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Abstract

Intracytoplasmic sperm injection (ICSI) has become a useful technique for clinical applications in the horse-breeding industry. 
However, both ICSI blastocyst and offspring production continues to be limited for most farm and wild species. This article reviews 
technical differences of ICSI performance among species, possible biological and methodological reasons for the variable efficiency 
and potential strategies to improve the outcomes. One of the major applications of ICSI in animal production is the reproduction of 
high-value specimens. Unfortunately, some domestic species like the bovine show low rates of pronuclei formation after sperm 
injection, which led to the development of various artificial activation protocols and sperm pre-treatments that are discussed in this 
article. The impact of ICSI technique on equine breeding programs is considered in detail, since in contrast to other species, its use 
for elite horse reproduction has increased in recent years. ICSI has also been used to produce genetically modified animals; however, 
despite numerous attempts in several domestic species, only transgenic pigs have been consistently produced. Finally, the ICSI is a 
promising tool for genetic rescue of endangered and wild species. In conclusion, while ICSI has become a consistent ART for some 
species, it needs further development for others. The low results obtained for some domestic species, the high training needed and 
the equipment required have limited this technique to the production of elite specimens or for research purposes.
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General overview

ICSI is a micromanipulation technique that involves the 
injection of a single spermatozoon into the cytoplasm of 
a mature oocyte. The first report of pronuclei formation 
after ICSI in mammals was achieved in hamster gametes 
(Uehara & Yanagimachi 1976). In 1992, the first baby 
generated by sperm injection was born (Palermo et al. 
1992), and it did not take long for ICSI to become an 
important technique for human-assisted reproduction 
worldwide (reviewed by Devroey & Van Steirteghem 
2004). Following that attainment, the use of this 
technique extended to other species, including the cow 
(Goto et al. 1990), rabbit (Hosoi & Iritani 1993), mouse 
(Kimura & Yanagimachi 1995), sheep (Catt et al. 1996), 
horse (Cochran et al. 1998), domestic cat and wild felids 
(Pope et al. 1998), pig (Kolbe & Holtz 2000) and goat 
(Wang et al. 2003).

However, despite the efforts of several working groups 
around the world, the success of this technique has been 
limited in farm animals. The most extreme case is the 
cow, whose fertilization rates after ICSI are critically 
low (Chung et al. 2000, Devito et al. 2010, Arias et al. 
2014). In sheep, although fertilization rates after ICSI 

can be improved by artificial activation treatments 
(Shirazi et al. 2011), development to blastocyst continues 
to be low. In regard to post-implantation development, 
the number of newborns produced by ICSI remains 
extremely low for these species (reviewed by Garcia-
Rosello et al. 2009, Lopez-Saucedo et al. 2012).

In contrast to the situation for most domestic species, 
ICSI in horses has developed to a commercial level 
(Hinrichs 2005). In this species, embryo production by 
IVF continues to be a challenge, since it has not been 
possible to obtain repeatable results (Mugnier et al. 2009, 
reviewed by Leemans et al. 2016). For this reason, the 
combination of ovum pick-up (OPU) and ICSI followed 
by non-surgical embryo transfer to recipient mares is the 
current routine protocol for in vitro embryo production 
in horses. In recent years, surprising efficiency of this 
protocol ended in its inclusion in commercial breeding 
programs (Galli et al. 2014).

With regard to pigs, ICSI became an alternative 
fertilization technique for research purposes, since 
IVF produces high rates of polyspermia (reviewed by 
Coy & Romar 2002). Moreover, after the generation 
of the first transgenic piglet by sperm injection, ICSI 
gained importance as a new tool for inducing genetic 

10.1530/REP-17-0357

© 2017 Society for Reproduction and Fertility https://doi.org/10.1530/REP-17-0357
ISSN 1470–1626 (paper) 1741–7899 (online) Online version via www.reproduction-online.org

mailto:salamone@agro.uba.ar
https://doi.org/10.1530/REP-17-0357


D F Salamone and othersF112

Reproduction (2017) 154 F111–F124 www.reproduction-online.org

modifications in farm animals (Kurome et  al. 2006, 
Garcia-Vazquez et  al. 2010). However, the advent of 
CRISPR-Cas9 system for genetic engineering lead to the 
replacement of ICSI by regular or IVF zygotes for the 
generation of genetically modified animals (Hai et  al. 
2014, Whitworth et  al. 2014, Proudfoot et  al. 2015, 
Wang et al. 2015, Bevacqua et al. 2016).

In summary, the low efficiency of ICSI in domestic 
species, the high level of training needed, and the 
expensive equipment required has restricted this 
technology to the production of specimens of high 
commercial value or for research purposes. The great 
progress achieved by the development of this technique 
in some species, and the disappointing results observed 
in others emphasize the importance of re-examining the 
possible causes of such differences, encouraging the 
study of early fertilization events and considering new 
applications that have not been explored thoroughly yet.

