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ISABEL G. DOTTI AND ANNA FINO

Abstract. We study invariant abelian hypercomplex structures on 8-dimensional
nilpotent Lie groups. We prove that a group N admitting such a structure is
either abelian or an abelian extension of a group of type H. We determine the
Poincaré polynomials of the associated nilmanifolds and study the existence
of symplectic and quaternionic structures on such spaces.

1. Introduction

Throughout this paper we will concentrate ourselves on the case of a nilmanifold
M = Γ\N , N a nilpotent Lie group of dimension 8, Γ a discrete subgroup, such that
N is endowed with an abelian invariant hypercomplex structure, i.e an invariant
hypercomplex structure {Ji}i=1,2 such that for each {Ji}i=1,2 any two (1, 0)-vector
fields commute.

Our purpose is two-fold. On the one hand we prove that a nilpotent 8-dimensional
nilpotent Lie group admitting an invariant abelian hypercomplex structure is ei-
ther euclidean space or a trivial extension of a group of type H. Moreover, any
invariant metric compatible with the whole sphere of complex structure is a central
modification of the type H metric (see Theorem 4.1).

On the other hand, we study some topological and geometrical properties of
the associated compact nilmanifolds (see Sections 5 and 6). More precisely, using
Nomizu’s theorem we compute the real cohomology and we study the existence of
symplectic and quaternionic structures on such spaces.

2. Abelian complex structures on nilpotent groups

Let N be a nilpotent Lie group. An invariant almost complex structure J on N
is an endomorphism of n, the Lie algebra of N , satisfying J2 = −I. The endomor-
phism J extends to the complexification nC = n⊕ in giving a splitting

nC = n1,0 ⊕ n0,1

where
n1,0 = {X − iJX : X ∈ n} and n0,1 = {X + iJX : X ∈ n}.

Similarly if n∗ denotes the dual Lie algebra of n, the induced J in n∗ produces a
splitting

n∗C = Λ1,0n∗ ⊕ Λ0,1n∗

where

Λ1,0n∗ = {X∗ − iJX∗ : X∗ ∈ n∗} and Λ0,1n∗ = {X∗ + iJX∗ : X∗ ∈ n∗}.
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If τ denotes complex conjugation in n or n∗, then it follows that

n0,1 = τ(n1,0) and Λ0,1n∗ = τ(Λ1,0n∗).

Furthermore, the invariant almost complex structure is integrable, that is, it gives
complex coordinates on N , if n1,0 is a complex subalgebra of nC or, equivalently, if
the Nijehuis tensor

N(X, Y ) = J([X, Y ]− [JX, JY ])− ([JX, Y ] + [X, JY ])

vanishes identically, for any X, Y vector fields on N . In terms of invariant differen-
tial forms, the integrability condition for J is equivalent to

dΛ1,0n∗ ⊂ Λ2,0n∗ ⊕ Λ1,1n∗.

A special class of invariant complex structures on N appears when we require that
the subalgebra n1,0 be abelian. We will refer to them as abelian complex structures.
Such a J is characterized by the condition [X, Y ] = [JX, JY ] for X, Y ∈ n. This
class has several convenient properties. For instance, J satisfies the additional
condition

dΛ1,0n∗ ⊂ Λ1,1n∗,
since dω(X, Y ) = −ω([X,Y ]) = 0, if ω is a left invariant form(1, 0) and X, Y are
left invariant (1, 0) vector fields. Furthermore, J preserves the center z of n, hence
it induces a complex structure on n/z which is abelian. In particular J preserves
the ascending central series of n.

An invariant hypercomplex structure on N is a pair of anticommuting invariant
complex structures J1, J2 on M . The hypercomplex structure will be called abelian,
if J1, J2 are so. In this case, there is a sphere of abelian complex structures Jq, q ∈
S2 on M and, for each q, a decomposition

nC = n1,0
q ⊕ n0,1

q

where each summand is an abelian complex subalgebra.
We note that the condition [X, Y ] = [JX, JY ] (X,Y left invariant vector fields)

for an invariant complex structure J on a Lie group G has been already considered
in [2] (see Proposition 4.1) and in [3, Definition 2.1.2’].

