, we begin by studying the best local approximation in Orlicz spaces with Luxemburg
norm on R. Later we observe that our results remain valid for the Orlicz norm and several variables.
We introduce a concept of balanced integer which extends that given in [2]. The results are obtained
with fewer requirements on the function φ than those asked in [6] and they provide a generalization
of the balanced part given in [2].

We now introduce some notations. Let X ⊂ R be a bounded open set, and µ be the Lebesgue
measure on X. Denote by M = M(X) the set of all the equivalence classes of Lebesgue measurable
real valued functions. Let Φ be the set of convex functions φ : R+ −→ R+, with φ(x) > 0 for x > 0,
and φ(0) = 0.

For φ ∈ Φ define

Lφ(X) =
{

f ∈M :
∫

X

φ (α|f(x)|) dx < ∞, for some α > 0
}

.

The function space Lφ is called an Orlicz space, and it can be endowed with the following norm

‖f‖φ = inf
{

λ > 0 :
∫

X

φ

( |f(x)|
λ

)
dx ≤ 1

}
,

called the Luxemburg norm. Sometimes we write ‖f‖Lφ(W ) instead of ‖fχW ‖φ, where χW denote the
characteristic function of the set W ⊂ X. In the space Lφ usually the Orlicz norm ‖ · ‖(φ) (see (4.10))
is also considered. The space Lφ with both norms is a Banach space; we refer to [7] for a detailed
study of Orlicz spaces.

We recall that a function φ ∈ Φ satisfies the ∆2-condition if there exists a constant k > 0 such
that φ(2x) ≤ kφ(x), for x ≥ 0.

We assume in this article that φ ∈ Φ and it satisfies the ∆2-condition.
Given {x1, ..., xn} contained in X, we define for small δ > 0 a net of sets Vk = Vk(δ) := xk +

εk(δ)Ak(δ) ⊂ X, 1 ≤ k ≤ n, where εk = εk(δ) ↘ 0, as δ → 0, and where the sets Ak = Ak(δ) are
measurable and uniformly bounded with µ(Ak) = 1 for all δ > 0.

Let W ⊂ X. For an arbitrary norm || · || in Lφ, a function f ∈ Lφ, and a subspace S ⊂ Lφ we
consider g ∈ S such that

‖(f − g)XW ‖ ≤ ‖(f − h)XW ‖ ,

for all h ∈ S. Whenever it exists, such a function g is called a best || · ||−approximation of f from S
on W . It is well known that a || · ||−approximation always exists if the dimension of S is finite.

Let V =
⋃

Vk and denote by gδ a best || · ||−approximation of f from S on V . When the net
{gδ}δ>0 has a limit in S, as δ → 0, then this limit is called the best local || · ||−approximation of
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f from S on {x1, .., xn}. In Section 3 we introduce the concept of balanced integers and give some
properties that we will use later. In Section 4 we prove that the net {gδ}δ>0 is uniformly bounded
when || · || = || · ||φ and S is of finite dimension, and if in addition the dimension of S is balanced, the
best local || · ||φ−approximation can be obtained by Hermite interpolation. Analogous results can be
obtained for the norm || · ||(φ) and several variables.

Now we make an assumption on the ordered n−tuple 〈εk〉 := (ε1, ..., εn) which will guarantee that
the terms of the form

vk(α) := ‖XVk
‖φ εα

k =
εα
k

φ−1
(

1
εk

) , α nonnegative integer, (1.1)

can be compared with each other as functions of δ. Namely, for any nonnegative integers α and β,
and any pair j, k, 1 ≤ j, k ≤ n, we assume

either vk(α) = O(vj(β)), or vj(β) = o(vk(α)). (1.2)

Let 〈ik〉 be an ordered n-tuple of nonnegative integers. We say that vj(ij) is maximal if vk(ik) =
O(vj(ij)) for all 1 ≤ k ≤ n. We denote it by

vj(ij) = max {vk(ik)} .