The technique step by step

The ICSI procedure involves the use of complex 
equipment, including an inverted microscope 
coupled to a micromanipulation system. Basically, the 
micromanipulator converts macroscopic movements 
into microscopic ones, allowing the handling of 
gametes. It is equipped with two arms, one attached to a 
holding pipette and the other to an injection pipette that, 
in some cases, is connected to a piezo-driven system. 
The holding pipette attaches the oocyte, placing the 
first polar body (PB) in 6 or 12 clockwise position. The 
injection pipette, used for immobilizing and holding a 
single spermatozoon, will pass through the membrane 
of a metaphase II oocyte and deposit the sperm into 
the cytoplasm. Since the genetic material is expected 
to be next to the PB, it is kept far from the area of 
injection, in order to minimize the risk of chromosome 
or spindle damage.

Several authors have described in detail the 
methodology of ICSI technique (Yoshida & Perry 2007, 
Stein & Schultz 2012, Rader et  al. 2016, Simopoulou 
et al. 2016). In the present section, we expose technical 
differences among species on the basis of our collective 
experience. These differences are evidenced during the 
ICSI procedure. After in vitro maturation (that will vary 
between 18 and 30 h depending on the species), cumulus 
cells are removed from COCs through enzymatic 
treatment followed by vortexing or gentle pipetting. For 
example, when manipulating horse or wild animal’s 
oocytes, vortexing is usually avoided to minimize the 
risk of losing or damaging them, given their high value.

Regarding sperm sample preparation frozen-thawed 
semen can be used, even for species with variable sperm 
freezability among individuals like horses (Hoffmann 
et al. 2011) and pigs (Casas et al. 2009). Depending on 
the quality of the sperm sample and the species used, 
methods for selection of motile spermatozoa like swim 

up or density gradient separation can be included on ICSI 
protocols (Gomez et al. 1997, Keskintepe et al. 1997, 
Choi et al. 2002, Nakai et al. 2016a,b, Rader et al. 2016). 
It is interesting to note the possibility of optimizing the 
use of frozen semen straws when performing ICSI. Since 
only one spermatozoon per injected oocyte is needed, 
each straw can be sectioned into multiple ‘ICSI-cuts’. 
Up to ten ‘ICSI-cuts’ can be obtained from a single straw 
that can be thawed separately for its use in differed 
ICSI procedures (Rader et al. 2016). Additionally, some 
authors maximize the use of valuable straws not only by 
using this strategy, but also by diluting and refreezing 
sperm doses, for example, when a frozen semen store 
is limited or when expensive sex-sorted sperm straws 
are employed (Hamano et al. 1999, Rader et al. 2016, 
Canel et al. 2017).

After semen thawing and selection, a critical step is 
sperm immobilization. For this, the spermatozoa must 
be placed in a polyvinylpyrrolidone (PVP) droplet, a 
solution of high viscosity that reduces sperm motility 
(Hyakutake et  al. 2015). The slow movement of the 
sperm in PVP allows placing the injection pipette over 
the sperm tail and rolling it against the bottom of the 
ICSI dish to immobilize the sperm and easily take it into 
the ICSI pipette. The resulting damage of the sperm tail 
membrane not only makes sperm manipulation simpler 
(Kato & Nagao 2009), but also is thought to facilitate 
sperm head decondensation and oocyte activation, 
which are essential steps for early embryo development 
(Morozumi et  al. 2006). The resistance of the sperm 
tail to be broken varies among species, being much 
higher for the bull, followed by the sheep, the pig and 
finally horses and domestic cats, whose sperm tails are 
easily broken. Regardless of motility, even when dead 
spermatozoa are used, sperm tail breakage is a step that 
should not be bypassed, since it was shown to improve 
sperm nucleus decondensation (Dozortsev et al. 1995).

With respect to the pipettes used, commercial or 
handmade models can be employed. Since sperm size 
varies among species, it must be taken into account that 
injection pipettes of different inner diameters should 
be used in each case. For example, we recommend 
the use of 9 µm inner diameter pipettes for bull, ram 
(Fig. 1B) and pig sperm injection. On the other hand, 
commercial pipettes employed for human reproduction 
(7 µm) can be used for horse (Fig.  1A) and cat sperm 
injection (Fig. 1C). Furthermore, the shape of the pipette 
will depend on the system used. While sharp pipettes 
with bevel and spike are employed for the conventional 
method or laser-assisted system (Smits et al. 2012a), but 
a blunt pipettes are used when a piezo-driven system 
is employed. The piezoelectric actuator couples to the 
micromanipulation system and attaches the injection 
pipette, driving its tip forward in a precise and fast 
movement. In this fashion, disruption of the sperm 
tail oolemma are performed mechanically rather than 
manually, rendering the procedure easier, and more 
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successful according to some authors (Huang et  al. 
1996, Choi et  al. 2002, Lazzari  et  al. 2002, Wei & 
Fukui 2002, Yoshida & Perry 2007). Penetration of the 
oolemma is another critical step. If a piezoelectric 
actuator is used, the procedure is greatly simplified 
(Horiuchi et al. 2002). Otherwise, when a piezoelectric 
system is not available, the difficulty of the procedure 
will vary depending on the elastic properties of the 
oocyte membrane, which differs between species. In our 
experience, cow oolemma offers the greatest resistance 
to injection. In the case of sheep, the operator must 
be very careful, since oocytes are more sensitive to 
handling, as reflected in higher lysis rates after injection. 
When conventional ICSI is performed, the oolemma 
must be penetrated manually. To achieve this, aspiration 
must continue until a speed change of the ooplasm entry 
rate inside the injection pipette is observed. Only then 
the spermatozoon can be injected into the oocyte, along 
with the previously aspirated ooplasm. Failed injection 
of oocytes is very common among untrained operators, 
due to the skipping of this critical step. In addition, the 
high lipid content the ooplasm of many of domestic 
species hinders the visualization of the pipette and the 
entry of the spermatozoon. Lipids confer an opaque 
appearance to oocytes, which is more intense in pigs 
and domestic cats, followed by cows and finally sheep 
and goats, whose ooplasm is clearer. In the case of 
horses, lipids polarization is commonly observed, which 
might facilitate the visualization of the spermatozoon 
within the oocyte. Finally, oocyte activation is such an 
important step of ICSI protocols for domestic species 
that it will be discussed in a separate section.