3. Groups of type H

In this section we shall collect some basic facts on groups of type H which will
be needed to formulate our main result.

These groups are natural generalizations of the Iwasawa N -groups associated to
semisimple Lie groups of real rank one. They were introduced in [15] and studied by
many authors in connection with a number of questions in geometry and analysis.
We start by recalling their definition.

Let n be a two-step real nilpotent Lie algebra endowed with an inner product
〈 , 〉. Then n has an orthogonal decomposition n = z⊕ v, where z is the center of n
and [v, v] ⊂ z. Define a linear mapping J : z → End(v) by

〈JZX, Y 〉 = 〈Z, [X, Y ]〉 (1)

(note that JZ is skew-symmetric). Now n is said to be an algebra of type H if for
any Z ∈ z

J2
Z = −〈Z, Z〉I (2)
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The corresponding group of type H is the simply connected Lie group N with
Lie algebra n, endowed with the left invariant metric induced by the inner product
〈 , 〉 on n.

Groups (algebras) of type H have been classified ([15]). It follows from this
classification that for each i, 1 ≤ i ≤ 3, there is only one algebra of type H with
i-dimensional center and dimension ≤ 8. They can be described as follows.

Let hi, i = 1, 2, 3 denote the following two step nilpotent Lie algebras. The
underlying vector space is Ri ×C2, i = 1, 2, 3 and the brackets [ , ]i on hi are given
by ψi : C2 × C2 → Ri

ψ1((x1, x2)(x′1, x
′
2)) = Im(x1x

′
1 + x2x

′
2)

ψ2((x1, x2)(x′1, x
′
2)) = x1x

′
2 − x′1x2

ψ3((x1, x2)(x′1, x
′
2)) = (Im(x1x

′
1 + x2x

′
2), x1x

′
2 − x2x

′
1).

Then we set, for any z, z′ ∈ Ri and (x1, x2), (x′1, x
′
2) ∈ C2

[z + (x1, x2), z′ + (x′1, x
′
2)]i = ψi((x1, x2)(x′1, x

′
2)), i = 1, 2, 3. (3)

We denote hi = (h, [ , ]i), and we let Hi be the simply connected Lie group with
Lie algebra hi.

Let 〈 , 〉i on hi, i = 1, 2 be defined as follows

〈(x1, x2), (x′1, x
′
2)〉i = Re (x1x

′
1 + x2x

′
2), 〈 z1, z2 〉i = Re z1z2

for any (x1, x2), (x′1, x
′
2) ∈ C2 and z1, z2 ∈ C. (Here we identify R1 with Im C ⊂ C

in the first case and R2 with C in the second case). When i = 3, we observe that ψ3

can be given by ψ3(q1, q2) = Im(q1q2), q1, q2 ∈ H, where H denotes the quaternions,
canonically identified with C2. In this case we set

〈 q1, q2 〉3 = Re q1q2

for any q1, q2 ∈ eitherC2 = H or R3 = ImH.
Endowed with the inner products 〈 , 〉i, the 2-step nilpotent algebras hi, i = 1, 2, 3

are of type H. Indeed, we have that Jz is given by right multiplication by z ∈ ImC, if
i = 1, Jz(x1, x2) = (−zx2, x1z), if i = 2 and Jq is right multiplication by q ∈ ImH,
if i = 3.

Remark. Groups of type H with centers of dimension 1, 2 and 3 can be viewed as
group of matrices, generalizing the case of the 3-dimensional real Heisenberg group.