We observe that
n∑

k=1

vk(ik) = O(max {vk(ik)}).

Let SN ⊂ PCm(X) be a linear subspace of dimension N , and f ∈ PCm(X), where PCm(X) is the
class of functions in Lφ(X) with m− 1 continuous derivatives and with bounded piecewise continuous
mth derivative on X. The space SN is assumed to be fully interpolating at the points xj , that is, if
〈k〉 is an ordered n-tuple of nonnegative integers with ik ≤ m and

∑n
k=1 ik = N , then there exists a

unique g ∈ SN such that g(j)(xk) = aj,k, 0 ≤ j ≤ ik − 1, 1 ≤ k ≤ n, where {aj,k} is an arbitrary set
of real numbers.

§2. Preliminary Results

We set the next auxiliary lemmas, which will be used to obtain the main results following the pattern
used in [2] for the Lp case and in [6] for the φ−approximation case. The next lemma provides an order
of the error ‖f − g‖Lφ(V ) for g ∈ SN which satisfies g(j)(xk) = f (j)(xk), 0 ≤ j ≤ ik − 1, 1 ≤ k ≤ n.
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In the sequel, given a polynomial P , we set

Ik(λ, P ) =
∫

Ak

εkφ

( |P (y)|
λ

)
dy.

Lemma 2.1. Let 〈ik〉 be an ordered n-tuple of nonnegative integers. Suppose h ∈ PCm(X), where
m = max{ik}, and h(j)(xk) = 0, 0 ≤ j ≤ ik − 1, 1 ≤ k ≤ n. Then

‖h‖Lφ(V ) = O (max {vk(ik)}) .

Proof. Approximating h by the Taylor polynomial at xk, we have

h(x) = O((x− xk)ik), x ∈ Vk.

Thus, there exists a constant M > 0 such that

‖h‖Lφ(Vk) ≤ M inf
{
λ > 0 : Ik(λ, εik

k yik) ≤ 1
}

.

Since the sets Ak are uniformly bounded in δ, for λk = Mkvk(ik), with Mk = max{
∣∣yik

∣∣ : y ∈ Ak},
we have Ik(λk, εik

k yik) ≤ 1. So
‖h‖Lφ(Vk) = O (vk(ik)) .

Then ‖h‖Lφ(V ) = O (max {vk(ik)}) . ¥

In this work we also need the following auxiliary lemma.

Lemma 2.2. Given a constant M > 0, there exist two positive constants M ′ and M ′′ such that

M ′ ≤ φ−1(1/ε)
φ−1(M/ε)

≤ M ′′, for all ε > 0. (2.1)

Proof. Substituting 1
ε by φ(x) in (2.1), we have to prove that M ′ ≤ x

φ−1(Mφ(x)) ≤ M ′′, for all x > 0.
Since φ is a convex function there exists a constant K > 0 such that φ(Kx) ≤ Mφ(x) for x ≥ 0. As
φ−1 is an increasing function we find the upper bound in (2.1), with M ′′ = 1/K. On the other hand,
for M > 1 we also use the convexity of φ to find the lower bound, as required. ¥

Let Πn be the space of polynomials of degree at most n. We now present the Lemma 3 stated in
[2], which will be used in the sequel.
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Lemma 2.3. Let 1 ≤ p ≤ ∞ and let Λ be a family of uniformly bounded measurable subsets of the
real line with measure 1. Then there exists a constant M (depending on n and p) such that for all the
polynomials P ∈ Πn, and all A ∈ Λ,

|ck| ≤ M ‖P‖Lp(A) , 0 ≤ k ≤ n,

where P (x) =
∑n

k=0 ckxk.

The way employed in this paper to obtain the main result makes us to state the following lemma,
which it was not used in [2] nor in [6].

