
HYPERCOMPLEX NILPOTENT LIE GROUPS

ISABEL G. DOTTI AND ANNA FINO

1. Introduction

An invariant hypercomplex structure on a Lie group G is a triple of inte-
grable complex structures {Ji}i=1,2,3 on the corresponding Lie algebra g sat-
isfying the quaternion identities J2

i = −1, i = 1, 2, 3 and J1J2 = J3 = −J2J1.
Invariant hypercomplex structures on compact Lie groups were studied in
[15] in the context of N = 4 supersymmetry. D. Joyce (see [8]) con-
structed, for any compact Lie group G, an invariant hypercomplex struc-
ture on T 2n−r ×G, r the rank of G. This extends a result of Samelson who
showed that every compact Lie group G of even dimension has a complex
structure such that left translations are holomorphic mappings (see [12]).

There have been a number of recent results on invariant hypercomplex
structures on non-compact Lie groups. The classification, for 4-dimensional
real Lie groups was given in [2]. In [5] it was shown that every solvable
Lie group associated to a rank one symmetric space of non compact type
with dimension divisible by 4, admits such a structure. On the other hand,
examples were given of solvable Lie groups G such that no product with Rs

admits a hypercomplex structure, in contrast to the compact case discussed
in [8]. The case of nilpotent Lie groups had already been considered in [9],
[4] and [3]. The construction given in [9] allows to obtain as a byproduct,
many non homogeneous hypercomplex manifolds.

In [7] a classification of hypercomplex structures on 8-dimensional nilpo-
tent Lie algebras is given. In the present note, using the description in
the main result in [7], we prove that every hypercomplex 8-dimensional nil-
manifold is quaternionic, i.e the Obata conection is flat (see Section 2). In
Section 3 we concentrate on abelian hypercomplex structures, which have
the special property that for one (hence for all) of the complex structures in
the family, the associated (1, 0)-vector fields commute. We will prove that
such a structure can only occur on solvable Lie groups (Proposition 3.1).
For such groups these structures are very common. For instance, in 2-step
nilpotent Lie groups many examples have been constructed (see [6], [3]).
In a nilpotent Lie group of dimension 8, the existence of a hypercomplex
structure forces g to be 2-step (see [7]). However, in Section 3 we provide an
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example of an abelian hypercomplex structure on a 3-step, 12-dimensional
nilpotent Lie group that is not Obata flat.

2. 8-dimensional hypercomplex nilmanifolds

We note that the only nilpotent Lie group of dimension 4 which admits
an hypercomplex structure is abelian. On the other hand, in the case of
nilpotent Lie groups of dimension 8, the condition of admitting an invari-
ant hypercomplex structure, imposes strong restrictions on G. In [7] the
following result is proved

Theorem 2.1. Let G be an 8-dimensional nilpotent Lie group endowed with
a hypercomplex structure. Then G is at most 2-step nilpotent and the first
Betti number of the corresponding Lie algebra g satisfies b1(g) ≥ 4.

It was also proved (in [7]) that there exists a basis of left invariant 1-forms

{e1, e2 = J1e
1, e3 = J2e

1, e4 = J3e
1, e5, e6 = J1e

5, e7 = J2e
5, e8 = J3e

5}

such that, if b1(g) = 4 and ekl stands for ek ∧ el then

dei = 0, i = 1, . . . , 4,
de5 = a1e

12 + a2e
13 + a3e

14 + (−a3 + t3)e23 + (a2 − t2)e24 + (−a1 + t1)e34,
de6 = b1e

12 + b2e
13 + b3e

14 + (−b3 + t2)e23 + (b2 + t3)e24 + (−b1 + t4)e34,
de7 = c1e

12 + c2e
13 + c3e

14 + (−c3 − t1)e23 + (c2 − t4)e24 + (−c1 + t3)e34,
de8 = d1e

12 + d2e
13 + d3e

14 + (−d3 + t4)e23 + (d2 − t1)e24 + (−d1 − t2)e34,

with t21 + t22 + t23 + t24 6= 0. If b1(g) ≥ 5, then

dei = 0, i = 1, . . . , 5,
de6 = b1 (e12 − e34) + b2(e13 + e24) + b3 (e14 − e23) + te34,
de7 = c1 (e12 − e34) + c2 (e13 + e24) + c3(e14 − e23)− te24,
de8 = d1 (e12 − e34) + d2(e13 + e24) + d3 (e14 − e23) + te23.

Remark 1. Note that the center z of g contains the 4-dimensional subspace
W = span{e5, e6, e7, e8}, which is invariant with respect to Ji, i = 1, 2, 3.

It is known (see [10]) that every hypercomplex structure {Ji}i=1,2 on a
4k-dimensional differentiable manifold M uniquely determines an affine, tor-
sion free connection (called the Obata connection), with respect to which
the complex structures Ji, i = 1, 2, 3 are parallel. In other words, the
GL(k,H)-structure they determine admits a torsion free connection. The
above description of the hypercomplex structures on 8-dimensional nilpotent
Lie groups allows us to show that its Obata connection is flat. Indeed one
has

Proposition 2.1. Every hypercomplex structure on a 8-dimensional nilpo-
tent Lie group is flat.
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Proof. The Obata connection associated to an invariant hypercomplex struc-
ture J1, J2, J3 = J1J2 on a nilpotent Lie group G is given by

∇XY =
1
2

[X,Y ] +
1
12
σ([J1X, J3Y ] + [J2X, J3Y ]) +

1
6

i=3∑
i=1

[JiX,Y ] + [JiY,X],

where X,Y lie in g and σ denotes the cyclic sum with respect to the indices
1, 2, 3.