We recall two realizations of the 2n+1 dimensional real Heisenberg group: firstly,
as a subgroup of GL(n + 2,R)

H(n,R) =








1 a c
0 I bt

0 0 1


 : a, b ∈ Rn, c ∈ R





or alternately, as a subgroup of GL(n + 2,C)

H1(n) =








1 z Im w
0 I −zt

0 0 1


 : z ∈ Cn, w ∈ C



 .
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Generalizations of the 2n + 1-dimensional real Heisenberg group to the complex
numbers C, in the first case, and to the quaternions H, in the second case, give the
complex Heisenberg group of matrices

H(n,C) =








1 ζ z
0 I ωt

0 0 1


 : ζ, ω ∈ Cn, z ∈ C





and

H3(n) =








1 q Imh
0 I −qt

0 0 1


 : q ∈ Hn, h ∈ H



 .

The three families so obtained are two step nilpotent groups with 1, 2 and 3 dimen-
sional centers. They are groups of type H. The cases of H1(n) and H3(n) correspond
to the nilpotent part in the Iwasawa decomposition of the isometry group of the
complex hyperbolic space and quaternionic hyperbolic space respectively.

The groups of type H denoted above by H1,H2 and H3 are isomorphic to
H(2,R) = H1(2),H(1,C) and H3(1) respectively.

4. 8-dimensional abelian hypercomplex nilpotent groups

We now get into the main theme of this paper. From now on we shall assume that
N is an 8-dimensional nilpotent Lie group, endowed with an abelian hypercomplex
structure. The next lemma gives a first restriction on N .

Lemma 4.1. Let N be an 8-dimensional nilpotent Lie group with an abelian
hypercomplex structure. Then N is either abelian, or 2-step nilpotent with a 4-
dimensional center.

Proof. Let J1, J2 be two anticommuting almost complex structures on the Lie
algebra n of N satisfying [JiX, JiY ] = [X,Y ], i = 1, 2. Then Ji, i = 1, 2 preserves
the center z of n, hence z is either 4 or 8-dimensional. Assume z is 4-dimensional.
Then n/z is a 4-dimensional nilpotent Lie algebra admitting a pair of anticommuting
complex structures which preserve the center. Thus n/z is abelian or equivalently n
is 2-step nilpotent. If z is 8-dimensional, then n is abelian and the lemma follows.

Remark The same proof as in Lemma 4.1 shows in general that a nilpotent 4k-
dimensional Lie group with an abelian hypercomplex structure is at most k-step
nilpotent.

We may now state the classification result.

Theorem 4.1. Let N be an 8-dimensional nilpotent Lie group. Then N carries an
abelian hypercomplex structure if and only if N is either abelian or isomorphic to
Ni, a trivial extension of a group of type H with center of dimension i =1, 2 or 3.

Proof. Let J1, J2 be a pair of abelian, anticommuting complex structures on N .
According to the previous lemma N is either abelian or 2-step nilpotent. If N is
2-step nilpotent, let n be the Lie algebra of N endowed with an inner product 〈 , 〉
such that J1 and J2 are orthogonal endomorphisms. Then n has a (non trivial)
orthogonal decomposition n = z ⊕ v, where z is the center of n, dim z = 4, and
[v, v] ⊂ z. Define a linear map K : z → End(v) by

〈KZX, Y 〉 = 〈Z, [X, Y ]〉 (4)
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It is clear that KZ is skew-symmetric and KZ = 0 if and only if Z ⊥ [v, v].
Moreover, since J1, J2 are abelian complex structures it follows that

〈KZJiX,JiY 〉 = 〈Z, [JiX, JiY ]〉 = 〈Z, [X,Y ]〉 = 〈KZX,Y 〉. (5)

hence KZ commutes with Ji, i = 1, 2 (that is, the KZ are quaternionic linear).
In particular, KZ = 0 or KZ is an isomorphism. It then follows that the Lie

algebra h = [v, v]⊕v is a nondegenerate ([10]) two step nilpotent Lie algebra, that is,
KZ is an isomorphism for every Z ∈ [h, h]. Moreover {KZ , Z ∈ [h, h]} give as many
linearly independent vector fields as the dimension of [h, h]. Hence the possibilities
for this dimension are 1, 2 or 3. We shall next characterize the 2-step nilpotent Lie
algebra h. If Z ∈ [h, h] = [v, v], Z 6= 0, the map KZ is skew symmetric and non
singular hence K2

Z is self adjoint and non singular. Since K2
ZJi = JiK

2
Z it follows

that K2
Z = −λ(Z)I, λ(Z) > 0 if Z 6= 0.