Lemma 2.4. Let Λ be a family of uniformly bounded measurable subsets of the real line with measure
1. Given r, 0 < r < 1, there exists a constant s > 0 such that

µ

(
|P |−1

([‖P‖∞,A

s
, ‖P‖∞,A

])
∩A

)
≥ r, (2.2)

for all A ∈ Λ, and for all P ∈ Πn.

Proof. The statement is obvious for constant polynomials. Suppose that A ⊂ [a, b], for all A ∈ Λ.

For 0 6= P (x) =
∑n

k=0 ckxk, we denote Q(x) = P (x)
maxk |ck| . By the continuity of the measure, there is

β = β(A,Q) > 0 such that

r = µ

({
x ∈ A : |Q(x)| > ‖Q‖∞,A

β

})
. (2.3)

From the equivalence of the norms on Πn, there exist two constants M and M ′ such that

0 < M ≤ ‖Q‖∞,[a,b] ≤ M ′, (2.4)

for all P ∈ Πn, so from (2.3) we obtain

r ≥ µ

({
x ∈ A : |Q(x)| > M ′

β

})
. (2.5)

Suppose that {β} is not bounded. Then there are subsequences {Aj} ⊂ Λ and {Qj} ⊂ Πn such that
βj = β(Aj , Qj) → ∞, as j → ∞. From (2.4), there is a subsequence of {Qj}, that we denote in the
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same way, uniformly convergent to a polynomial Q0 ∈ Πn on [a, b]. From (2.4), Q0 6= 0. Therefore, if
0 < α < 1− r, there exists 0 < s < ||Q0||∞,[a,b] that verifies

µ ({x ∈ [a, b] : |Q0(x)| > s}) ≥ b− a− α > 0. (2.6)

Denote C = {x ∈ [a, b] : |Q0(x)| > s}. Clearly, there exists a nonnegative integer n1 such that

M ′

βj
<

s

2
and ||Q0(x)| − |Qj(x)|| < s

2
, j ≥ n1, x ∈ [a, b].

Then we get

C ∩Aj ⊂
{

x ∈ Aj : |Qj(x)| > M ′

βj

}
, j ≥ n1. (2.7)

Since µ(Aj) = 1, from (2.5), (2.6), and (2.7) it follows that

r ≥ µ(C ∩Aj) = µ(Aj)− µ(Aj\C) ≥ 1− α > r,

which is a contradiction. Therefore, the set {β} is bounded. So, from (2.3) we obtain (2.2) with
s = sup{β}. ¥

§3. Balanced Neighborhood in Lφ

We begin with the following definition.

Definition 3.1. An n−tuple 〈ik〉 of nonnegative integers is said to be || · ||φ−balanced if for each
ij > 0,

1
vj(ij − 1)

max {vk(ik)} = o(1).

If 〈ik〉 is || · ||φ−balanced, we say that
∑n

k=1 ik is a || · ||φ−balanced integer.

As we have mentioned in the Introduction, this definition generalizes the concept of balanced
integer given in [2]. The following lemma allow us to state, for the Luxemburg norm, an algorithm to
compute all the || · ||φ−balanced n-tuples.

Lemma 3.2. Let 〈ik〉 and 〈i′k〉 be two || · ||φ−balanced n-tuples with
∑n

k=1 ik <
∑n

k=1 i′k. Set A :=
{j : vj(ij) = max{vk(ik)}} and B := {j : j /∈ A}. Then
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a) If j ∈ A, then i′j ≥ ij + 1.

b) If j ∈ B, then i′j ≥ ij.