Oocyte activation induced by regular fertilization 
and sperm injection

After sperm–egg fusion in regular fertilization, the 
spermatozoon triggers oocyte activation, giving rise to 

early embryo development. The complete activation 
of the oocyte implies the resumption of meiosis, the 
second PB (2PB) extrusion, the release of cortical 
granules and the formation of male and female 
pronuclei (PN) (reviewed by Alberio et al. 2001, Swann 
& Lai 2016). Oocyte activation occurs as the result of 
Ca2+ oscillations in the ooplasm (Stricker 1999), and 
it is widely accepted that the factor responsible for 
triggering these oscillations in mammals is a sperm-
specific isoform of the phospholipase C, named PLCς 
(Saunders et al. 2002, Yoon & Fissore 2007). The currently 
accepted model is that PLCς enters the ooplasm after 
the fusion of both gametes and catalyzes the hydrolysis 
of phosphatidylinositol 4,5-bisphosphate, generating 
inositol 1,4,5-triphosphate (IP3) and diacylglycerol. IP3 
binds to its receptor in the membrane of the endoplasmic 
reticulum and induces the release of Ca2+ to the cytosol. 
In this fashion, PLCς induces successive ooplasmic Ca2+ 
peaks (reviewed by Malcuit et al. 2006a). In mammals, 
such Ca2+ oscillations must be strictly regulated to 
induce a correct oocyte activation and normal embryo 
development (Rogers et  al. 2006). Further in the 
cascade, Ca2+ peaks cause a decrease in the levels 
of maturation-promoting factor (MPF) and mitogen-
activating protein kinase (MAPK), whose concentrations 
are at their maximum prior to fertilization, inducing 
oocyte activation (reviewed by Ducibella et  al. 2002, 
Jones 2005).

For species like the human, mouse, horse and 
domestic cat, the sole injection of the sperm into the 
oocyte is enough to trigger oocyte activation, sustaining 
development to blastocyst, and even to term (Palermo 
et  al. 1992, Cochran et  al. 1998, Gomez et  al. 2000, 
Kimura & Yanagimachi 1995). In human and mouse 
oocytes subjected to sperm injection, Ca2+ oscillations 
similar to those of IVF embryos have been observed 
(Tesarik et al. 1994, Sato et al. 1999, Markoulaki et al. 
2007). In horses and domestic cats, although there are 
no reports comparing oscillation patterns of ICSI vs IVF 
embryos, empirical data suggest that the sole sperm 
injection stimulus would be enough to induce embryo 
development, since most ICSI embryos are able to cleave, 
and some of them reach the blastocyst stage (Pope et al. 
1998, Bedford et al. 2003, Tharasanit et al. 2012, Moro 
et al. 2014). Indeed, 43–74% of horse oocytes formed 
pronuclei after sole sperm injection (Dell’Aquila et al. 
2001, Tremoleda et  al. 2003, Lewis et  al. 2016). For 
this reason, it is not necessary to employ additional 
protocols to induce oocyte activation and subsequent 
embryo development. Nevertheless, it is not the case 
for some large domestic species, whose development 
to blastocyst and even more to term is extremely low 
(reviewed by Horiuchi & Numabe 1999).

Developmental rates of cow ICSI embryos are much 
lower compared to those produced by IVF (Goto et al. 
1990, Chung et al. 2000). More than 90% of oocytes are 
unable to perform Ca2+ oscillations after sperm injection 

Figure 1 Pipette set up and oocyte of different species. (A) Equine 
oocyte, (B) ovine oocyte, (C) domestic cat oocyte and (D) leopard 
oocyte. PB, polar body.
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(Malcuit et  al. 2006a), resulting in an incomplete 
inactivation of MPF (Fujinami et  al. 2004). Therefore, 
most ICSI cow embryos show inconsistencies in sperm 
decondensation and pronuclei formation (Rho et  al. 
1998a, Chung et al. 2000, Malcuit et al. 2006b, Arias 
et al. 2015), making ICSI success in a complex challenge. 
It is under discussion if such inconsistencies are due to 
the inability of bull sperm to induce the complete oocyte 
activation or to the poor response of cow ooplasm to 
injection stimulus, which provoke an incorrect sperm 
head decondensation (Aguila et  al. 2017). For this 
reason, several oocyte activation protocols and sperm 
pretreatments have been developed, in order to improve 
releasing and/or activation of PLCς and the complete 
inactivation of MPF and MAPK (see below). Although, 
there are a few exceptions, there is a general consensus 
about the need to artificially activate ICSI embryos to 
generate blastocysts in the cow (Rho et al. 1998a, Chung 
et al. 2000, Fujinami et al. 2004, Oikawa et al. 2005, 
Bevacqua et al. 2010).