Now to complete the proof it is sufficient to verify that it is possible to change
the inner product on [h, h] in such a way that λ(Z) = ||Z||2, hence h = [v, v] ⊕ v
becomes an H-type algebra. This can either be seen by a direct computation or,
for a proof of a more general result, see [17].

Thus, n = zs⊕ h, is a trivial extension of an H-type algebra, where zs ' Rs with
s = 1, 2, 3.

To complete the proof we need to show that the nilpotent Lie algebras of di-
mension 8 in question, carry a pair of natural anticommuting abelian complex
structures.

Let ni = R4−i ⊕ hi be the trivial extensions of the algebras of type H with
i-dimensional center, i = 1, 2, 3, given in Section 3 and let Ni denote the cor-
responding simply connected nilpotent Lie groups. Consider J1, J2 : C2 → C2

defined by

J1(x1, x2) = (ix1,−ix2) J2(x1, x2) = (−x2, x1).

Clearly J1J2 = −J2J1. Moreover it is easily checked that

ψj(Ji(x1, x2), Ji(x′1, x
′
2)) = ψj((x1, x2), (x′1, x

′
2)), i, j = 1, 2.

Thus, the extension of J1, J2 to a pair of anticommuting complex structures of
R4 × C2, preserving R4 defines an abelian hypercomplex structure on n1 and n2

respectively. In the case of n3, as observed in Section 3, ψ3 can be given by
ψ3(q1, q2) = Im (q1q2), q1, q2 ∈ H, where H denotes the quaternions, canonically
identified with C2. Let Lp denote left multiplication in H by a unit quaternion p.
Since

ψ3(Lp(q1), Lp(q2)) = Im (pq1pq2) = ψ3(q1, q2),

the extension of Lp to an almost complex structure of R4×C2 preserving R4, is an
abelian complex structure on n3. Taking any pair of anticommuting quaternions
p1, p2 of length 1, we obtain the desired abelian hypercomplex structure on n3.

Remark. The groups N1, N2 can only carry abelian hypercomplex structures since
their commutator subgroups N ′

1, N
′
2 are 1-dimensional and 2-dimensional respec-

tively ([2]). On the other hand N3 does admit non abelian (integrable) hypercom-
plex structures. For example a non abelian hypercomplex structure on N3 is given
by right multiplication by i and by j in R4.
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5. Topological properties of associated nilmanifolds

It follows from Theorem 4.1 that any 8-dimensional manifold covered by either
R8 or by Ni, a trivial extension of the groups of type H, with i-dimensional center,
i = 1, 2, 3, carries an abelian hypercomplex structure. Now, any group of type H
admits a discrete co-compact subgroup Γ (see [16]). If Ni, i = 1, 2, 3, is the simply
connected nilpotent Lie group defined in the previous section, we shall fix a discrete
co-compact subgroup, Γi, of Ni and we let Mi = Γi\Ni. In this section we shall
study cohomological properties of the nilmanifolds Mi, i = 1, 2, 3.

To compute the real cohomology groups of the nilmanifolds covered by the nilpo-
tent groups Ni, it will be useful to describe the Lie algebras ni in terms of 1-forms.
We identify R4×C2 with z⊕v and denote the standard basis (1, 0), (i, 0), (0, 1), (0, i)
of C2 by ei, i = 1, 2, 3, 4, respectively. Moreover R4 is identified with z, spanned by
ei, i = 5, 6, 7, 8. Using the above identification it is not hard to show that
(i) n1 = z1 ⊕ v1, where z1 = span{e5, e6, e7, e8} is the center of n1 and v1 =
span{e1, e2, e3, e4}, with non zero brackets

[e1, e2] = [e3, e4] = e8.