Proof. From the definiton of maximal, there is a constant η > 0 such that

η max{vk(i′k)} ≥ vj(i′j), 1 ≤ j ≤ n.

a) Suppose to the contrary that i′j ≤ ij for some j ∈ A. If there is l ∈ B such that i′l ≥ il + 1 then

η
max{vk(i′k)}

vl(i′l − 1)
≥ vj(i′j)

vl(i′l − 1)
≥ vj(ij)

vl(il)
→∞ as δ → 0,

and 〈i′k〉 cannot be || · ||φ−balanced.
If either B = ∅ or for any l ∈ B, i′l ≤ il, then there exists s ∈ A such that i′s ≥ is + 1. In this case,

η
max{vk(i′k)}
vs(i′s − 1)

≥ vj(i′j)
vs(i′s − 1)

≥ vj(ij)
vs(i′s − 1)

≥ vj(ij)
vs(is)

9 0 as δ → 0,

and again 〈i′k〉 cannot be || · ||φ−balanced.
b) It is obvious when ij = 0 for all j ∈ B. Now suppose that i′j < ij for some j ∈ B. Then, for l ∈ A,

η
max{vk(i′k)}

vl(i′l − 1)
≥ vj(i′j)

vl(i′l − 1)
≥ vj(ij − 1)

vl(i′l − 1)
≥ vj(ij − 1)

vl(il)
→∞ as δ → 0,

where the last inequality holds because, by a), i′l−1 ≥ il. Therefore, 〈i′k〉 cannot be ||·||φ−balanced. ¥

Given a || · ||φ−balanced n−tuple 〈ik〉, it easy to see that the n-tuple 〈i′k〉 defined by i′j = ij + 1,
j ∈ A, and i′j = ij , j ∈ B, is || · ||φ−balanced.

Algorithm. Begin with the || · ||φ−balanced n−tuple 〈i(0)k 〉 = 〈0〉 which corresponds to the
|| · ||φ−balanced integer 0. Then, given 〈i(m)

k 〉 for m ≥ 0, set A = {l : vl(i
(m)
l ) = max{vk(i(m)

k )}}.
To build the next || · ||φ−balanced n−tuple 〈i(m+1)

k 〉 we take i
(m+1)
k = i

(m)
k + 1, for k ∈ A, and

i
(m+1)
k = i

(m)
k , for k /∈ A.

Remark 3.3. We observe that to each || · ||φ−balanced integer there corresponds exactly one
|| · ||φ−balanced n−tuple. We also note that an integer N is || · ||φ−balanced if only if N =

∑n
k=1 ik

for some 〈ik〉 generated by this algorithm.
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Denote N and N the smallest || · ||φ−balanced integer greater than or equal to N and the largest
|| · ||φ−balanced integer less than or equal to N , respectively. We write

∑
ik = N and

∑
ik = N ,

where 〈ik〉 and 〈ik〉 are n−tuples || · ||φ−balanced.

Lemma 3.4. The following statements are satisfied:

a) If ij + 1 = ij, then max{vk(ik)} = O(vj(ij − 1));

b) If ij = ij, then max{vk(ik)} = o(vj(ij − 1));

Next we give an example of balanced integers.

Example 3.5. Define φ(x) = x2

ln (e+x) , x ≥ 0. It can be seen that φ satisfies the ∆2−condition ([7],
pp. 30). We will prove that 〈εk〉 = (δ, δ2) satisfies the conditions (1.2) and that every integer is
|| · ||φ−balanced.
To this purpose we first prove the following functional equation for the function φ−1:

φ−1(x) = x1/2[ln(e + φ−1(x))]1/2. (3.1)

Set g(x) = x1/2

φ−1(x) . Since x = φ−1(φ(x)) = x
[ln(e+x)]1/2g(φ(x))

, we obtain g(x) = 1
[ln(e+φ−1(x))]1/2 , i.e.,

(3.1).
Clearly, from (3.1) we get

lim
x−→∞

x

(φ−1(x))2
= 0, and lim

x−→∞
φ−1(x)

x
= 0. (3.2)

From (3.2) there exists a constant M > e such that

x1/2 ≤ φ−1(x) ≤ x and e + x2 < x3, x ≥ M.