After ICSI in sheep, development to blastocyst is low 
compared to IVF (Gomez et al. 1998a,b). In contrast to 
bovine ICSI, it is not due to failed pronuclei formation, 
but to the arrest of most ICSI embryos at the 8- to 16-cells 
stage (Gomez et al. 1998a). In our hands, cleavage rates 
increase from 53 to 85% after chemical activation, but 
no differences were observed at later stages (Pereyra 
Bonnet et al. 2008).

For pig embryos, although the need of artificial 
activation after ICSI continues to be controversial 
(Kikuchi et al. 2002, Yong et al. 2006, Li et al. 2013), 
several authors improved blastocyst rates through the 
employment of activation treatments (Lee et  al. 2003, 
Nakai et al. 2003, 2006, Probst & Rath 2003). Indeed, 
it was recently reported that 50% of pig oocytes do not 
show Ca2+ oscillations after ICSI (Nakai et  al. 2016a). 
However, in this particular species, the main problem 
is the absence of in vitro maturation and culture 
systems specially designed for pig oocyte and embryo 
requirements, that led to poor-quality blastocysts 
and low rates of in vitro and in vivo development 
(Garcia-Rosello et al. 2009, Li et al. 2013, Nakai et al. 
2016b). In this sense, domestic cat ICSI embryos are 
in a similar situation. Although most injected oocytes 
are activated by sperm injection stimulus, only a few 
are capable of reaching the blastocyst stage. In this 
species, the problem probably lies on inadequate 
maturation, since developmental competence of ICSI 
and IVF embryos was shown to be lower for in vitro-
matured oocytes compared to their in vivo counterparts 
(Gomez et al. 2000).

Two strategies for improving pronuclei formation

As discussed earlier, cow oocytes are not effectively 
activated by sperm after ICSI. In contrast to other animal 
groups, the great economical interest of this species 

has led to the development of in vitro production 
systems highly adapted to cow embryo requirements. 
However, male pronucleus formation after ICSI 
continues to fail (Wei & Fukui 1999, Suttner et al. 2000, 
Sekhavati et al. 2012). For these reasons, in the present 
section, we will mainly refer to bovine outcomes for 
describing the approaches assessed in order to improve 
pronuclei formation. Two types of strategies have been 
implemented: one focuses on the oocyte, by the use of 
exogenous activation treatments to induce early embryo 
development, and the other focuses on damaging 
the sperm membrane through the use of various pre-
treatments in order to emulate, as much as possible, 
regular fertilization events.

Regarding activation protocols, they usually include 
a chemical stimulus to increase Ca2+ concentrations 
in the injected oocytes. Examples are ionomycin (Rho 
et al. 1998a) or Ca2+ ionophore A23187 (Kolbe & Holtz 
2000). In the case of pig embryos, an electrical stimulus 
is more widely employed to induce activation (Lee et al. 
2003, Lee & Yang 2004, Matsurani et al. 2014). These 
treatments induce a single Ca2+ peak in the oocyte, 
causing a temporary inactivation of MPF that leads to the 
release from the meiotic arrest. However, it is not enough 
to induce pronuclei formation, since the inactive state of 
this factor needs to be maintained to allow complete 
activation (Kubiak et al. 1993, Susko-Parrish et al. 1994). 
For this reason, activation protocols for domestic species 
combine the use of physical or chemical Ca2+ release 
inducers with an inhibitor of MPF and/or MAPK activities. 
The most widely used compounds are cycloheximide 
(CHX), a general inhibitor of protein synthesis (Baliga 
et  al. 1969) and 6-dimethylaminopurine (6-DMAP), 
a protein kinase phosphorylation inhibitor (Szöllösi 
et  al. 1993). Both treatments are capable of giving 
rise to acceptable blastocyst rates in the cow (Suttner 
et al. 2000, Oikawa et al. 2005, Bevacqua et al. 2010), 
which explains their extensive use for in vitro studies. 
However, only one newborn has been produced with 
6-DMAP (Oikawa et  al. 2005), while no births with 
CHX have been reported. Therefore, more specific 
activation treatments have been proposed, such as the 
use of a Ca2+ ionophore followed by dehydroleucodine 
(Vichera et al. 2010), roscovitine (Fernandes et al. 2014) 
and anisomycin (Arias et  al. 2016), which were able 
to produce blastocysts. An important methodological 
aspect to consider prior to performing ICSI is how the 
activating agents affect 2PB extrusion. For example, the 
use of 6-DMAP immediately after Ca2+ ionophore inhibits 
2PB extrusion (Rho et al. 1998b), a mistake commonly 
observed even in current ICSI studies. For this reason, 
the activation protocol for ICSI embryos must include a 
window of 3 h between Ca2+ ionophore and incubation 
with 6-DMAP (Ock et  al. 2003). In contrast, when 
dehydroleucodine, roscovitine, CHX or anisomycin are 
used immediately after Ca2+ ionophore, 2PB extrusion 
occurs in most of the oocytes treated (Canel et al. 2010, 
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Arias et  al. 2016, Suva et  al. 2016). Additionally, the 
choice of an activation treatment must not be only based 
on its capability to produce blastocysts, since it is not 
necessarily related to the ability to sustain development 
to term. It is reflected by the outcomes produced by 
ethanol treatment, which is less efficient than others 
to produce blastocysts (Bevacqua et  al. 2010), but 
has shown the higher birth rates worldwide. In fact, 
most calves produced by ICSI to date were activated 
with ethanol (Table  1). Moreover, the use of 6-DMAP 
has been shown to produce high numbers of ICSI and 
parthenote embryos with chromosomal abnormalities 
(De La Fuente & King 1998, Rho et al. 1998b, Ross et al. 
2008, Canel et al. 2010), explaining in part the frequent 
pregnancy loss.

