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Research Article

Historical biogeography of Temnocephalida (Platyhelminthes,
Rhabdocoela): testing the Gondwanan hypothesis

ANDRES MART�INEZ-AQUINO1, JULIETA VIGLIANO-RELVA2, FRANCISCO BRUSA2,3 &

CRISTINA DAMBORENEA2,3
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M�erida, Km 6 Carretera Antigua a Progreso, Cordemex, M�erida, Yucat�an 97310, M�exico
2Divisi�on Zoolog�ıa Invertebrados, Museo de La Plata, FCNyM, UNLP, Paseo del Bosque s/n, 1900 La Plata, Argentina
3Consejo Nacional de Investigaciones Cient�ıficas y T�ecnicas (CONICET), Argentina

(Received 12 July 2016; accepted 27 September 2016)

Temnocephalida, a group of small epibiontic worms strictly associated with freshwater hosts, includes 179 taxa in 23
genera, classified in two major groups: Scutarielloidea, distributed in the Palaearctic region, and Temnocephaloidea
distributed mainly in the Australian and Neotropical regions. Based on a large-scale spatio-temporal dimension, a
biogeographic hypothesis on a Gondwanan scenario was tested. The objective of this study was to describe the geographic
distribution patterns of Temnocephalida in a primary biogeographic homology context. A dataset of 793 temnocephalan
records, distributed in 45 hydrological basins, and assigned to different hierarchical taxonomic levels was used to construct
five presence/absence matrices. We analysed the matrices using Parsimony Analysis of Endemicity (PAE) and Cladistic
Analysis of Distributions and Endemism (CADE). Furthermore, we constructed generalized tracks based on area clades
with phylogenetic support, i.e., two or more synapomorphies. Six generalized tracks were revealed: a general clade for
Eurasia, plus a complex of four hybrid zones with monophyletic relationships included in a major clade with Gondwanan
affinities. The results represent the first study using biogeographic analysis to disentangle the distributional patterns of
temnocephalids around the world. Based on the integration of the results obtained by biogeographic pattern-based methods,
we infer that the fragmentation of Gondwana affected the diversification patterns and distribution of Temnocephalida.

Key words: CADE, diversity, endemism, freshwater river basin, PAE, Pangea, symbionts, tracks analysis

Introduction
Around the world, biogeographic patterns of flora and

fauna were constructed, broken down and reconstructed

in distinct occasions from the complete break-up of the

supercontinent Gondwana (160–30 million years ago) to

the present (Sanmart�ın, 2012). These patterns are the

result of multiple biogeographic events (e.g., extinction,

dispersal, vicariance, duplication) that occurred since the

major separation between Laurasia and Gondwana, and

that finally resulted in the separation of North America

and Eurasia (Laurasia), and Africa, Antarctica, Australia,

India, Madagascar, New Zealand and South America

(Gondwana) (Sanmart�ın & Ronquist, 2004). Subse-

quently, the diversification of the biota occurred through

different mechanisms. For example, in the case of animals

from the northern hemisphere (Laurasia), dispersal medi-

ated diversification patterns are more common (Chen,

Lavou�e, Beheregaray, & Mayden, 2014; Opatova &

Arnedo, 2014; Sanmart�ın, Enghoff, & Ronquist, 2001). In

contrast, the southern hemisphere (Gondwana) is charac-

terized by specific hierarchical distribution patterns

between and among animals and plants (e.g., Cody,

Richardson, Rull, Ellis, & Pennington, 2010; Hoorn et al.,

2011; Sanmart�ın & Ronquist, 2004).

Freshwater organisms represent ideal biological models

for testing Gondwanan distribution patterns because they

are distributed in restricted geographic areas (i.e., water

bodies) and most of the time do not naturally disperse

over land, preventing exchange between hydrological sys-

tems (e.g., Campanella et al., 2015; Imoto et al., 2013;

Sun, He, & Glenny, 2014). The freshwater symbiotic

fauna is interesting and complex because it is possible to

test biogeographic hypotheses that include host and sym-

biont patterns plus the evolution of geographic range of
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their environment (e.g., hydrological systems) (Badets

et al., 2011; Mart�ınez-Aquino, Brusa, & Damborenea,

2014a; Mart�ınez-Aquino, Ceccarelli, & P�erez-Ponce de

Le�on, 2013). However, the number of studies which infer

evolutionary-biogeographic patterns influenced by the

Gondwanan breakup using freshwater symbiotic organ-

isms, is limited (Badets et al., 2011; Boeger, Kritsky, &

Pie, 2003; Gelder, 1999; May�en-Estrada & Aguilar-Agui-

lar, 2012; Pariselle et al., 2011; Verneau et al., 2002).

Temnocephalida represent a plausible group of model

organisms to study the diversification in freshwater sys-

tems since the supercontinent Pangaea and during and

after the Gondwanan-Laurasian fragmentation period

(Cannon & Joffe, 2001; Mart�ınez-Aquino, Brusa, & Dam-

borenea, 2014b). Temnocephalida is a group of small epi-

biontic worms strictly associated with freshwater hosts;

they are found mainly on crustaceans, but they also occur

on molluscs, insects and turtles (Damborenea & Cannon,

2001; Joffe, Cannon, & Schockaert, 1998; Mart�ınez-
Aquino et al., 2014a; Sewell, 2013). Although the bioge-

ography of Temnocephalida has been poorly studied, Can-

non and Joffe (2001) described a clear geographic

structure with two well-differentiated groups (superfami-

lies). The northern group (Scutarielloidea), extends across

the southern margin of the Eurasiatic continent with the

Scutariellinae to the west, from the Balkans to India, and

the Caridinicolinae to the east, from Sri Lanka to Japan.

The southern group (Temnocephaloidea) is much more

diverse and has a Gondwanan distribution. Its members

occur in Australia, Tasmania, New Guinea, New Zealand,

Madagascar, the Neotropics and also India, Vietnam and

China (Cannon & Joffe, 2001). Unexpectedly neither tem-

nocephalids nor their hosts are found in Africa (Fig. 1).

Presumably, Temnocephalida began to diversify when

Gondwana started to break up; around 100 million years

ago India separated and started moving towards Asia, at

which point the divergence of the two superfamilies Scu-

tarielloidea and Temnocephaloidea began (Cannon &

Joffe, 2001). However, until now, the hypotheses that sup-

port the Gondwanan affinities of Temnocephalida have

not been tested with biogeographic methods.

Phylogenies used in historical biogeography provide

strong support to detect and test the patterns, process and

mechanism of the geographic distribution of the biota on

earth (Kidd, 2010; Ronquist & Sanmart�ın, 2011; Wen,

Ree, Ickert-Bond, Nie, & Funk, 2013). Particularly,

event-based methods and parametric biogeography incor-

porate phylogenetic information into their approaches

(Buerki et al., 2011; Ree & Smith, 2008; Sanmart�ın,
2012). Unfortunately, phylogenetic hypotheses do not

exist for all taxonomic groups. In these cases, based on

geographic information (i.e., taxonomic records), it is pos-

sible to use pattern-based methods for inferring biogeo-

graphic patterns such as primary biogeographic

homology, where hypotheses of common biotic histories

are based on distributional congruence (Morrone, 2015b).