(ii) n2 = z2 ⊕ v2, where z2 = span{e5, e6, e7, e8} is the center of n2 and v2 =
span{e1, e2, e3, e4}, with non zero brackets

[e1, e3] = −[e2, e4] = e7; [e1, e4] = [e2, e3] = e8.

(iii) n3 = z3 ⊕ v3, where z3 = span{e5, e6, e7, e8} is the center of n3 and v3 =
span{e1, e2, e3, e4}, with non zero brackets

[e1, e2] = −[e3, e4] = e6; [e1, e3] = [e2, e4] = e7; [e1, e4] = −[e2, e3] = e8.

We denote by {ek, k = 1, . . . , 8} the basis of n∗i , dual to the basis {ek, k = 1, . . . , 8}.
Since these forms ek are left-invariant by Γi, i = 1, 2, 3, they push down to differen-
tial forms on the quotient manifolds Mi. We shall denote the corresponding 1-forms
on Mi by the same symbols ek.

Nomizu’s Theorem [18] asserts that the natural mapping from

Hk(ni) = Ker(d| ∧k n∗i )/d(∧k−1n∗i )

to the de Rham cohomology group Hk(Mi,R) is an isomorphism. In terms of the
basis of n∗i , we have the following descriptions:
(i) for n1

dei = 0, i = 1, . . . 7,
de8 = −e1 ∧ e2 − e3 ∧ e4;

(ii) for n2

dei = 0, i = 1, . . . 6,
de7 = −e1 ∧ e3 + e2 ∧ e4,
de8 = −e1 ∧ e4 − e2 ∧ e3;

(iii) for n3

dei = 0, i = 1, . . . 5,
de6 = −e1 ∧ e2 + e3 ∧ e4,
de7 = −e1 ∧ e3 − e2 ∧ e4,
de8 = −e1 ∧ e4 + e2 ∧ e3.
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The Betti numbers bk(Mi) = dimHk(Mi,R) are then given by the tables

k 0 1 2 3
nullity(d| ∧k g∗) 1 7 21 40
rank(d| ∧k−1 g∗) 0 0 1 7
bk(M1) 1 7 20 33

k 0 1 2 3
nullity(d| ∧k g∗) 1 6 19 39
rank(d| ∧k−1 g∗) 0 0 2 9
bk(M2) 1 6 17 30

k 0 1 2 3
nullity(d| ∧k g∗) 1 5 18 35
rank(d| ∧k−1 g∗) 0 0 3 10
bk(M3) 1 5 15 25

and by the vanishing of the Euler characteristic χ = 2− 2b1 + 2b2 − 2b3 + b4.

Thus we obtain the following expressions for the Poincaré polymonials:

P (M1, t) = 1 + 7t + 20t2 + 33t3 + 38t4 + 33t5 + 20t6 + 7t7 + t8

= (t + 1)4(t2 + 1)(t2 + 3t + 1).

P (M2, t) = 1 + 6t + 17t2 + 30t3 + 36t4 + 30t5 + 17t6 + 6t7 + t8

= (t + 1)4(t2 + t + 1)2.

P (M3, t) = 1 + 5t + 15t2 + 25t3 + 28t4 + 25t5 + 15t6 + 5t7 + t8

= (t + 1)2(t2 + 1)(t4 + 3t3 + 7t2 + 3t + 1).

It is known (see [5]) that a compact nilmanifold admits a Kähler metric if and
only if it is a torus. An alternative approach to the proof consists of showing that
the minimal model MM of the nilmanifold M is not formal in the sense of [13],(see
also [24]) i.e. there exists no quasi-isomorphism between (MM , d) and (H∗(M), 0).
This can often be done simply by constructing a nonzero Massey triple product [7].
Indeed, it was proved in [9] that the minimal model of a compact Kähler manifold is
formal and this implies in particular that all Massey triple products on the manifold
must be zero. The minimal model of nilmanifolds associated with a given rational
nilpotent Lie algebras was determined in [14].