Although there are no studies in domestic species, 
alterations in Ca2+ signaling pathways during the 
activation of murine oocytes have been reported to 
affect not only early embryonic development, but also 
gene expression during embryo genome activation 
and, at the blastocyst stage, implantation and even 
development to term (Ozil & Huneau 2001, Ozil et al. 
2006, Rogers et al. 2006). Therefore, it is essential to 
develop activation treatments that better mimic what 
occurs after regular fertilization. In this sense, Ross 
et al. (2008) proposed an interesting approach. These 
authors performed the intracytoplasmic injection 
of PLCζ1 cRNA into cow oocytes and were able to 
induce sperm-like Ca2+ oscillation patterns, resulting 
in rates of parthenogenetic development similar to 
those produced with ionomycin followed by CHX or 

DMAP. Additionally, embryos activated with PLCζ1-
cRNA showed lower levels of aneuploidy, which did 
not differ from those of IVF embryos. Although the use 
of cRNA is more complex than the routine protocols, 
these results are promising for their application on 
ICSI assays.

The second strategy widely employed to facilitate 
male pronucleus formation is to treat the sperm previous 
to ICSI, in order to emulate as much as possible how 
gametes interact in a regular fertilization event. Before 
in vivo fertilization, mammalian sperm cells undergo two 
physiological events in the female tract: capacitation, 
that confers the spermatozoon its ability to interact with 
the oocyte, and acrosome reaction, which consists on 
the exocytosis of the acrosome content. As a result, the 
sperm suffer a massive loss of membranes, and after 
penetrating the zona pellucida, it fuses to the oolemma 
(Yanagimachi 1994). After fusion, the remaining inner 
acrosomal membrane is also disrupted, allowing the 
direct interaction of both sperm and oocyte cytoplasm 
and the release of PLCζ, which triggers oocyte activation 
(Malcuit et al. 2006b, Roldan 2006). In contrast, these 
events are bypassed when performing ICSI, since an 
intact spermatozoon is directly injected in the cytoplasm 
of a mature oocyte. Therefore, the complex structure of 
sperm membranes maintains the sperm nucleus and 
the ooplasm separated (Sutovsky & Schatten 2000, 
Morozumi et  al. 2006, Roldan 2006), which might 
be a possible cause of the reduced developmental 
competence of the resulting embryos (Morozumi et al. 
2006, Yanagimachi 2011, Aguila et al. 2017).

Table 1 Reported live born offspring after ICSI in bovine, sheep, goat, pig and horse.

Species Treatment Live born Observations References

Bovine Ethanol 10 Cell sorted sperm heads Hamano et al. (1999)
Piezo 3 Wei & Fukui (2002)
Piezo/ethanol 9 (ethanol) Oikawa et al. (2005)
Piezo/Io + 6-DMAP 1 (Io + 6-DMAP)
Piezo/ethanol 24 Horiuchi et al. (2002)
Piezo/dithiothreitol 1 Galli et al. (2003)

Sheep – 1 Cell sorted Catt & Rhodes (1995)
– 2 Gomez et al. (1998a,b)
– 17 Line hemophilia A Porada et al. (2010)
– 2 Cochran et al. (1998)

Goat Piezo 2 Fresh sperm Wang et al. (2003)
Pig – 3 Oocytes in vivo matured/centrifuged Martin (2000)

Io 1 Kolbe & Holtz (2000)
CaCl2 activated 13 Cell sorted sperm Probst & Rath (2003)
Electrical 3 Nakai et al. (2003)
– 1 Sperm donor was transgenic Yong et al. (2006)
Piezo. Cysteine 12 Katayama et al. (2007)
– 15 (Tg: live 4 + dead 3) Recombinase RecA Garcia-Vasquez et al. (2010)
Electrical. Piezo 62 (tg 8) BAC Watanabe et al. (2012)
Electrical. Piezo 6 (tg 2) Matsunari et al. (2014)

Horse – 2 Cochran et al. (1998)
Piezo 7 Galli et al. (2007)
Piezo 2 Lyophilized sperm Choi et al. (2011)
Piezo 10 Euthanasia or after death for oocyte donor Hinrichs et al. (2012)