Undoubtedly, after phylogenetic information, taxonomic

records are the most direct empirical evidence of species

distributions that support biogeographic and macroecolog-

ical patterns inferred from evolutionary studies (Besnard

et al., 2015; Buerki & Baker, 2016; Parr, Guralnick, Celli-

nese, & Page, 2012). In fact, the main problem of pattern-

based approaches is that they do not explicitly include

phylogenetic information in their methods (Crisp, Tre-

wick, & Cook, 2011; Livingstone, 2015; Sanmart�ın, 2015;
Waters et al., 2013). However, it is possible to combine

pattern-based methods to test primary biogeographic

homology using taxonomic records. For example, the

developed variants of the Parsimony Analysis of

Endemicity (PAE) (Morrone, 2014b and citations therein;

Rosen, 1988), allow us to find area relationships based on

the shared presence of taxa, and the nodes relating these

areas can be represented as generalized tracks (interpreted

biologically as indicating the pre-existence of ancestral

biotas that were fragmented by geological (often tectonic)

or climatic events) (Ferrari, Bar~ao, & Sim~oes, 2013;

Garc�ıa-Barros et al., 2002; Luna-Vega, Alc�antara, Mor-

rone, & Espinosa, 2000). One method derived from PAE,

named Cladistic Analysis of Distributions and Endemism

(CADE) (Porzecanski & Cracraft, 2005), uses data from

more than one taxonomic level (e.g., genus, family, super-

family) improving and increasing the historical informa-

tion contained about area relationship. Therefore, the

combination of these pattern-based approaches can help

to fully support the distribution patterns, on a large bio-

geographic scale (Morrone, 2015b; Parenti & Ebach,

2013). In terms of geographic areas, taxa can either be

present in more than one, or only in one area, in which

case they are considered endemic. On the other hand,

microendemic taxa are restricted to small distribution

areas (Nattier et al., 2012).

In this study, we explore the primary biogeographic

patterns that drove the diversification of a host-symbiont

association, based on the geographic structure of Temno-

cephalida (Cannon & Joffe, 2001). In this context, we

establish the primary biogeographic homology of Temno-

cephalida and how it was influenced by the complex geo-

graphic scenario since the breakup of Gondwana, the

possible effect of the host diversification plus the origin of

hydrological system, or by a combination of the two. The

aim of this study is to test the hypothesis that the current

distribution of Temnocephalida is due to vicariant events

that occurred during the breakup of Gondwana under two

methods of primary biogeographic homology: (1) PAE, to

describe the relationships between areas (basins), based

on the current distribution of Temnocephalida, and their

endemism; (2) CADE, to examine the influence of taxo-

nomic-hierarchical information on historical distribution

patterns of Temnocephalida. Lastly, based on the results

of the phylogenetic analyses, generalized tracks were

328 A. Mart�ınez-Aquino et al.



built, to detect the influence of vicariant events in the dis-

tribution of Temnocephalida.

Materials and methods

Distribution dataset and areas

Taxonomic and distributional data were obtained from

original records, from the Turbellarian Taxonomic

Database (Tyler, Schilling, Hooge, & Bush, 2006-2016),

and other available literature not included there (Arias-

Pineda, Damborenea, & Castro, 2015; Kawakatsu, Wu,

Kawakatsu, & Kawakatsu, 2008; Mart�ınez-Aquino et al.,

2014a; Nore~na, Damborenea, Brusa, & Escobedo, 2006;

Ponce de Le�on, Ber�on Vera, & Volonterio, 2015; Seixas,

Amato, & Amato, 2015a,b; Seixas, Amato, Amato, &

Mascarenhas, 2014; Velazquez-Ocampo, 1985; Wais,

1987); from the revision of vouchers specimens deposited

in the Colecci�on Helmintol�ogica of Museo de La Plata,

Argentina (MLP-He) and the Colecci�on Nacional de

Helmintos of the Instituto de Biolog�ıa, UNAM, Mexico

(CNHE). Once all the distributional data were checked

and revised for possible taxonomic or distributional mis-

takes (e.g., inaccurate identification, synonyms, speci-

mens lost from collections that could not be studied),

we obtained an exhaustive list of the distribution of 179

taxa of Temnocephalida, classified and organized taxo-

nomically (Appendix S1, see online supplemental

material, which is available from the article’s Taylor &

Francis Online page at http://dx.doi.org/10.1080/

14772000.2016.1252441). Furthermore, we complement

this list with information of host plus geographic coordi-

nates, based on specialized literature, to detect possible

codivergence patterns (Appendix S2, see supplemental

material online).

The areas used are those of the world’s major hydrolog-

ical basins map according to the Food and Agriculture

Organization (FAO) of the United Nations global spatial

database on water and agriculture (� FAO, 2011, derived

from HydroSHED). This map provides natural geographic

boundaries between areas, improving the explanatory

power of analyses (e.g., Huidobro, Morrone, Villalobos,

& �Alvarez, 2006; Mart�ınez-Aquino, Aguilar-Aguilar,

Santa Anna del Conde-Ju�arez, & Contreras-Medina,

Fig. 1. Distribution patterns of Temnocephalida superfamilies and biogeographic regions (Classic zoogeographic scheme from Wallace,
1876).
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2007; Perbiche-Neves et al., 2014). The areas selected for

analysis were only those that had at least one record of a

temnocephalid species; in total, 45 areas were used (Table

S1, see supplemental material online). The distributional

data were plotted on the freshwater basins map using the

program DIVA-GIS 7.5 (Hijmans, Guarino, & Mathur,

2012).

To build area cladograms using parsimony (i.e., PAE

and CADE), five different data matrices were built adding

progressive hierarchical data: Matrix 1 contained species

information only (46£179), Matrix 2 ’Species C Genera’

(46£202), Matrix 3 ’Species C Genera C Subfamily’

(46£206), Matrix 4 ’Species C Genera C Subfamily C
Family’ (46£211), Matrix 5 ’Species C Genera C Sub-

family C Family C Superfamily’ (46£213). Presences

were coded as (1) and absences as (0). In all cases a hypo-

thetical area with all (0) was added to root the trees

(Appendices S3–S7, see supplemental material online).

Biogeographic phylogenetic analysis

Parsimony analysis of the PAE and CADE matrices was

carried out in TNT (Goloboff, Farris, & Nixon, 2008),

using heuristic searches with 100 random addition sequen-

ces and a TBR branch swapping algorithm. Branch sup-

port was assessed by performing bootstrap analyses with

100 pseudoreplicates (with 10 random addition sequences

and TBR branch-swapping). State optimizations were

visualized using WinClada (Nixon, 2002).

Track analysis

A variant of PAE (with progressive character elimination

or PAE-PCE) was used to identify generalized tracks

(e.g., Echeverry & Morrone, 2010; Garc�ıa-Barros et al.,

2002; Luna-Vega et al., 2000). In PAE-PCE, generalized

tracks are identified by biotic components in the resulting

cladogram as the monophyletic groups of units defined by

at least two taxa (D synapomorphies) (Morrone, 2014b).

Similar to PAE-PCE, in this study we used CADE to

detect generalized tracks. In contrast to PAE-PCE, the dis-

covery of biotic components is achieved by an additive

method of hierarchical information. Since phylogenetic

information for Temnocephalida is still lacking, CADE is

an appropriate method for inferring biogeographic signal

(Porzecanski & Cracraft, 2005). In this context, general-

ized tracks were grouped by areas of the same colour of a

clade (e.g., Ferrari et al., 2013; see below).

Results

Analysis 1, PAE

The PAE yielded 42 trees (MPT) of 192 steps, CI D 0.93,

and RI D 0.78 (Fig. 2; the species supporting the branch

of each clade in the cladogram are detailed in Table 1).

Seven monophyletic groups with no clear relationships

were distinguished within the cladogram. However, it is

possible to discover three clades corresponding to separate

geographic areas; e.g., Clade 1 (TAI, CHC, YAN) and

Clade 2 (MAI, SLA, GBI) in the Oriental region, and

Clade 6 in the Australian region (NVG, NCA). On the

other hand, adjacent geographic areas were discovered for

Clade 3 (NCP, CSA, NEG, CPH, SCP), and Clade 5

(UBS, LPA) in the Neotropical region; Clade 7 (WCA

(SCU (IAS (ECA, MDA)))) in the Australian region, and

Clade 4 (DAN, ADS) in the Palaearctic region. Lastly, 23

areas (i.e., IRR, PMA, NZE, TAS, VIC, MAD, XJC,

BSC, RLM, SCA, MGC, PCC, TOC, NBS, SAF, NOA,

RPA, RVE, SGV, MAC, AMA, NIN, and JAP), did not

show phylogenetic affinities (Fig. 2).