Thus
1
6

=
ln(x1/2)
ln(x3)

≤ ln(e + φ−1(x))
ln(e + φ−1(x2))

≤ 1, x ≥ M. (3.3)

Now, we are ready to show that 〈εk〉 satisfies (1.2). From (3.1), we have

v2(α)
v1(β)

= δ2α−β+ 1
2

(
ln

(
e + φ−1

(
δ−1

))

ln (e + φ−1 (δ−2))

) 1
2

.
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So, (3.3) implies v2(α) = o(v1(β)) if 2α− β > − 1
2 , or v1(β) = o(v2(α)) if 2α− β < − 1

2 .
Similarly, we can prove that v1(α) = o(v2(β)) if 2β − α < − 1

2 , or v2(β) = o(v1(α)) if 2β − α > − 1
2 .

On the other hand, by (3.1),
vk(α)
vk(β)

= δk(α−β), 1 ≤ k ≤ 2,

and consequently vk(α) = O(vk(β)) if α ≥ β, or vk(β) = o(vk(α)) otherwise. Therefore 〈εk〉 satisfies
(1.2).
Finally, using the above analysis, we observe that the set A := {j : vj(ij) = max{vk(ik)}} is unitary
for all 〈ik〉 generated by the algorithm. Therefore Remark 3.3 implies that all nonnegative integers
are || · ||φ−balanced.

§4. Best Local Approximation in Orlicz Spaces

We now present the first important result concerning the behavior of a net {gδ}δ>0 of best
|| · ||φ−approximations from SN , as δ → 0.

Theorem 4.1. Let N be a positive integer and m = max{ik}. If f ∈ PCm(X), SN ⊆ PCm(X), and
{gδ}δ>0 is a net of best || · ||φ−approximations of f from SN on V , then {gδ}δ>0 is uniformly bounded
on X.

Proof. If gδ is not uniformly bounded in δ, there is a sequence {δr} such that

‖gδr‖φ →∞, as r →∞. (4.1)

Let g be a fixed function in SN such that f (j)(xk) = g(j)(xk), 0 ≤ j ≤ ik − 1, 1 ≤ k ≤ n. Without
loss of generality we assume gδr 6= g for all r. We define

hδr =
g − gδr

‖g − gδr‖φ

.

Since gδ is a best ‖ · ‖φ-approximation, from Lemma 2.1 and (4.1) we get

‖hδr‖Lφ(V ) ≤
2 ‖f − g‖Lφ(V )

‖g − gδr‖φ

= o (max {vl(il)}) . (4.2)
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Expanding hδr
by the Taylor polynomial at xk up to the order ik − 1, we obtain

hδr
(x) =

ik−1∑

j=0

h
(j)
δr

(xk)
j!

(x− xk)j + Rδr
(x),

where Rδr (x) = O((x− xk)ik), 1 ≤ k ≤ n.
Consider the norm on SN defined by ‖h‖ := ess supx∈X(|h(x)| + ..... + |h(ik)(x)|). Since ‖hδr‖φ = 1,

the equivalence of the norms in SN implies that Rδr (x) = O((x−xk)ik) uniformly in δr. Let M > 0 be
such that Ak ⊂ [−M,M ], 1 ≤ k ≤ n. A straightforward computation shows that ||(x−xk)ik ||Lφ(Vk) ≤
M ikvk(ik), and consequently

‖Rδr‖Lφ(Vk) = O
(
vk(ik)

)
,

uniformly in δr. Therefore, from (4.2) we have
∥∥∥∥∥∥

ik−1∑

j=0

h
(j)
δr

(xk)
j!

(x− xk)j

∥∥∥∥∥∥
Lφ(Vk)

≤ o (max {vl(il)}) + O
(
vk(ik)

)
. (4.3)

Now, we consider the polynomials net

Pδr,k(y) =
ik−1∑

j=0

h
(j)
δr

(xk)
j!

εj
kyj , 1 ≤ k ≤ n.

The change of variable x− xk = εky, y ∈ Ak, yields
∥∥∥∥∥∥

ik−1∑

j=0

h
(j)
δr

(xk)
j!