Io, Ca-ionophore; Tg, transgenic.
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As outlined earlier, several sperm treatments prior to 
ICSI were designed to remove or modified the sperm 
membranes for facilitating sperm decondensation and 
pronuclear formation. Among chemical agents, the 
most widely used for these purposes is dithiothreitol 
(DTT). Although some studies have reported that DTT 
increases blastocyst rates (Rho et al. 1998a, Wei & Fukui 
1999, Oikawa et al. 2016) and has led to the birth of a 
viable calf (Galli et al. 2003), no positive effect has been 
observed in other studies (Suttner et al. 2000, Arias et al. 
2014). Moreover, severe damage on sperm DNA was 
observed after DTT treatment, which ultimately could 
affect the quality of ICSI embryos (Sekhavati et al. 2012). 
In recent years, many membrane-disrupting agents 
were tested, such as Triton X-100 (Lee & Yang 2004), 
sodium hydroxide (Arias et al. 2014), dithiobutylamine 
(Suttirojpattana et al. 2016), lysolecithin (Morozumi et al. 
2006, Zambrano et al. 2017) and methyl-β-cyclodextrin 
(Arias et  al. 2017). Some of these treatments raised 
blastocyst rates, but male pronucleus formation was not 
improved in all cases. Furthermore, some of them were 
reported to induce a decrease of PLCζ (Zambrano et al. 
2016) and their effects on development to term have not 
been evaluated. The location of PLCζ in the sperm is an 
important issue to be taken into account for ICSI protocol 
design, since it varies among species. For example, it 
was found in the equatorial area of bull sperm (Yoon & 
Fissore 2007), in the post-acrosomal region and the tail 
of pig sperm (Nakai et al. 2011) and in the acrosomal 
and equatorial regions of the stallion sperm head as 
well as in the principal piece of the flagellum (Bedford-
Guaus et al. 2011). Such differences can be a source of 
variability in the response of sperm to pre-treatments, 
including the use of the piezo drill 

A more physiological approach was the use of 
reduced glutathione, an endogenous disulfide bond 
reducer that in combination with heparin induces in vitro 
decondensation of spermatozoa of several species (Reyes 
et al. 1989, 1996, Sanchez-Vazquez et al. 1996, 1998, 
Delgado et al. 2001). Sperm treatment with heparin and 
glutathione prior to ICSI was shown to facilitate sperm 
decondensation without damaging DNA and to improve 
embryo development and blastocyst quality after ICSI 
in the cow (Sekhavati et  al. 2012, Canel et  al. 2017). 
However, since no offspring were reported, these results 
should be treated with caution.

Finally, the mechanical damage induced by piezo 
drill on the sperm deserves special attention. During 
the ICSI procedure, the sperm tail is intentionally 
damaged before injection, since it was shown to be a 
critical step for ultimate success (Wei & Fukui 1999). 
Some researchers consider that it would cause the 
release of PLCς and other factors within the oocyte 
cytoplasm after injection, giving rise to the activation 
cascade (Yanagida et al. 2001, Morozumi et al. 2006). 
It is well known that the sole sperm injection stimulus 
into the cytoplasm of a mature oocyte is sufficient to 

activate embryo development in horses (Dell’Aquila 
et al. 2001, Tremoleda et al. 2003, Lewis et al. 2016). 
It might be due to the great capability of the equine 
isoform of PLCς to generate Ca2+ peaks, combined with 
the use of piezo drill, which allows the release of PLCς 
in the ooplasm. Ca2+ peaks induced by equine isoform 
of PLCς were shown to begin earlier and to have a 
higher frequency than those observed in other species 
studied (Sato et al. 2013). Therefore, the localization and 
strength of equine PLCς may explain, at least in part, the 
major repeatability achieved for ICSI in horses by the 
use of piezo drill (Galli et al. 2002, Choi et al. 2003), in 
contrast to other domestic species, specially the bovine 
(Katayose et al. 1999, Horiuch et al. 2002, Wang et al. 
2003, Devito et al. 2010). Nonetheless, it is important 
to highlight that most new born calves produced by ICSI 
have been subjected to piezo drill, in combination with 
an activation treatment (Table 1).

Coincident with the observations of Wei and Fukui 
(1999), our experience led us to hypothesize that a 
big part of the variability of ICSI outcomes in domestic 
species is due to the different responses of males to 
sperm pre-treatments. Thus, greater knowledge of the 
mechanisms governing the early events of fertilization 
is needed to determine the exact combination of sperm 
pre-treatments and activation protocols required for 
successful ICSI in domestic species, particularly in 
the bovine.

ICSI-mediated gene transfer (ICSI-MGT)

The technique of ICSI-MGT is based on the fact that 
transgenes may spontaneously attach to the external 
sperm membrane, and then be passively transported 
into the cytoplasm of a mature oocyte when the 
spermatozoon is introduced by ICSI. In this way, 
integration of transgenes is possible during early stages 
of pronuclei formation (Perry et al. 1999). Some benefits 
associated with ICSI-MGT are that it avoids the epigenetic 
failures induced by SCNT (Rideout et  al. 2001) and 
the high rates of oocyte lysis provoked by pronucleus 
microinjection. In our laboratory, cow, sheep, horse, 
pig and domestic cat GFP (green fluorescent protein) 
expressing embryos have been produced by ICSI-
MGT (Pereyra Bonnet et  al. 2008, 2011). Moreover, 
by the use of improved activation treatments, rates of 
GFP-expressing cow blastocysts exceeded 80% after 
ICSI-MGT (Bevacqua et  al. 2010). Although several 
researchers reported experiments of ICSI-MGT in the 
cow (Canel et  al. 2017), ewe (Gou et  al. 2002), goat 
(Shadanloo et al. 2009), horse (Zaniboni et al. 2013) and 
monkeys (Chan et al. 2000), most of them only observed 
cytoplasmic expression of the transgenes, without giving 
evidence of their integration into the genome, or the 
birth of transgenic live animals. In contrast, several 
transgenic pigs have been successfully generated using 
this technology (Kurome et al. 2006, Yong et al. 2006, 
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Umeyama et  al.  2012, Matsunari et  al. 2014). In 
conclusion, ICSI-MGT in farm animal has only produced 
repeatable results in pigs, wherein several transgenic 
offspring have resulted. However, interest in producing 
transgenic animals by ICSI-MGT has decreased with the 
advent of new tools of gene edition (CRISPR-Cas9 and 
TALEN system), which are technically simpler (Hai et al. 
2014, Whitworth et  al. 2014, Proudfoot et  al. 2015, 
Wang et al. 2015, Bevacqua et al. 2016).