Figs. 2–4. 2. Biogeographic relationships between hydrological
freshwater basins based on Temnocephalida species, as inferred
by parsimony analyses of endemism (PAE). 3. Geographic dis-
tribution of species richness of Temnocephalida across hydro-
logical basins, coloured bar and numbers correspond to number
of species in each freshwater basin. 4. Geographic distribution of
endemics species of Temnocephalida across hydrological basins,
coloured bar and numbers correspond to number of endemic spe-
cies in each freshwater basin.

330 A. Mart�ınez-Aquino et al.



Biogeographic relationships were found using PAE for

seven monophyletic groups (i.e., clades) based on one or

more synapomorphies (Table 1). Clade 1 is supported by

two homoplastic characters (Temnosewellia semperi and

Scutariella japonica); and only TAI includes two addi-

tional species from Temnosewellia sp. 3 and Temnosewel-

lia sp. 7 (Fig. 2). Clade 2 is supported by a

synapomorphic character: Paracaridinicola indica. In this

clade, only Sri Lanka (SLA) of the Oriental region,

includes two autapomorphic taxa of the family Scutarielli-

dae: Monodiscus macbridei and M. parvus (Fig. 2). Clade

3 is supported by a synapomorphy: Temnocephala chilen-

sis (Fig. 2), that is the only species recorded in the Colo-

rado South America, North and South Chile Pacific Coast,

Negro River and Central Patagonia Highlands (CSA,

NCP, SCP, NEG, CPH). Only one area of Clade 3 (Negro

River Basin (NEG)), has three endemic taxa of the family

Didymorchiidae; Didymorchis haswelli australis, Didy-

morchis sp. A and Didymorchis sp. B (Fig. 2). Clade 4 is

located in the Eurasian region and is supported by two

synapomorphies: Troglocaridicola capreolaria and Tc.

cestoidaria (Fig. 2). All taxa included that pertain to both

areas of Clade 4 are endemics; e.g., the Adriatic Sea area

(ADS) shows three autapomorphies, while Danube

(DAN) shows eleven autapomorphies (Fig. 2). Clade 5 is

highly supported by six synapomorphies of the Temnoce-

phaloidea; Temnocephala brevicornis, T. haswelli, T. per-

eirai, T. talicei, T. mertoni, and Didymorchis haswelli.

Geographically, this clade is located in the Neotropical

region (Fig. 2). Clade 6 is supported by two synapomor-

phies: Diceratocephala boschmai (Diceratocephalidae),

and Temnosewellia rouxii (Temnocephalidae) (Fig. 2).

Clade 7 is supported by one synapomorphy, Temnosewel-

lia minor (Temnocephalidae). West Coast Australia

(WCA) and South Coast Australia (SCU) are associated

with the areas (IAS (ECA, MDA)), but only based on one

synapomorphy. In contrast with WCA, IAS and SCU do

not include any endemic species. Furthermore, ECA and

MDA are the areas with the greatest number of endemic

species and richness with regards to Temnocephalida (see

below).

There were a total of 158 helminth taxa restricted to a

single analysed hydrological basin, which represent autapo-

morphies. In total, 29 areas present autapomorphies, with

intervals of 1 (e.g., VIC, MAD, RLM, PCC, TOC, NBS,

SAF, RPA, RVE, SGV, NVG) to 56 microendemic taxa

(e.g., ECA) (Fig. 2). On the other hand, 16 areas did not

show any endemic taxa (e.g., MAC, NIN, IRR, PMA,

NOA, XJC, CHC, YAI, GBI, MAI, CSA, NCP, SCP, CPH,

SCU, IAS); eight areas only show homoplastic characters

(e.g., MAC, NIN, IRR, PMA, NOA, XJC, CHC, YAI),

while eight areas only included one to four synapomorphies

(e.g., GBI, MAI, CSA, NCP, SCP, CPH, SCU, IAS).

The observed species richness by area is relatively sim-

ilar to the pattern of endemic species richness by area

detected by PAE. A pattern of few species per area is

observed. For example, 39 areas contain a range of 1–7

species, five areas contain a range of 11–18 species and

only one area contains the maximum number of species

richness (59 taxa). Similarly, 27 areas contain a range of

1–8 endemic species, one area contains 11 endemic spe-

cies and only one area contains the maximum number of

endemic species (56 taxa). In general, 50% of analysed

areas only contain a single record (i.e., 20 of 45 areas),

and 20 areas contain records of one to three endemic spe-

cies. Also, eight areas do not contain any endemic taxa

(e.g., MAC, NIN, IRR, PMA, NOA, XJC, CHC, YAN),

while 20 areas only contain one record of temnocephalan

(e.g., MAC, NIN, IRR, PMA, NOA, VIC, MAD, XJC,

RLM, PCC, NBS, RPA, RVE, SGV, GBI, MAI, CSA,

NCP, SCP, CPH). Only one area (ECA) contains both

high species richness and endemism (Figs 3–4).

Analysis 2, CADE linked generalized track

In this study, the CADE analyses were used to detect gen-

eralized tracks based on two or more synapomorphies per

node, for five runs (Appendices S8–S12, see supplemental

Table 1. Description of the taxa defining nodes in the cladogram inferred by Parsimony Analyses of Endemism (PAE). � D Species
supporting more than one clade (homoplasies).

Clade Taxa

1 Temnosewellia semperi�, Scutariella japonica�

2 Paracaridinicola indica

3 Temnocephala chilensis

4 Troglocaridicola capreolaria, Troglocaridicola cestoidaria

5 Temnocephala lutzi�, Temnocephala brevicornis, Temnocephala axenos�, Temnocephala haswelli, Temnocephala iheringi�,
Temnocephala pereirai, Temnocephala talicei, Temnocephala mertoni, Didymorchis haswelli

6 Diceratocephala boschmai, Notodactylus handschini�, Temnosewellia rouxii
7 Temnosewellia minor, Craspedella simulator, Craspedella spenceri, Temnosewellia dendyi, Temnosewellia queenslandensis,

Temnohaswellia simulator, Temnohaswellia comes, Temnohaswellia verruca, Temnohaswellia alpina, Temnosewellia acirra,
Temnosewellia gingrina, Temnosewellia fasciata, Temnosewellia fax, Temnosewellia muscalingulata, Temnosewellia acicularis

Biogeography of Temnocephalida 331



material online). In the first run (Matrix 1; Appendix S3,

see supplemental material online), four generalized tracks

were identified (Fig. 5). The species that were diagnostic

for the generalized tracks are shown in Table 2. General-

ized Track 1 included the East Coast Australia (ECA),

Murray Darling River Basin (MDA), and the Interior Aus-

tralia (IAS). Generalized Track 2 included the North

Coast Australia (NCA) to the Irian Jaya Coast, New

Guinea (NVG). Generalized Track 3 included the South

Atlantic Coast of Uruguay-Brazil (UBS) to the La Plata

River Basin (LPA). Generalized Track 4 included the

Danube River Basin (DAN) and Adriatic Sea River Basin

(ADS). The second run of CADE (Matrix 2; Appendix

S4, see supplemental material online) produced 7 equally

MPT. The Generalized Track 5 identified included

Mahandi India (MAI), Sri Lanka (SLA), and Ganges

Brahmaputra India (GBI). On the other hand, the four gen-

eralized tracks obtained in the first run were identified

(Fig. 6). The third run of CADE (Matrix 3; Appendix S5,

see supplemental material online) produced 14 equally

MPT. ’Track 1’ was identified including five river basins;

the previously mentioned IAS, ECA and MDA, plus West

Coast Australia (WCA) and South Coast Australia (SCU)