(x− xk)j

∥∥∥∥∥∥
Lφ(Vk)

= inf{λ > 0 : Ik(λ, Pδr,k) ≤ 1}. (4.4)

Using Lemma 2.4 we can find a number s, independent on δr and k, such that the sets Bδr,k :=

|Pδr,k|−1

([
‖Pδr,k‖∞,Ak

s , ‖Pδr,k‖∞,Ak

])
∩ Ak satisfy µ(Bδr,k) ≥ 1

2 , for all δr and k. Denote λδr :=

‖Pδr,k‖∞,Ak

sφ−1
(

2
εk

) . Since
∫

Bδr,k
εkφ

( |Pδr,k|
λδr

)
dy ≥ 1, we have Ik(λδr , Pδr,k) ≥ 1. Thus, by (4.4) we get

‖Pδr,k‖∞,Ak

sφ−1
(

2
εk

) ≤
∥∥∥∥∥∥

ik−1∑

j=0

h
(j)
δr

(xk)
j!

(x− xk)j

∥∥∥∥∥∥
Lφ(Vk)

.
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According to Lemma 2.2 and Lemma 2.3 there exists a constant M∗ > 0 such that

|h(j)
δr

(xk)εj
k|

sφ−1
(

1
εk

) ≤ M∗

∥∥∥∥∥∥

ik−1∑

j=0

h
(j)
δr

(xk)
j!

(x− xk)j

∥∥∥∥∥∥
Lφ(Vk)

, (4.5)

for 0 ≤ j ≤ ik − 1, 1 ≤ k ≤ n. So, (4.3) and (4.5) imply

|h(j)
δr

(xk)| ≤ 1
vk(ik − 1)

(
o (max {vl(il)}) + O

(
vk(ik)

))
,

and consequently by Lemma 3.4 we get

|h(j)
δr

(xk)| = o(1), as δr → 0, (4.6)

for 0 ≤ j ≤ ik − 1, 1 ≤ k ≤ n.
Finally, considering the norm ‖h‖ =

∑n
k=1

∑ik−1
j=0 |h(j)(xk)| on SN , and the equivalence of the norms

in SN , we obtain ‖hδr‖φ → 0, as δr → 0, which is a contradiction. Thus gδ must be uniformly bounded
in δ and the proof of the theorem is complete. ¥

Lemma 4.2. Let 〈ik〉 be a || · ||φ−balanced n−tuple, 0 < N =
∑n

k=1 ik and m = max{ik}. If
f ∈ PCm(X), SN ⊆ PCm(X), and {gδ}δ>0 is a net of best || · ||φ−approximations of f from SN on
V , then

|(f − gδ)(j)(xk)εj
k|

φ−1( 1
εk

)
= O (max {vk(ik)}) , (4.7)

0 ≤ j ≤ ik − 1, 1 ≤ k ≤ n.

Proof. For each k with ik > 0, consider the Taylor polynomial of f − gδ at xk of degree ik − 1. Thus

(f − gδ)(x) =
ik−1∑

j=0

(f − gδ)(j)(xk)
j!

(x− xk)j + Rδ(x), (4.8)

where Rδ(x) = O((x − xk)ik). From Theorem 4.1 and the equivalence of the norms in SN we can
show that Rδ(x) = O((x− xk)ik) uniformly in δ. Thus, since the sets Ak are bounded uniformly in δ
we obtain for each k

‖Rδ‖Lφ(Vk) = O (max {vl(il)}) .
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Let g be a fixed function in SN such that f (j)(xk) = g(j)(xk), 0 ≤ j ≤ ik − 1, 1 ≤ k ≤ n. Then
‖f − gδ‖Lφ(V ) ≤ ‖f − g‖Lφ(V ). From (4.8) and Lemma 2.1 follows that

∥∥∥∥∥∥

ik−1∑

j=0

(f − gδ)(j)(xk)
j!