In our laboratory, an alternative application of ICSI-
MGT has been proposed. The high lipid content of cow 
oocytes impedes the visualization of pronuclei after 
fertilization. Since ICSI in cattle must be followed by 
artificial activation, ICSI embryos (which are products of 
proper sperm decondensation) need to be distinguished 
from those produced merely by artificial activation. To 
do this, sperm can be subjected to a brief incubation 
with pCX-EGFP before ICSI. This plasmid contains the 
gene coding for green fluorescent protein (GFP) under 
the control of a promoter that is constitutively expressed 
at early stages of embryo development (Ikawa et  al. 
1995). Such expression can be simply detected by 
observation of embryos under UV light at day 4 of in vitro 
culture. A previous report from our group (Bevacqua 
et  al. 2010) showed that all GFP-expressing embryos 
had successfully undergone pronuclei formation. By 
contrast, more than 50–100% of embryos without GFP 
expression showed a condensed sperm head inside 
them, depending on the activation treatment employed. 
These results reflect a strong association between pCX-
EGFP expression and sperm head decondensation 
after ICSI. Therefore, the joint injection of pCX-EGFP 
with sperm, and the subsequent evaluation of GFP 
expression can be used as an indicator of efficient sperm 
decondensation, as was done by Canel et al. (2017). In 
addition, this method might be easily adapted to other 
domestic species whose oocytes present similar or even 
greater lipid content, since sperm–plasmid incubation 
previous to ICSI also produces GFP-expressing embryos 
(Pereyra Bonnet et al. 2008).

Clinical applications for ICSI: a success in horses

Breeding selection in horses is usually based on their 
sporting performance, beauty or body conformation, 
rather than reproductive abilities, as is the case for other 
farm animals. Consequently, subfertility and infertility 
problems are unintentionally conserved in donor mares 
and stallions. Several conditions like chronic uterine 
diseases, endometritis, cervical lacerations and other 
serious physical injuries in the female reproductive tract 
frequently reduce or restrict the chances of mares to 
conceive a pregnancy (Foss et al. 2013, Rader et al. 2016). 
As well, some stallions that show good performance 
are sub-fertile or their sperm supplies are limited, since 
they are castrated before showing valuable genetic 
characteristics or die unexpectedly. For these reasons, 

the advent of new reproductive technologies inevitably 
led to the inclusion of an in vitro embryo production 
system in horse reproductive programs. In particular, the 
ICSI technique gained importance in this species since 
a consistent IVF protocol has not been yet developed, 
possibly due to an incomplete capacitation of the 
stallion spermatozoa, that apparently disables them to 
penetrate the zona pellucida in vitro (Leemans et  al. 
2016). Unfortunately, in spite of numerous attempts to 
make conventional IVF successful for horses, outcomes 
continue to be disappointing.

After the first report of a pregnancy derived from an 
in vitro-matured oocyte fertilized using ICSI (Squires 
et al. 1996), the encouraging outcome was followed by 
a period of variable results. The introduction of the piezo 
drill and modifications in the culture media allowed an 
improvement in cleavage rates and repeatability of ICSI 
protocols (Choi et  al. 2002, 2004, Galli et  al. 2002). 
However, reported blastocyst rates still vary from 0 to 
42% depending on mare age, follicle stage, oocyte 
quality and fertility of the stallion (Tremoleda et  al. 
2003, Hinrichs et al. 2012, 2013, Foss et al. 2013, Choi 
et  al. 2016, Rader et  al. 2016). With the use of these 
technologies, pregnancy rates after embryo transfer are 
usually high, varying from 50 to 80% (Hinrichs 2013, 
Galli et al. 2014).

Additional advantages for ICSI are seen in horses. For 
example, oocytes can be placed at room temperature 
in commercial embryo-holding media for 18–24 h, so 
in vitro maturation can be delayed allowing a flexible 
work schedule and simplifying the transport of immature 
oocytes from the farm to the laboratory (Choi et al. 2006, 
Foss et al. 2013, Martino et al. 2014, Carnevale 2016, 
Dini et  al. 2016). Although the equine is a seasonal 
species (long day breeders), ICSI can be performed at 
any time of the year and at any stage of the reproductive 
cycle, as long as there are follicles present in the 
ovaries. It avoids interference with training or sporting 
activities of the donor mares, which is critical for a 
species of commercial interest. Additionally, in contrast 
to other species like pigs, horse ICSI embryos can be 
successfully cryopreserved for later transfer (Galli et al. 
2002, Hinrichs 2013).