(Fig. 7). The fourth run of CADE (Matrix 4; Appendix

S6, see supplemental material online) produced 100

equally MPT. The Generalized Track 6 was identified,

which included 30 river basins extending across three

Gondwanan regions: the Neotropical region (20 river

Figs. 5–9. Results of the cladistic analysis of distributions and endemism (CADE) detecting the influence of hierarchical information on
tree topology and discovering generalized tracks. Five datasets were used, including: 5. Species. 6. Species C Genera. 7. Species C Gen-
era C Subfamily. 8. Species C Genera C Subfamily C Family. 9. Species C Genera C Subfamily C Family C Superfamily. A compari-
son of trees obtained, using hierarchical information from species to subfamily, shows that four generalized equal tracks are discovered
(5–7). On the other hand, using hierarchical information from family to superfamily, a generalized track and a general clade are detected
(8–9). Based on conservative position, because the results obtained from run 1 to 3 and 4 to 5 of CADE are relatively similar, the integra-
tive of the biogeographic patterns detected in this study correspond to 7 and 9 figures. For more details see the discussion on the text.
Numbers above branches show bootstrap support � 60%, SC D consensus trees, MPT D most parsimonious tree, CI D consistent index,
RI D retention index.
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basins), the Ethiopian region (1 river basin), and the Aus-

tralian region (9 river basins). Furthermore, the General-

ized Track 6 also included seven river basins located in

the Oriental region (Narmada India [NIN], Irriwady

[IRR], Peninsula Malaysia [PMA], China Coast [CHC],

Japan [JAP], Yangtze [YAN], and Taiwan [TAI]) (Fig. 8).

Furthermore, a general clade was identified in Eurasia,

which included seven river basins; the Mahandi [MAI],

Sri Lanka [SLA], the Ganges Bramaputra India [GBI], the

Black Sea South Coast [BSC], the Danube [DAN], the

Adriatic Sea [ADS], and the Xun Jiang [XJC]. The fifth

run of CADE (Matrix 5) produced 36 equally MPT. The

Generalized Track 6 identified from the fourth run of

CADE, plus General clade in Eurasia, was also found

(Fig. 9). The species and areas identified by the General-

ized Track 6 and General clade are shown in Table 3. The

results obtained by the CADE analyses show that when

hierarchical information is included, few differences

between distribution patterns (e.g., generalized track) are

discovered (Figs 5–9). Finally, only the total-evidence

matrix (i.e., Matrix 5; Appendix S7, see supplemental

material online) yielded the general resolution in the strict

consensus tree, where the fragmentation pattern of Gond-

wana was recovered (Fig. 9).

Discussion

PAE: Describing the patterns of geographic

distribution of Temnocephalida

The strict consensus tree obtained by PAE represents a

hypothesis of relationships between different river basins

of the world, with special emphasis on basins with Gond-

wanan and Eurasian affinities (Fig. 2). Consensus tree

topologies show area groups (clades) involving different

biogeographic provinces and regions. Today, a reasonable

Table 2. Taxonomic composition of Generalized tracks (GT) 1, 2, 3, 4 and 5 retrieved by cladistics analysis of distributions and
endemism (CADE) using freshwater river basin (FRB) as analytical units, under the Matrix 1, 2 and 3 datasets from Temnocephalida
(Appendices S3-S5). The asterisks (�) correspond to homoplasies. See text for more details.

GT FRB Taxonomic composition

1 East Coast Australia,
Murray Darling
Australia, Interior
Australia

Species.- Achenella cougal, A. sathonata, Achenella sp. Actinodactylella blanchardi, Craspedella
bribiensis, C. cooranensis, C. gracilis, C. joffei, C. shorti, C. spenceri, C. yaba, Craspedella sp. 1,
Gelasinella powellorum, Heptacraspedella peratus, Notodactylus handschini�, Temnohaswellia alpina,
Th. breviumbella, Th. capricornia, Th. comes, Th. cornu, Th. crotalum, Th. munifica, Th. pearsoni,
Th. simulator, Th. subulata, Th. umbella, Th. verruca, Temnohaswellia sp., Temnosewellia acicularis,
Ts. acirra, Ts. alba�, Ts. albata�, Ts. apiculus, Ts. arga, Ts. argeta, Ts. aspinosa, Ts. aspra,
Ts. athertonensis, Ts. bacrio, Ts. bacrioniculus, Ts. batiola, Ts. belone, Ts. butlerae, Ts. caeca,
Ts. caliculus, Ts. cestus, Ts. christineae, Ts. comythus, Ts. coughrani, Ts. cypellum, Ts. dendyi, Ts.
engaei, Ts. fasciata, Ts. fax, Ts. flammula, Ts. geonoma, Ts. gingrina, Ts. gracilis, Ts. improcera,
Ts. keras, Ts. maculata, Ts. magna, Ts. maxima, Ts. minima, Ts. minuta, Ts. muscalingulata, Ts.
possibilitas, Ts. queenslandensis, Ts. unguiculus, Temnosewellia sp. 1, Temnosewellia sp. 2,
Didymorchis astacopsidis, Didymorchis cherapsis, Didymorchis sp. 1, Didymorchis sp. 2.

Genera.- Achenella, Actinodactylella, Craspedella, Didymorchis, Gelasinella, Heptacraspedella,
Notodactylus, Temnohaswellia, Temnosewellia.

Subfamilies.- Temnocephalinae, Craspedellinae.

2 North Coast Australia,
Irian Jaya Coast

Species.- Craniocephala biroi, Craspedella pedum, Decadidymus gulosus, Diceratocephala boschmai,
Notodactylus handschini�, Temnosewellia phantasmella, T. aphyodes, T. argilla, T. neqae, T. rouxii,
T. alba�, T. albata�.

Genera.- Craniocephala, Craspedella, Decadidymus, Diceratocephala, Notodactylus, Temnosewellia.
Subfamilies.- Temnocephalinae, Craspedellinae.

3 Uruguay Brazil South
Atlantic Coast, La
Plata

Species.- Didymorchis haswelli, Temnocephala axenos�, T. brevicornis, T. cuocoloi, T. curvicirri�,
T. cyanoglandula, T. decarloi, T. digitata, T. haswelli, T. iheringi�, T. lamothei, T. lanei, T. lutzi�,
T. mertoni, T. microdactyla, T. minutocirrus, T. pereirai, T. pignalberiae, T. rochensis, T. santafesina,
T. stoneflyi, T. talicei, T. trapeziformis, T. travassosfilhoi, Temnocephala sp. 1. Temnocephala sp. 3.

Genera.- Didymorchis, Temnocephala.
Subfamilies.- Temnocephalinae.

4 Danube, Adriatic Sea Species.- Bubalocerus pretneri, B. sketi, Scutariella stammeri, S. didactyla, S. maxima, Stygoditycola
hadzii, Subtelsonia perianalis, Troglocaridicola capreolaria, Tc. cestoidaria, Tc. cervaria, Tc. istriana,
Tc. krkensis, Tc. longipenis.

Genera.- Bubalocerus, Scutariella, Stygoditycola, Subtelsonia, Troglocaridicola.
Subfamilies.- Scutariellinae.

5 Mahandi India, Sri
Lanka, Ganges
Bramaputra India

Species.- Paracaridinicola indica,Monodiscus parvus,M. macbridei.
Genera.- Paracaridinicola,Monodiscus.
Subfamilies.- Caridinicolinae.
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dataset for Temnocephalida of the world is available (e.g.,

Mart�ınez-Aquino et al., 2014a; Sewel, 2013; Tyler et al.,

2006-2016; Appendix S2, see supplemental material

online). However, the dataset for Temnocephalida is

incomplete because many hydrological systems have only

been partially explored or not explored at all. For exam-

ple, the results obtained by PAE show that 50% of the

analysed areas in this study only have one record of tem-

nocephalans (Fig. 3). In this context, the results obtained

here are likely to be modified or supported by new data in

future studies. Despite these limitations, the dataset con-

structed in this study is the most complete reference for

Temnocephalida in each hydrological basin of the world.