We recall the definition of Massey triple products in terms of differential forms
on M . Suppose that there are cohomology classes [α1] ∈ Hp(M), [α2] ∈ Hq(M)
and [α3] ∈ Hr(M) (represented by differential forms αi, i = 1, 2, 3) such that
[α1] · [α2] = [α2] · [α3] = 0. Then

α1 ∧ α2 = dβ1, α2 ∧ α3 = dβ2,

for some choice of differential forms β1 and β2. Let γ = α1∧β2+(−1)p−1β1∧α3, then
γ is a closed form of degree p+q+r−1 and its cohomology class [γ], which depends on
the choice of βi, i = 1, 2, is well-defined modulo [α1]·Hq+r−1(M)⊕[α3]·Hp+q−1(M).
Indeed, the class [[γ]] in the quotient Hp+q+r−1(M)

[α1]·Hq+r−1(M)⊕[α3]·Hp+q−1(M) is independent
of the choice of βi, i = 1, 2 and it is called the triple Massey product of [α1], [α2]
and [α3]. We will denote it by < [α1], [α2], [α3] >.
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Proposition 5.1. The compact nilmanifolds Mi, i = 1, 2, 3, have a nonzero Massey
triple product.

Proof. The nonzero Massey triple products are given in each case by

(i) < [e2 ∧ e4], [e3], [e3] >= [[e2 ∧ e3 ∧ e8]] ∈ H3(M1)
[e2∧e4]·H1(M1)⊕[e3]·H2(M1)

for M1;

(ii) < [e3 ∧ e2], [e4], [e4] >= [[e3 ∧ e4 ∧ e7]] ∈ H3(M2)
[e3∧e2]·H1(M2)⊕[e4]·H2(M2)

for M2;

(iii) < [e2 ∧ e3], [e4], [e4] >= [[e2 ∧ e4 ∧ e6]] ∈ H3(M3)
[e2∧e3]·H1(M3)⊕[e4]·H2(M3)

for M3.

To verify the assertion we observe
(i) e2 ∧ e4 ∧ e3 = −d(e2 ∧ e8) so that [e2 ∧ e4] · [e3] = 0 and the Massey product is
represented by e2 ∧ e3 ∧ e8 whose cohomology class [e2 ∧ e3 ∧ e8] is nonzero since
N1 is 2-step and it is also nonzero in the quotient H3(M1)

[e2∧e4]·H1(M1)⊕[e3]·H2(M1)
.

(ii) e3 ∧ e2 ∧ e4 = −d(e3 ∧ e7), so that [e3 ∧ e2] · [e4] = 0 and one can proceed as
before.
(iii) e2 ∧ e3 ∧ e4 = −d(e2 ∧ e6) and so that [e2 ∧ e3] · [e4] = 0.

To conclude this section, we study the existence of symplectic structures on
Mi, i = 1, 2, 3.

(i) M1 is not symplectic. Indeed, if M1 = N1/Γ1 admitted a symplectic structure,
by Nomizu’s theorem, the symplectic form would be cohomologous to a left invariant
form ω1 ∈ Λ2n∗1 satisfying dω1 = 0 and ω1

4 6= 0. Thus ω1 = e8 ∧ f1 + η1 with
f1 ∈ kerd and η1 ∈ Λ2(kerd). From 0 = de8 ∧ f1 = −(e1 ∧ e2 + e3 ∧ e4) ∧ f1

one obtains that f1 = 0, hence ω1
4 = 0 (compare with Theorem 2 in [8], also see

Example 3.9 in [24].)
(ii) M2 is a symplectic manifold (compare with [1], where a sphere of symplec-

tic structures is constructed on the Iwasawa manifold). We exhibit below a left
invariant symplectic form on N2.