Using Remark 1 one can prove that

∇XY = 0, forX ∈W or Y ∈W,

since W is Ji-invariant, for i = 1, 2, 3. Moreover, for any X,Y ∈ g, we have
that ∇XY ∈W . Hence, the curvature tensor R associated to ∇ vanishes.

If the connection is flat, then M is quaternionic in the sense of Sommese
([14]), that is, M can be covered by coordinate neighborhoods such that the
transition functions are quaternionic. In particular, the GL(k,H)-structure
is integrable, hence a flat affine structure exists on M . Thus, as a con-
sequence of the previous proposition it will follow that any 8-dimensional
hypercomplex nilmanifold M is quaternionic in the sense of Sommese.

Furthermore using the previous Proposition it is easy to prove that
(G, Ji,∇) is a special complex manifold in the sense of [1], since the Obata
connection ∇ is a flat torsion-free connection such that ∇Ji = 0. In this case
any affine function f (i.e. a function satisfying ∇df = 0) can be extended
to a holomorphic function F such that ReF = f .

3. Abelian hypercomplex structures

Among the left invariant almost complex structures J on a Lie group G
one may consider as a special class, those J ′s satisfying

(1) [JX, JY ] = [X,Y ] for all X,Y ∈ g.
One verifies easily that these almost complex structures are integrable, that
is,

0 = NJ(X,Y ) = J [X,Y ]− [JX, Y ]− [X, JY ]− J [JX, JY ].

Complex structure satisfying condition (1) are called abelian since the asso-
ciated (1, 0) vector fields commute. They have been studied previously in
[5], [6], [4], [11], [3]. Abelian complex structures are common on solvable
Lie algebras. See [13] for families of abelian complex structures on solvable,
non nilpotent, 4-dimensional Lie algebras. The following proposition shows
that only solvable Lie groups can carry this class of structures.

Proposition 3.1. If a Lie group G carries an invariant abelian complex
structure then G is solvable.

Proof. We note first that semisimple Lie groups do not admit abelian com-
plex structures of the above type. To prove the assertion, let 〈, 〉 be any
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Ad(G)-invariant non degenerate bilinear form on g. Then, if J is abelian
one has [JX, Y ] = −[X,JY ] giving

〈J∗[X,Y ], Z〉 = 〈X, [Y, JZ]〉 = −〈X, [JY, Z]〉 =

−〈[X, JY ], Z〉 = 〈[JX, Y ], Z〉,
where J∗ is the adjoint with respect to 〈, 〉. Hence J∗[X,Y ] = [JX, Y ] =
−[X,JY ] = [JY,X] = J∗[Y,X] thus J∗ = 0 on g1 = g, which is not possible.

Let r be the radical of g, the Lie algebra of G. Then J abelian implies
r + Jr is a solvable ideal and by maximality it must coincide with r. We
claim r = g. Otherwise, J induces on the quotient semisimple Lie algebra
g/r an abelian complex structure contradicting what we have proved above.

Every hypercomplex structure gives rise to a sphere of complex structures.
We show next that if one of the (invariant) complex structures on the sphere
is abelian then all of the complex structures in the sphere are abelian.

Lemma 3.1. If J,K are anticommuting complex structures on g and J
satisfies (1) then K also satisfies (1).

Proof. Since K is integrable

[KX,Y ] + [X,KY ] +K[KX,KY ] = K[X,Y ] = K[JX, JY ] =

[KJX, JY ]+[JX,KJY ]+K[KJX,KJY ] = −[KX,Y ]−[X,KY ]+K[KX,KY ],
showing that K is abelian.

The hypercomplex structure is called abelian if [JiX, JiY ] = [X,Y ], for
any i = 1, 2, 3 and X,Y ∈ n. For this, it is sufficient by the above lemma,
that one of the complex structures in the associated sphere is abelian.

In [6] it is proved that an 8-dimensional nilpotent Lie group with an
abelian hypercomplex structure is either abelian or a trivial extension of a
group of Heisenberg type. In [3], the 2-step nilpotent Lie algebras carrying
abelian hypercomplex structures are characterized and it is shown in par-
ticular that the result quoted above is not longer true in higher dimensions.

A natural question that comes is whether there exist examples of s-step
nilpotent Lie groups (with s > 2) in dimension greater than eight endowed
with a hypercomplex structure. The following example gives a positive an-
swer to this question.

Example 1. Consider the 3-step nilpotent Lie algebra g of dimension 12
defined by

dei = 0, i = 1, . . . , 9,
de10 = e1 ∧ e2 − e5 ∧ e6,
de11 = e2 ∧ e5 − e1 ∧ e6,
de12 = e1 ∧ e4 + e2 ∧ e10 + e5 ∧ e8 + e6 ∧ e11

.

It is possible to check that g admits an abelian hypercomplex structure
{J1, J2}, with corresponding basis of (1, 0)-forms,{

ω1
1 = e1 − ie2, ω1

2 = e3 − ie12, ω1
3 = e4 − ie10,

ω1
4 = e5 − ie6, ω1

5 = e7 − ie9, ω1
6 = e8 − ie11,
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ω2

1 = e1 − ie6, ω2
2 = e2 − ie5, ω2

3 = e3 − ie9,
ω2

4 = e4 − ie11, ω2
5 = e10 − ie8, ω2

6 = e12 − ie7.
Furthermore we note that the assertion in Proposition 2.1 does not hold in
this case. Indeed, the curvature tensor R associated to Obata connection is
not zero; for example one can check that Re1e2e6 = 1

3e12, where {ei} is the
dual basis of {ei}.
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