It is important to mention that the anthropogenic spread of

Temnocephalida species recorded in several river basins

was not considered; e.g., Diceratocephala boschmai,

Temnosewellia minor, T. rouxi (Chivavaya, 2013; Du

Preez & Smit, 2013; Mart�ınez-Aquino et al., 2014a; Niwa

& Ohtaka, 2006; Saoud & Ghanawi, 2013; Sewell, Can-

non, & Blair, 2006; Volonterio, 2009). This means that

the distribution patterns detected by PAE are not influ-

enced by introduced species.

Based on PAE it is possible to find primary biogeo-

graphic homology between two areas or more (Morrone,

Table 3. Taxonomic composition of Generalized Track (GT) 6 and General clade (Gc) recovered in cladistics analysis of distributions
and endemism (CADE) under the Matrix 5 datasets for Temnocephalida (Appendix S6 and Appendix 7). The asterisk (�) in the
freshwater river basin (FRB) and taxa correspond to complex area and taxa from hybrid areas discovering in this study. See text for more
details.

GT FRB Taxonomic composition

6 Cutzamala, Southern
Central America,
Magdalena, Amazon,
Tocantins, North Brazil
South Atlantic Coast,
Sao Francisco,
Colorado South
America, North Chile
Pacific Coast, South
Chile Pacific Coast,
Central Patagonia
Highlands, North
Argentina, Papaloapan,
R�ıo Verde, Grijalba,
Mar Chiquita, Lerma,
Madagascar, Negro,
New Zealand, Uruguay
Brazil South Atlantic
Coast, La Plata,
Tasmania, Vietnam
Coast, Irian Jaya Coast,
North Coast Australia,
Narmada India�, China
Coast, Japan�, Taiwan�,
West Coast Australia,
South Coast Australia,
Interior Australia, East
Cost Australia, Murray
Darling Australia,
Yangtze�, Irriwady,
Peninsula Malaysia

Species.- Scutariella japonica�, Actinodactylella blanchardi, Achenella cougal, A. sathonata, Achenella
sp., Craniocephala biroi, Craspedella gracilis, C. shorti, C. spenceri, C. yabba, C. simulator, C.
pedum, Craspedella sp., Dactylocephala madagascariensis, Didymorchis astacopsidis, D. cherapsis,
D. haswelli, D. haswelli australis, D. paranephropis, Didymorchis sp. A, Didymorchis sp. B,
Didymorchis sp. 2, Didymorchis sp. 3, Diceratocephala boschmai, Decadidymus gulosus, Gelasinella
powellorum, Heptacraspedella peratus, Notodactylus handschini, Temnocephala mexicana, T.
costarricensis, T. brenesi, T. colombiensis, T. lutzi, T. peruensis, T. kingsleyae, T. longivaginata, T.
caddisfly, T. curvicirri, T. axenos, T. iheringi, T. chilensis, T. mertoni, T. haswelli, T. icononcensis,T.
pereirai, T. talicei, T. brevicornis, T. lanei, T. trapeziformis, T. cyanoglandula, T. minutocirrus, T.
stoneflyi, T. rochensis, T. pignalberiae, T. microdactyla, T. travassosfilhoi, T. lamothei, T. santafesina,
T. decarloi, T. digitata, T. cuocoloi, T. euryhalina, T. icononcensis, Temnocephala sp. 1,
Temnocephala sp. 3, Temnocephala sp. 4, Temnocephala sp. 5, Temnocephala sp. 6, Temnocephala
sp. 7, Temnocephala sp. 8, Temnocephala sp. 9, Temnocephala sp. 10, Temnohaswellia alpina, Th.
breviumbella, Th. capricornia, Th. comes, Th. cornu, Th. crotalum, Th. munifica, Th. pearsoni, Th.
simulator, Th. subulata, Th. umbella, Th. verruca, Th. novaezealandiae, Temnohaswellia sp.,
Temnomonticellia aurantica, Tm. fulva, Tm. tasmanica, Tm. pygmea, Tm. quadricornis,
Temnosewellia minor, Ts. punctata, Ts. chaeropsis, Ts. semperi�, Ts. cf. semperi�, Ts. vietnamensis,
Ts. phantasmella, Ts. aphyodes, Ts. argilla, Ts. neqae, Ts. rouxii, Ts. alba, Ts. albata, Ts. acicularis,
Ts. acirra, Ts. apiculus, Ts. arga, Ts. argeta, Ts. aspinosa, Ts. aspra, Ts. athertonensis, Ts. bacrio, Ts.
bacrioniculus, Ts. batiola, Ts. belone, Ts. butlerae, Ts. caeca, Ts. caliculus, Ts. cestus, Ts. christineae,
Ts. cita, Ts. comythus, Ts. coughrani, Ts. cypellum, Ts. dendyi, Ts. engaei, Ts. fasciata, Ts. fax, Ts.
flammula, Ts. geonoma, Ts. gingrina, Ts. gracilis, Ts. improcera, Ts. keras, Ts. maculata, Ts. magna,
Ts. maxima, Ts. minima, Ts. minuta, Ts. muscalingulata, Ts. possibilitas, Ts. queenslandensis, Ts.
unguiculus, Temnosewellia sp. 1, Temnosewellia sp. 2, Temnosewellia sp. 3�, Temnosewellia sp. 4�,
Temnosewellia sp. 5�, Temnosewellia sp. 6�, Temnosewellia sp. 7�, Temnosewellia sp. 8, Zygopella
pista, Z. stenota, Zygopella deimata.

Genera.- Actinodactylella, Decadidymus, Diceratocephala, Didymorchis, Scutariella�, Achenella,
Craniocephala�, Craspedella, Dactylocephala, Gelasinella, Heptacraspedella, Notodactylus,
Temnocephala�, Temnohaswellia, Temnomonticellia, Temnosewellia�, Zygopella.

Sufamilies.- Craspedellinae, Scutariellinae�, Temnocephalinae.
Families.- Scutariellidae�, Actinodactylellidae, Didymorchidae, Diceratocephalidae, Temnocephalidae�.
Superfamilies.- Scutarielloidea�, Temnocephaloidea�.

Gc Mahandi India, Sri Lanka,
Ganges Bramaputra
India, Black Sea South
Coast, Danube,
Adriatic Sea, Xun Jiang

Species.- Bubalocerus pretneri, B. sketi, B. undulatus, Caridinicola sinica, Monodiscus macbridei, M.
parvus, Paracaridinicola indica, Stygodyticola hadzii, Scutariella japonica�, S. maxima, S. stammeri,
S. didactyla, S. georgica, Subtelsonia perianalis, Troglocaridicola capreolaria, Tc. longipenis, Tc.
maxima, Tc. istriana, Tc. cestoidaria, Tc. kirkensis, Tc. spelaeocaridicola, Tc. mrazeki.

Genera.- Scutariella, Bubalocerus, Caridinicola, Monodiscus, Stygodyticola, Subtelsonia,
Troglocaridicola.

Subfamily.- Caridinicolinae.
Family.- Scutariellidae.
Superfamily.- Scutarielloidea.
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2014b). In the case of the results obtained for Temnoce-

phalida by PAE, several groups are defined by only

one synapomorphy; however, some are polytomies

(e.g., Clades 1, 2 and 3; Fig. 2). In these cases, it is diffi-

cult to support the patterns detected. Therefore, we

decided to carry out biogeographic inferences of Temno-

cephalida using a PAE derivative (i.e., CADE), detecting

area clades based on two or more synapomorphies to sup-

port the distributional patterns through generalized tracks

(see next section).