Let ω2 = e8 ∧ f1 + e7 ∧ Jf1 + e6 ∧Kf1 + e5 ∧ JKf1 where f1 ∈ span{ei, i =
1, 2, 3, 4}, and J, K are the maps given by right multiplication by j, k in R4. This
form is clearly non degenerate. To show it is closed one substitutes in dω2, the
expressions for dei, i = 5, 6, 7, 8 obtained above.

(iii) M3 is a symplectic manifold. Let ω3 = e8∧f1 +e7∧Jf1 +e6∧(J +KJ)f1 +
e5 ∧Kf1 where f1 ∈ span{ei, i = 1, 2, 3, 4}, and J, K are the maps given by right
multiplication by j, −k in R4. This form is non degenerate. To show it is closed
one computes dω3, using the expressions for dei, i = 5, 6, 7, 8 obtained previously
and observing that span{ei, i = 1, 2, 3, 4} ∈ ker d.

6. More general structures

It is known (see [19]) that every hypercomplex structure {Ji}i=1,2 on a 4k-
dimensional differentiable manifold M uniquely determines an affine, torsion free
connection (called the Obata connection), with respect to which the complex struc-
tures Ji, i = 1, 2 are parallel. In other words, the GL(k,H)-structure they deter-
mine admits a torsion free connection. Moreover, if the connection is flat, then
M is quaternionic in the sense of Sommese ([22]), that is M can be covered by
coordinate neighborhoods such that the transition functions are quaternionic. In
particular, the GL(k,H)-structure is integrable, hence a flat affine structure exists
on M .
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As a consequence of the next proposition it will follow that the nilmanifolds
Mi, i = 1, 2, 3 are quaternionic in the sense of Sommese.

Proposition 6.1. Every abelian hypercomplex structure on a 2-step nilpotent Lie
group is flat.

Proof. The Obata connection associated to an invariant hypercomplex structure
J1, J2, J3 = J1J2 on a nilpotent Lie group N is given by

∇XY =
1
2
[X, Y ] +

1
12

σ([J1X, J3Y ] + [J2X, J3Y ]) +
1
6

i=3∑

i=1

[JiX, Y ] + [JiY,X]

where X, Y lie in n and σ denotes the cyclic sum with respect to the indices 1, 2, 3.
If the hypercomplex structure preserves the center z then ∇X = 0 for X ∈ z.

Moreover, if the group is 2-step nilpotent then ∇XY ∈ z for every X, Y ∈ n. Hence
R = 0, R the curvature tensor associated to ∇.

For any abelian hypercomplex structure, (Mi, J1, J2), i = 1, 2, 3, is a quaternionic
manifold in the sense of [4, Section 14.62]. Indeed by [19] the GL(2,H)-structure
determined by the hypercomplex structure admits a torsion-free connection, hence
Mi, i = 1, 2, 3 admits a GL(2,H)H∗-structure with a torsion-free connection and
so it is quaternionic.

The selection of a special metric among those which are hermitian with respect to
a given complex structure on a manifold, is often a useful tool to study the manifold.
We should remark that the proof of Theorem 3.1 implies that any invariant metric
compatible with an abelian hypercomplex structure on an 8-dimensional nilpotent
group is essentially the standard metric (i.e. a trivial extension of a modified
metric of type H). Moreover, the abelian hypercomplex structures constructed on
the groups Ni, i = 1, 2, 3 are all compatible with the metric of type H on the Hi

factor of Ni. In the rest of the section we use on the nilmanifolds Mi, the metric
〈 , 〉 induced from Ni.