Another interesting alternative for the use of ICSI 
is when an unfortunate event like accident or illness 
results in the death or euthanasia of a valuable mare. 
The application of this technique might offer the 
chance of getting offspring by recovery of oocytes 
within 7 h of death (Ribeiro et  al. 2008, Carnevale 
2016). The subsequent ICSI performance using 
sperm from a desired stallion can result in valuable 
embryos that can be transferred to a recipient mare or 
cryopreserved for future transfer (Carnevale et al. 2003, 
Hinrichs et al. 2012).

Nowadays, the horse remains at the forefront of the 
ICSI technique over other domestic species, showing 
an exponential increase in the use of this technology 
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in the last two decades. Viable embryos are routinely 
produced from donor mares in a consistent and 
repeatable manner, by the combination of transvaginal 
aspiration followed by ICSI and in vitro culture of 
embryos to the blastocyst stage. Moreover, embryos 
are obtained using small pieces of frozen semen straws 
or even from lyophilized sperm (Choi et  al. 2011). 
Currently, perspectives are focused on the conservation 
of female gametes by vitrification. Blastocyst rates after 
vitrification of immature oocytes have reached values 
of 10% (Siqueira Canesin et  al. 2017), showing great 
potential for female genetic preservation, that might also 
give rise to new alternatives for genetic rescue of wild 
equids (Smits et  al. 2012b). However, more research 
is needed to improve its efficiency and also to unveil 
the mysteries of the IVF technique in horses. Such 
discovery would mean a resounding improvement for 
the horse industry.

A promising technique for endangered and 
nontraditional species

Small populations of endangered species have a lack 
of genetic diversity increasing the chance of inbreeding 
and homozygosis (Roldan et al. 2006). This reduces the 
adaptation capacity and increases the risk of inherited 
diseases, congenital defects and decreases fertility 
(Comizzoli et  al. 2000). In many cases, these animals 
have reduced sperm quality, which limits regular 
reproduction or the use of ARTs like AI or IVF (Howard 
et  al. 1993, Koester et  al. 2015), ICSI can be used in 
cases. Additionally, it is possible to produce offspring 
from gametes of deceased animals (Fernandez-Gonzalez 
et al. 2015) or improve the fertility of poor sperm (Choi 
et  al. 2016) or oocyte quality (Jimenez-Macedo et  al. 
2007, Catala et  al. 2012, Ohlweiler et  al. 2013). This 
technique allows the selection of morphologically 
normal spermatozoa, even from samples containing a 
large proportion of teratozoospermic sperm (Penfold 
et  al. 2003), which are frequently observed in zoo 
inbred species. In camelids, where sperm freezing and 
thawing protocols are not efficient, ICSI might be an 
option to achieve in vitro-produced embryo (Sansinena 
et al. 2007, Conde et al. 2008).

Concerning to felids, ICSI in the domestic cat has been 
a valuable model to develop this technology for their wild 
counterparts (Moro et al. 2014). Some researchers have 
reported that artificial activation is necessary to restart 
the oocyte cell cycle after ICSI (Bogliolo et  al. 2001, 
Comizzoli et al. 2006), while others observed embryo 
development without the need of any type of activation 
treatment (Pope et al. 1998, Penfold et al. 2003, Moro 
et al. 2014). This difference may be correlated with the 
concentration of PLCζ, which was shown to vary among 
males (Villaverde et  al. 2013). Since the first cat was 

produced by ICSI using fresh semen and in vivo-matured 
oocytes (Pope et al. 1998, Gomez et al. 2000), kittens 
have also been produced with the use of frozen semen 
(Gomez et al. 2003, Tharasanit et al. 2012). However, 
there are few reports of blastocysts production by in vitro 
maturation of oocytes by ICSI in wild felids.

In wild or endangered species, oocytes are a limiting 
factor. Thus, interspecific ICSI can be used to evaluate 
the fertilizing capability of spermatozoa from exotic 
species using in vitro-matured oocytes from domestic 
animals. In our laboratory, good rates of ICSI blastocysts 
were produced after injecting cheetah and leopard 
spermatozoa into domestic cat oocytes, without any 
activation treatment (Moro et  al. 2014). Also Kaneko 
et  al. (2014) used mouse oocytes to evaluate freeze-
dried sperm samples from the chimpanzee, giraffe, 
jaguar, weasel and the long-haired rat.

Finally, ICSI allows the reproduction of wild animals 
that are separated by space (natural habitat and zoos) 
and time (cryobanking), even when sperm are poorly 
cryopreserved or in low number.

Final considerations

Nowadays, the low repeatability and the high complexity 
of ICSI technique in domestic species have restricted this 
technology to the production of elite horses. It is expected 
that the use of ICSI would contribute to preserve the 
genetic diversity of endangered mammals, especially for 
those species that are closely related to domestic ones, 
for which ICSI has shown promising results. Currently, 
the ICSI technique is an unlimited source of information 
regarding the fertilization process. It offers a great 
potential for clarifying mechanistic differences among 
mammalian species, with high impact perspectives in 
both basic and applied research fields.
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