CADE: Hierarchical-taxonomic information

and their effect on detecting generalized

tracks

Generalized tracks represent ancestral biotic components

that became fragmented by tectonic or other geological

events; however, it is also possible to hypothesize dis-

persal events based on generalized tracks (Morrone,

2015b). In this study, each CADE run is considered an

independent analysis (Figs. 5–9). The generalized tracks

obtained in the CADE analyses using Matrix 1, 2 and 3,

are similar with the exception of Generalized Track 1 and

5 (Figs. 5–7). For this reason, the generalized tracks are

interpreted with the same distributional patterns using

three taxonomic levels; i.e., species, genera, and subfam-

ily. On the other hand, the Generalized Track 6 and the

General clade was discovered using a dataset that

included higher taxonomic levels; i.e., family, superfam-

ily (Appendices S6 and S7, see supplemental material

online). Particularly, the General clade includes the Gen-

eralized Tracks 4 and 5 starting from the fourth run of the

CADE (Fig. 8), and finally was inclusive of all the areas

distributed on Eurasia (Fig. 9). Meanwhile the General-

ized Track 6 included the Generalized Tracks 1, 2 and 3

(Fig. 9).

Based on the integration of the generalized tracks

obtained by CADE runs, we detected grouping of the

Gondwanan hydrological systems. The identification,

quantification and measure of the generalized tracks

allows the detection of complex or composite areas (Dos

Santos, Cuezzo, Reynaga, & Dom�ınguez, 2012; Ferrari
et al., 2013; Morrone, 2015b; Page, 1987). The interpreta-

tion of the generalized tracks is supported by the included

biota (symbionts plus their hosts). In this sense, in the

next section we show the results obtained for each gener-

alized track, and if possible, a brief discussion of its bio-

geographic complexity is included.

Generalized Track 1

It is the most complex biotic component in terms of spe-

cies richness of temnocephalids; e.g., 75 species with 72

endemic species; with 43 species of Temnosewellia

associated mainly with the freshwater crayfish Euastacus

(Parastacidae) (Table 2). Similar to Clade 7 (WCA, (SCU

(IAS (ECA, MDA)))) identified by PAE, the Generalized

Track 1 is located across Australia (Fig. 10), but only

includes the areas West Coast Australia (WCA) and South

Coast Australia (SCU), when taxonomic hierarchical

information is included (i.e., Species C Genera C Sub-

family; Fig. 7). For this reason, we consider that this bio-

geographic relationship is weak. WCA River Basin is

considered a separate hydrological system to Central and

East Australia, and as such is suggested to be an indepen-

dent area of freshwater endemism (e.g., Davies & Stewart,

2013; Morgan et al., 2014; Morrongiello et al., 2011). In

this study, this idea is supported because WCA includes

five endemic taxa (e.g., Temnosewellia punctata, Ts.

chaeropsis, Zygopella pista, Z. stenota and Z. deimata),

associated with Cherax host species with a distribution

restricted to Western Australia (Horwitz & Adams, 2000;

Morgan et al., 2014; Munasinghe, Burridge, & Austin,

2004; Unmack, Allen, & Johnson, 2013). On the other

hand, using distinct freshwater groups, a similar delimita-

tion of areas of endemism occurred in South Coast Aus-

tralia (SCU) (Buhlmann et al., 2009; Unmack, 2001;

Unmack, Hammer, Adams, & Dowling, 2011; Whiting,

Lawler, Horwitz, & Crandall, 2000). For these reasons,

CADE did not detect WCA and SCU as part of the Gener-

alized Track 1 in the first and second runs. Generalized

Track 1 supports the hypothesis that Central and Eastern

Australia are diversity hotspots for freshwater biota (Bent-

ley, Schmidt, & Hughes, 2010; Hammer, Unmack,

Adams, Raakik, & Johnson, 2014; Hodges, Donnellan, &

Georges, 2014). For example, based on Temnocephalida

taxa (e.g., Achenella spp., Craspedella spp., Didymorchis

spp., Temnohaswellia spp., Temnosewellia spp.) (Table 2),

the fact that the East Coast Australia (ECA) river basin

must be considered an area of high conservation priority

is supported (Beatty, Morgan, Rashnavadi, & Lymbery,

2011; Davies & Stewart, 2013; Morgan et al., 2014)

(Fig. 4).

Generalized Track 2

The biotic composition that forms the structure of this

track responds to a classic event of vicariance between the

North Coast Australia (NCA) and Irian Jaya Coast, New

Guinea (NVG) (e.g., Jordan & Hubbs, 1919; Mayr, 1944;

Wallace, 1860). This track includes three endemic genera

(Craniocephala, Decadidymus, and Diceratocephala),

from two families (Temnocephalidae and Diceratocepha-

lidae), plus five endemic species of the genera Temnose-

wellia (Table 2). Geographically, the Generalized Track 1

and the Generalized Track 2 are close (Fig. 10), but they

only share three taxa, which in the case of Generalized

Track 1 are located exclusively in the ECA River Basin;
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i.e., Notodactylus handschini, Temnosewellia albata, and

Ts. alba (Appendix S8). In this context, the biota of the

Generalized Track 1 and Generalized Track 2 support

independent distribution patterns (e.g., Hammer et al.,

2014; Morgan, Roberts, & Keogh, 2007; Unmack et al.,

2011). The distribution pattern of the Temnocephalida of

Generalized Track 1 was influenced by dispersion plus

vicariance events during the evolutionary history of their

crab hosts (e.g., Gecarcinucidae, Potamidae, and Potamo-

nautidae), and shrimp hosts (e.g., Parastaciade) (Klaus,

Yeo, & Ahyong, 2011; Munasinghe et al., 2004; Shull

et al., 2005; Toon et al., 2010; Whiting et al., 2000). The

Generalized Track 2 is congruent with the vicariant distri-

bution patterns of other freshwater biota; e.g., fishes, cray-

fishes, lobsters (Bracken-Grissom et al., 2014; Cook,

Unmack, Huey, & Hughes, 2014; Georges et al., 2014;

Kadarusman, Hadiaty, Sudarto, & Pouyaud, 2012; Sparks

& Smith, 2004; Unmack et al., 2013).

Generalized Track 3

This track is well supported by six synapomorphies

(Appendix S8). The ancestral connection between Uru-

guay-Brazil South Atlantic Coast (UBS) and La Plata

River Basin (LPA) can be explained by several marine

transgressions in the past; e.g., Miocene–Quaternary Peri-

ods (23–5.3 Mya), in the case of the hosts Aegla, a partic-

ular endemic group of freshwater anomurans (Aeglidae)

from South America with multiple temnocephalan sym-

bionts (Collins, Giri, & Williner, 2011; Giri & Collins,

2014; Mart�ınez-Aquino et al., 2014a; Nore~na, Dambore-

nea, & Brusa, 2005). Also, there is a known ancestral con-

nection between both basins (UBS, LAP) supported by

freshwater fauna (Arzamendia & Giraudo, 2009; Cuhna-

Ribeiro, 2006; L�opez, Menni, Donato, & Miquelarena,

2008). Furthermore, the UBS and the LAP River Basins

contain a considerable degree of endemic

Figs. 10–11. Geographic location of Generalized tracks recovered in the cladistic analysis of distributions and endemism (CADE) to
Temnocephalida. 10. Generalized tracks 1–5, under the integration and interpretation of the results of the matrix 1–3 datasets. 11. Gener-
alized track 6, General clade, and Hybrid zones, under the integration and interpretation of the results of the matrix 4–5 datasets (Appen-
dices S6 and S7, see supplemental material online). Numbers of generalized tracks correspond with the clades detected by CADE in the
Figs 5–9. Species composition to each generalized track, General clade and Hybrid zone is mentioned in Tables 2 and 3.
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Temnocephalida (eight endemic species each; Appendix

S8, see supplemental material online). In this context, it is

also possible to consider each basin as a separate area of

endemism (e.g., Arzamendia, Giraudo, & Bellini, 2015;

Dos Santos, Emmerich, Molineri, Nieto, & Dom�ınguez,
2015; Ferretti, Gonz�alez, & P�erez-Miles, 2012; Morrone,

2014a).