An almost complex structure J and 〈 , 〉, a riemannian metric on a differentiable
manifold M2n of dimension 2n, compatible with J is called an almost hermitian
structure and it represents a U(n)-structure. It determines a ‘fundamental 2-form
’fJ ∈ ∧2n∗i by means of the standard formula

fJ(X, Y ) = 〈JX, Y 〉.
In general, classes of almost Hermitian structures were defined systematically by

Gray-Hervella [12] by decomposing the tensor ∇fJ (or equivalently ∇J) into four
U(n)-irreducible classes lying in invariant spaces denoted by Wk, k = 1, 2, 3, 4. The
component of ∇fJ in W1 ⊕W2 can be identified with the Nijehuis tensor and that
in W3 ⊕ W4 can be identified with Re (df)1,2. The component of ∇fJ in W4 is
represented by the 1-form

θ =
1

n− 1
JδfJ = − 1

n− 1
J ∗ d ∗ fJ = − 1

n− 1
J ∗ d(fn−1

J )

known as the Lie form (see for example [11]).
If J is an abelian complex structure on Mi, i = 1, 2, 3, compatible with the metric

〈 , 〉i and fJ is the fundamental associated 2-form, then ∇fJ ∈ W3, i.e. the 2-form
fJ is co-closed (δfJ = 0). This follows from the fact that, in this case, ∗d ∗ fJ = 0
since fJ is perpendicular to the image of d.
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The existence of a pair J1, J2 on Mi, i = 1, 2, 3, of anti-commuting almost-
complex structures compatible with the metric < , >i implies that Mi has an Sp(2)-
structure, defined by the intersection of the two corresponding U(4)-structures. The
holonomy groups of Mi are not contained in Sp(2), i.e. the Mi are not hyperkḧaler.
We can only assert that (Mi, 〈 , 〉i, J1, J2), i = 1, 2, 3, is a hyperhermitian manifold
of dimension 8 such that δfJ1 = δfJ2 = δfJ1J2 = 0, where fJ1 , fJ2 , fJ1J2 denote
respectively the 2-forms associated to J1, J2, J3.

It is possible to generalize the definition of hyperkähler manifold. Indeed in
general the group Sp(k) is not a maximal subgroup of SO(4k), since it commutes
with the action of the group Sp(1) of unit quaternions. Denoting by Sp(k)Sp(1)
the proper subgroup Sp(k) ×Z2 Sp(1) of SO(4k), it is possible to study also the
Sp(2)Sp(1)-structure on Mi, i = 1, 2, 3 (see [21, 23]). If the holonomy group of
a Riemannian manifold M of dimension 4k ≥ 8 is contained in Sp(k)Sp(1), M is
called a quaternionic Kähler manifold. The Sp(k)Sp(1)-structure is characterized
by the existence of a 4-form Ω, linearly equivalent at each point to

fJ1 ∧ fJ1 + fJ2 ∧ fJ2 + fJ1J2 ∧ fJ1J2 .

The covariant derivative ∇Ω can be identified with the structure function of the
Sp(k)Sp(1)-structure. In general ∇Ω belongs to the space [λ1

0 ⊗ σ1] ⊗ [λ2
0 ⊗ σ2],

where σr denotes the (r + 1)-dimensional symmetric tensor product of the basic
representation of Sp(1) = SU(2) on Ck and λr

s is the Sp(k)-module with dominant
weight [6, 23]

(2, . . . , 2︸ ︷︷ ︸
s

, 1, . . . , 1︸ ︷︷ ︸
r−2s

, 0, . . . , 0), 0 ≤ r − 2s ≤ k.

For dimension 8 we have that

[λ1
0 ⊗ σ1]⊗ [λ2

0 ⊗ σ2] ∼= [λ3
1 ⊗ σ3]⊕ [λ1

0 ⊗ σ3]⊕ [λ3
1 ⊗ σ1]⊕ [λ1

0 ⊗ σ1].

For the nilmanifolds Mi, i = 1, 2, 3 it is possible to prove by integrability of J1 and
J2 that ∇Ω and dΩ belong to the space [λ3

1⊗σ1]⊕ [λ1
0⊗σ1], since the GL(2,H)H∗-

structure function belongs to the submodules involving σ3. Moreover, one can show
that dΩ 6= 0, hence Mi, i = 1, 2, 3, is not quaternionic Kähler. This also follows
from the fact that the induced metric is not Einstein.
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berto 10, 10123 Torino, Italy

E-mail address: idotti@mate.uncor.edu, fino@dm.unito.it