(x− xk)j

∥∥∥∥∥∥
Lφ(Vk)

= O (max {vl(il)}) . (4.9)

Now, we can use a similar analysis to that in the proof of Theorem 4.1 with f − gδ instead of hδr , to
obtain as in (4.5)

|(f − gδ)(j)(xk)εj
k|

sφ−1( 1
εk

)
≤ M

∥∥∥∥∥∥

ik−1∑

j=0

(f − gδ)(j)(xk)
j!

(x− xk)j

∥∥∥∥∥∥
Lφ(Vk)

,

0 ≤ j ≤ ik − 1, 1 ≤ k ≤ n, for a constant M > 0. Using the statement (4.9) we obtain (4.7) as
required. ¥

Now we present the second main result.

Theorem 4.3. Let 〈ik〉 be an n−tuple || · ||φ−balanced and let 0 < N =
∑

ik. If m = max{ik},
f ∈ PCm(X) and SN ⊂ PCm(X), then the best local || · ||φ−approximation of f from SN is the unique
g ∈ SN defined by the N interpolation conditions

f (j)(xk) = g(j)(xk),

0 ≤ j ≤ ik − 1, 1 ≤ k ≤ n.

Proof. From the || · ||φ−balanced definition and Lemma 4.2, it follows that

g
(j)
δ (xk) = f (j)(xk) + o(1),

0 ≤ j ≤ ik − 1, 1 ≤ k ≤ n. As gδ is uniquely determined via a fixed linear transformation with rank
N from the N values g

(j)
δ (xk), 0 ≤ j ≤ ik − 1, 1 ≤ k ≤ n, then gδ must converge to the generalized

Hermite interpolator g, i.e., g ∈ SN such that

g(j)(xk) = f (j)(xk),

0 ≤ j ≤ ik − 1, 1 ≤ k ≤ n. This g is by definition the best local approximation of f from SN . ¥
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Under the assumption φ(x)
x → 0, as x → 0, and φ(x)

x →∞, as x →∞, we can consider the Orlicz
norm

||f ||(φ) = inf
k>0

1
k

(
1 +

∫

X

φ(k|f(x)|)dx

)
. (4.10)

This norm is equivalent to the Luxemburg norm in Lφ(X), furthermore

‖f‖φ ≤ ‖f‖(φ) ≤ 2 ‖f‖φ , for all f ∈ Lφ(A) and A ⊂ X. (4.11)

As a consequence of (4.11) it is easy to see that Lemmas 2.1, 4.2, and Theorems 4.1, 4.3 remain valid
for Orlicz norm.

We can also generalize the results of one variable to several variables. In Rd we say that

〈ik〉 is balanced if ij > 0 implies that max
{

ε
ik
k

φ−1(1/εd
k)

}
= o

(
ε

ij−1
j

φ−1(1/εd
j )

)
, and in that case

∑
k

card {α : |α| ≤ ik − 1} will be called a balanced integer, where α = 〈α1, ..., αd〉 is a d-dimensio-

nal multi-index and |α| = α1 + ... + αd.
Now, we state without proof the theorem for several variables. The necessary changes can be seen

in [2].

Theorem 4.4. Let ‖ · ‖ be the Luxemburg or Orlicz norm on a bounded open set X ⊂ Rd and let
{x1, ..., xn} contained in X. If N is a balanced integer with balanced 〈ik〉 and SN ⊂ PCm(X) with
m = max{ik}, then the best local ‖ · ‖−approximation of f ∈ PCm(X) from SN on {x1, ..., xn} is the
unique g ∈ SN which satisfies

∂|α|g(xk)
∂yα1

1 ...∂yαd

d

=
∂|α|f(xk)

∂yα1
1 ...∂yαd

d

,

|α| ≤ ik − 1, 1 ≤ k ≤ n.
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Ŕıo Cuarto, 5800, Argentina.
hcuenya@exa.unrc.edu.ar
flevis@exa.unrc.edu.ar