The genus Temnocephala is an endemic component of

the Neotropical region, with a great diversity of hosts: the

decapods are the most species-rich host of temnocepha-

lans (28), followed by the snails (seven taxa) and insects

(five species) (Arias-Pineda et al., 2015; Mart�ınez-Aquino
et al., 2014a; Seixas et al., 2015a, b). The evolutionary

history of Temnocephala’s host groups has been inferred

for neotropical freshwater river basins in several studies

(e.g., Hayes, Cowie, & Thiengo, 2009; Liu, Wang, Shih,

Ren, & Yang, 2012; Morrone, Mazzucconi, & Bachmann,

2004; Noonan, 2000). Particularly, the distribution pat-

terns of Temnocephala in the Neotropical region is

explained based on their associations with crustacean

groups, being the taxa with the most temnocephalans for

America; e.g., 17 taxa of Temnocephala are associated

with three families of freshwater crab hosts (Aeglidae,

Pseudothelphusidae, and Trichodactylidae), while five

Temnocephala species are associated with eight taxa of

freshwater shrimps included in three families (Cambar-

iade, Palaemonidae, and Parastacidae) (Cannon & Joffe,

2001; Lamothe-Argumedo, 1968; Mart�ınez-Aquino et al.,

2014a; Riek, 1972). Cannon and Joffe (2001) mentioned

that Temnocephala have migrated as far as the north of

the Neotropical region (Mexico), based on the association

with parastacid crayfish. The Generalized Track 3

obtained in this study does not support this hypothesis.

However, it is possible that the extension of the distribu-

tional area of Temnocephala in the Neotropical region

was caused by the contraction-expansion events under-

gone by crustacean migrations of the Most Recent Com-

mon Ancestor (MRCA) of each host group; e.g., crayfish

(�Alvarez, Villalobos, Armend�ariz, & Hern�andez, 2012;
Collins et al., 2011; Cumberlidge, Alvarez, & Villalobos,

2014; Feldmann & Schweitzer, 2006; Giri & Collins,

2014; P�erez-Losada, Bond-Buckup, Jara, & Crandall,

2004). In this context, testing a geographic range evolu-

tion model of dispersal, combined with host-switching

events, can support or reject this hypothesis (Hoyal Cut-

hill et al., 2016; Mart�ınez-Aquino, 2016; Ree & Smith,

2008). On the other hand, this hypothesis can also be sup-

ported by the discovery of new records of Temnocephala

associated with crustaceans distributed in Central and

South America, such as pseudotelphusid crabs from Mex-

ico, Ecuador, and Colombia (Arias-Pineda et al., 2015;

present work). Furthermore, several distributional patterns

between biota of freshwater river basins from Central and

South America can also support these inferences (Hayes

et al., 2015; May�en-Estrada & Aguilar-Aguilar, 2012;

Mercado-Salas, Pozo, Morrone, & Su�arez-Morales, 2012;

Van Damme & Sinev, 2013).

Generalized Track 4

This is the most interesting biotic component because of

its geographic location (South-east Europe), ecological

characteristics (freshwater subterranean environments),

and degree of endemism; e.g., four endemic genera and a

total of 11 endemic species of Scutariellidae (Table 2;

Fig. 10). It is important to mention that the Black Sea

South Coast River Basin (BSC) is found close to this

track, but does not form part of it, even though the basin

includes two genera distributed in the areas Danube

(DAN) and Adriatic Sea (ADS) (Scutariella and Troglo-

caridicola; Figs S1–3). This may be due to the fact that

the species included in BSC (S. georgica and T. mrazeki),

are considered microendemic species (Gottsetein-Mato-

�cec, 2002; Sket, 1999; Sket & Stoch, 2014). Therefore,

the CADE analyses did not detect biogeographic homol-

ogy between DAN C ADS and BSC. However, Altermatt

et al. (2014), Gottsetein-Mato�cec (2002), and Sendra and

Reboleria (2012) mentioned that the temnocephalids and

their hosts are a poorly surveyed group in this European

region. Particularly, the crustacean hosts (Troglocaris)

can elucidate information on European temnocephalids

because they show phylogenetic and biogeographic struc-

ture for the same distribution patterns inferred in the Gen-

eralized Track 4 (Jugovic, Jal�zi�c, Prevor�cnik, & Sket,

2012; Jugovic, Prevor�cnik, Blejec, & Sket, 2011; Sket &

Zak�sek, 2009; Zak�sek, Sket, & Trontelj, 2007; Zak�sek,
Sket, Gottstein, & Franjevic, 2009).

Generalized Track 5

The relationships detected between areas (MAI, SLA,

GBI) in this track support a vicariant event for freshwater

biota (i.e., potamid crabs) from the oriental mainland and

the Sri Lanka River Basin (Shih & Ng, 2011; Shih, Yeo,

& Ng, 2009; Shih, Zhou, Chen, Chien, & Ng, 2011). Fur-

thermore, SLA presents an endemic scutarielid genus that

includes two endemic species (Monodiscus mcbridei and

M. parvus), suggesting that the fragmentation has been a

factor for speciation (Beenaerts et al., 2010; Bossuyt

et al., 2004).

Generalized Track 6

Biogeographic patterns of the Generalized Track 6 were

discovered from Matrix 4 and 5 (Appendices S6 and S7,

see supplemental material online). We interpret the results

of the Generalized Track 6 based on the total matrix

(Matrix 5). A Gondwanan pattern is apparent for Temno-

cephaloidea, congruent with major vicariant events; e.g.,

the fragmentation of Madagascar, southern Africa, and
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South-west India (200–120 Mya), the fragmentation of

Africa and India (200–120 Mya), the separation of Tasma-

nia from mainland Australia (80 Mya), the fragmentation

of New Zealand from South-east Australia (40–30 Mya),

and New Guinea from North-west Australia (110–65

Mya) (Sanmart�ın, 2002). On the other hand, the distribu-

tion of Temnocephala species in Central America and the

Temnosewellia species from India and Asia do not reflect

a sequence of vicariant events.

The Clade (YAN (JAP (CHC, TAI))), as well as Tem-

nocephaloidea taxa, also includes taxa of the Scutarielloi-

dea, e.g., Scutariella japonica. Each area of this clade has

an independent evolutionary history that reflects a past of

’hybrid biotas’. For example, Yangzte (YAN) and China

Coast (CHC) are included in the Chinese Transition Zone

(Morrone, 2015a) (Figs 9, 11; Table 3). In fact, these com-

plex hybrid areas are very interesting for exploring the

deep evolution of Temnocephaloidea. Particularly, the

Indian landmass from Gondwanan times is likely to have

been the ancestral area of the MRCA of Temnocephaloi-

dea and Scutarielloidea taxa, and its posterior fragmenta-

tion, dispersion plus dispersal events explain the actual

distribution patterns (Figs 12–13).

General clade

This clade was detected with the datasets of Matrix 4 and

5 (Appendices S6 and S7, see supplemental material

online). We follow a conservative approach and consider

them as a General clade and not as a Generalized Track

because the clade is not supported by two or more synapo-

morphies (Appendices S11 and S12, see supplemental

material online). However, a Eurasian distribution pattern

is observed for the Scutarielloidea (Fig. 11; Appendix

S11, see supplemental material online). Therefore, it is

possible to infer evolutionary processes associated with

Gondwanan events. The Eurasian affinities detected by

CADE for the Scutarielloidea are – in part – similar to

original ideas from previous studies (i.e., Cannon & Joffe,

2001; Gelder, 1999). Based on geographic and host infor-

mation, Cannon and Joffe (2001) mentioned a possible

origin of Scutarielloidea from Laurasia C Gondwana,

when they were connected as Pangaea (> 200 Ma). They

also mentioned that the divergence of Scutariellinae (cur-

rently distributed in West Europe), and Caridinicolinae

can be dated from the time (�100 Ma) when the Indian

landmass connected to Laurasia (currently distributed in

the South Oriental and East Palaearctic regions; Fig. 11).

However, in this study we do not support the idea that

Scutarielloidea was distributed since ‘Laurasia C
Gondwana’ were connected (> 200 Ma) because several

areas did not exist (Fig. 12). Obviously, to test the age of

divergence of Scutarielloidea – and each group of Temno-

cephalida – it is necessary to carry out phylogenetic

Figs. 12–13. Evolutionary history of Temnocephalida inferred
from the primary biogeographic homology patterns obtained in
this study. 12. Hypothetical scenario of the ancestral distributions
inferred from Pangaean times. Black line with unidirectional arrow
shows a tectonic movement from ancestral India to Eurasia. Proba-
bly the most recent common ancestor (MRCA) of Scutarielloidea
was located on the ancestral Indian landmass. It is also probable
that the MRCA of Temnocephaloidea was found in this ancestral
area and, posteriorly, their geographic distribution range was
expanded to Australia. Posteriorly, the fragmentation of the adjunct
areas of Australia, plus diversification processed of the host groups
of Temnocephaloidea, led to the colonization of other areas (e.g.,
New Guinea and New Zealand). Red dashed segment line with
unidirectional arrow represents a long-distance dispersal event on
Antarctic region from Australia to southern South America. 13.
Present-day geographic distribution of Temnocephaloidea. Green
lines with bidirectional arrows represent the ancestral connection
between continental masses, separated by vicariant events. The
ancestral connection between Australia and South America impli-
cated extinction events in the Antarctic region. Green dashed arc
line, from Sri Lanka to southern Asia represents a dispersal event,
i.e., geographic expansion of their hosts. Black line with bidirec-
tional arrows located between India and Sri Lanka corresponds to
a vicariant event. Black dashed arc and segment line with unidirec-
tional arrow is associated with dispersal events, caused by geo-
graphic expansion of their hosts. The red star with red arc line with
unidirectional arrow from India to central Europe represents the
difficulty in explaining this connection with dispersal events or
marine introgressions. The red star with red arc line with unidirec-
tional arrow on South America represents an inferred hypothetical
geographic range expansion pattern, with host-switching events, to
explain the geographic range from South of South America to Cen-
tral America. For more details see section of text discussion.
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analyses with molecular clock dating (Ceccarelli et al.,

2016; Ronquist et al., 2012; Yang & Rannala, 2012).

Based on the distribution of Scutarielloidea, congru-

ence with major vicariant events can be recognized. The

geographic location of the areas included in the General

clade, plus the areas that are included in the hybrid zones

support the hypothesis that the MRCA of Scutarielloidea

was located in India (Fig. 12). The biological radiation of

Scutarielloidea was probably associated with major geo-

logical events; e.g., the collision of the Indian plate with

Asia (100 Mya), and the separation of Sri Lanka (SLA)

from India (70 Mya). This hypothesis can be tested and

contrasted together with the ancestral symbiont host

groups; e.g., freshwater crabs of the family Potamidae

(Shih et al., 2009; Shih et al., 2011). Furthermore, the dis-

tribution of scutariellids from North India (NIN) to Yang-

tze (YAN) and West China (CHC) (Fig. 11), may be

explained by their expansion with their ancestral hosts

after the contact of the Indian Plate with Asia (Cumber-

lidge et al., 2011; Shih & Ng, 2011; Shih et al., 2009).

Finally, the extension of scutarielids from CHC to Japan

(JAP) and Taiwan (TAI), may have been caused by dis-

persal events of their hosts (e.g., Potamidae), via land-

bridges as postulated for the East Asian Islands (Shih &

Ng, 2011 and citations therein) (Fig. 13).

In the case of the European temnocephalids, the geo-

graphic disjunction based on biogeographic homology is

difficult to explain because central Europe did not exist

in Gondwanan times (Plant, Whittaker, Demetriades, De

Vivo, & Lexa, 2003; Sanmart�ın, Enghoff, & Ronquist,

2001). Also, it is difficult to explain an event of long-dis-

tance dispersal from India to central Europe, because the

host(s) (e.g., cave shrimps of the genus Troglocaris)

must have crossed multiple geographic barriers during

the fusion of India with Eurasia, e.g., mountain chains or

seas. In contrast with the theory mentioned by Cannon

and Joffe (2001) with respect to the inference of the age

of origin of Scutarielloidea (�100 Ma), different authors

mentioned that the age of their troglobite crustacean

hosts is relatively recent (5.3–3.7 Mya), and that their

origin was influenced by marine introgression events

(Zak�sek et al., 2007). In this context, the origin of the

European temnocephalids has not yet been unambigu-

ously defined. More interestingly, based on the evolution

of their hosts, it is important to test the monophyly of

Scutarielloidea, since the European taxa may be

paraphyletic.

The results in this study were obtained based on PAE

approaches. In fact, PAE has been criticized for four main

failures. (1) It will only recover correct historical relation-

ships when species undergo a particular combination of

vicariance and non-response to vicariance. (2) It does not

use any phylogenetic information. (3) Areas may be

grouped together by shared absences, but character

change is not examined. (4) It is susceptible to being

misled by shared episodes of post-speciation dispersal

(e.g., Brooks & van Veller, 2003; Porzecanski & Cracraft,

2005). However, other authors defend PAE based on the

fact that criticisms of this method usually stem from three

issues. (1) Misunderstanding of the method’s theoretical

basis. (2) In a ’cladistic biogeograhic context’, the critics’

arguments are circular because they refer to biogeo-

graphic analyses based on phylogenetic hypotheses. (3)

PAE is an efficient tool for identifying areas of endemism.

Readers interested in a more detailed discussion of the

pros and cons of PAE and its techniques might consult

Morrone (2014b and citations therein). In this study,

despite being aware of the method’s limitations we use

PAE for the purpose of pattern retrieval to infer primary

biogeographic homology (Morrone, 2015b) in the absence

of phylogenetic information for the taxa. We consider

PAE to be an effective and rigorous method to detect sim-

ilarities between areas expressed in the shared presence of

taxa (such as other statistical methods, e.g. UPGMA,

Ward, Bray–Curtis and Jaccard; see Aguilar-Medrano,

Reyes-Bonilla, & Polly, 2015; Bradshaw, Colville, & Lin-

der, 2015), while implementing the parsimony algorithm

to test historical reconstruction hypotheses.

Conclusions
In this study we tested several biogeographic patterns

under the influence of Gondwanan fragmentation and

found areas with high endemism and species richness

(e.g., East Coast Australia [ECA]), that can be key to

understanding the diversification processes of Temnoce-

phalida. Also, we detected primary biogeographic homol-

ogy using hierarchical-taxonomic information: six

generalized tracks, four hybrid zones, and one General

clade. Based on the integration of the results obtained by

pattern-based biogeographic methods, all the Gondwanan

hydrological systems were grouped in accordance with

previous proposals based on other animal taxa (e.g., Mor-

rone, 2015a; Sanmart�ın & Ronquist, 2004). Based on the

distribution patterns, we infer the geological effect on the

deep diversification of Temnocephalida and contrast their

distribution with the evolutionary history of some of their

hosts (Fig. 5). On the other hand, this study shows evi-

dence in contrast with previous hypotheses presented as

an explanation for the distribution of Temnocephalida,

e.g., Scutarielloidea (Cannon & Joffe, 2001). The present

study demonstrates the utility of the pattern-based biogeo-

graphic tools, using taxonomic records to detect primary

biogeographic homology at several hierarchical-taxo-

nomic levels. A more accurate biogeographic analysis

should be undertaken in the future by considering a phylo-

genetic hypothesis based on molecular data and incorpo-

rating information of theirs hosts, fossils, and geological

evidence; i.e., parametric biogeography (Drinkwater,
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Qiao, & Charleston, 2016; Klompmaker & Boxshall,

2015; Mart�ınez-Aquino, 2016).
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